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Abstract 

Web services facilitate machine-to-machine communication over the Internet and require precise classification to ensure 

reliable and efficient service delivery. Accurate classification plays a crucial role in service discovery, recommendation 

systems, and service composition. Web service brokers help users select the most suitable service based on quality parameters. 

Currently, there is a limited availability of datasets focused on web service quality; among them, the QWS dataset — containing 

nine quality features — is one of the most prominent. However, this dataset omits important non-functional attributes such as 

security, interoperability, scalability, and robustness, which are vital for effective web service discovery. In this study, we 

propose enhancing the QWS dataset through feature engineering to derive additional informative features from existing ones. 

Experimental results using the SSL-WSC algorithm demonstrate that this approach significantly improves web service 

classification performance, evidenced by a 5.05% increase in F1-Score, a 5.69% boost in accuracy, and a 6.92% rise in 

precision. 
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1.Introduction 

Web services are increasingly used for 

interoperability and communication among diverse 

systems and applications [1]. Brokers play a crucial 

role in provisioning and managing web services. They 

act as intermediaries between users and service 

providers, helping to establish connections. By 

aggregating and integrating user requirements, 

brokers enable cost reduction in service utilization. 

Moreover, brokers simplify the access to web services 

for users, allowing them to search, compare, and 

select appropriate services (Fig. 1) [2]. Additionally, 

brokers can manage and allocate resources necessary 

for service consumption, monitor the delivery of 
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quality services by applying quality criteria, and 

contribute significantly to ensuring the security and 

privacy of interactions between users and web 

services. 

 The classification of web services is a crucial task in 

service-oriented computing as it aids in discovering 

and efficiently utilizing web services based on their 

features [3]. A ranking system calculates the relative 

value of different services based on the user's required 

service quality and the characteristics of available 

services. Once comparisons with other services are 

made, the system can recommend the appropriate 

service to the user. The recent proliferation of web 
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service providers has led to an increase in the number 

of web services offering similar functionalities. The 

main difference among these similar web services is 

their performance quality. The service quality 

component in the web services field encompasses 

non-functional features such as cost and execution 

time, availability, success rate, and security, among 

others. Only a few datasets based on web service 

quality are available in web services.  This is because 

generating a QoS dataset is a challenging, expensive, 

and time-consuming task as services need to be 

discovered, and their QoS behavior observed over 

time to calculate non-functional feature values [4]. 

Therefore, gathering service information from 

various sources and generating dataset structures 

requires more human effort. 
 

 
architecture. service 1. Web ig.F 

 

Web services embody three fundamental 

components: Simple Object Access Protocol (SOAP), 

Universal Description, Discovery, and Integration 

(UDDI), and Web Services Description Language 

(WSDL)[5]. SOAP is a lightweight XML-driven 

protocol designed for data exchange in decentralized 

and distributed environments, working autonomously 

of platforms and programming languages [6]. SOAP 

over HTTP streamlines communication processes 

through proxies and firewalls, offering unparalleled 

ease compared to conventional remote execution 

technologies. UDDI is a robust registry that facilitates 

the publication of service specifics and operates as a 

structured directory system [7]. As a platform-neutral 

framework, UDDI enables the comprehensive 

description of services, the exploration of enterprises, 

and the integration of commercial services utilizing 

the Internet. Furthermore, as an XML-centered 

language, WSDL establishes a robust mechanism for 

the universal exposure of web service definitions, 

setting unwavering standards that web service 

providers must adhere to when transmitting SOAP 

messages. 

The QWS dataset contains qualitative attributes of 

2871 web services, with 364 services categorized into 

four quality levels[8]. However, the dataset only 

includes nine quality features and overlooks crucial 

non-functional features such as security, 

interoperability, scalability, and robustness. These 

non-functional features are essential for applications 

related to national security and financial transactions. 

One of the critical technologies for deriving insights 

from data and uncovering underlying patterns is the 

field of machine learning and data mining [9, 10]. 

Given the need to select the best service through 

system analysis and recommendations, data mining 

and machine learning technologies are vital for 

creating an automated system in this domain [11].  

Acquiring precise information about services entails 

collecting data from multiple service providers. There 

are diverse methods and approaches to data mining, 

each tailored for specific applications to extract 

various types of knowledge. In the available dataset, 

only a small part of the available data has been 

labeled, while a significant part needs to be labeled. 

Our previous work introduced the SSL-WSC 

algorithm [4] using a semi-supervised learning 

approach  [12]. This algorithm used a two-step 

process to label the unlabeled data within the QWS 

dataset, resulting in enhanced performance in service 

classification based on three evaluation metrics: F1-

score, Accuracy, and Precision. 

In today's dynamic digital landscape, the accurate 

classification of web services is essential for 

optimizing user experience and ensuring the delivery 

of high-quality services. Feature engineering lies at 

the heart of this effort, significantly enhancing the 

performance of machine learning models by 

introducing new features or modifying existing ones. 

This process is paramount in fully leveraging machine 

learning for web service classification, organization, 

and optimization, ultimately resulting in heightened 

service quality and user satisfaction. In the field of 

web services classification, various algorithms have 

been presented. Our goal in this paper is to improve 

the efficiency of existing algorithms by enhancing the 

QWS dataset. This is done by adding additional 

features through feature engineering, which increases 

classification accuracy by more accurately labeling 

unlabeled services. We have named this new dataset 

extended QWS (EQWS) .The key contributions of 

this paper can be outlined as follows: 

 Enhancing the performance of the semi-

supervised SSL-WSC algorithm to better 

classify and access the required web services 

based on quality. 
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 Providing empirical formulas to create new 

features using feature engineering for QWS 

datasets and generate new EQWS datasets. 

 Striking a balance between user demands and 

the optimal web services for them 

 Decreasing the costs associated with 

gathering additional information on web 

services.  

 Improving the accuracy of web service 

classification. 

 Presenting suggestions for future work aimed 

at enhancing the classification of web 

services. 

 The remaining sections of the paper are organized as 

follows: the second section reviews related works, 

The third section introduces the EQWS, the fourth 

section explains the experiments and results, and 

finally, the fifth section includes conclusions and 

suggestions for future work. 

 
 

2.Related Works 

To improve the web services features in datasets, one 

can consider exploring methods such as feature 

engineering, feature extraction, and feature selection. 

Feature engineering is the process of creating new 

features from the existing set of features. This can be 

achieved by transforming the existing features or 

combining them in a new way. For example, if the 

dataset contains a feature for the service date, feature 

engineering can be used to generate new features like 

the day of the week or time of day. Feature 

engineering requires domain expertise and creativity 

to identify new features useful for the analysis [13]. 

Feature extraction is the process transforming 

existing features into a new set of features. This can 

be achieved using techniques such as Principal 

Component Analysis (PCA) or Singular Value 

Decomposition (SVD). These methods help in 

reducing the dimensionality of the dataset while 

retaining the most important information. Feature 

extraction is particularly useful when dealing with 

datasets that have a large number of features and the 

aim is to simplify the analysis [14]. 

Feature selection involves selecting the most relevant 

features from the existing features. This can be done 

using techniques such as correlation analysis or 

mutual information. Feature selection helps to reduce 

the dimensionality of the dataset, which can improve 

the performance of machine learning models and 

reduce overfitting [15]. 

The importance and challenges of feature engineering 

for classification issues in machine learning were 

addressed by Nargesian et al. [13]. They provided 

practical solutions for designing, selecting, and 

combining effective features, including investigating 

feature correlations, using advanced feature selection 

methods, creating new features from combining 

existing features, analyzing the physical meaning of 

features, and evaluating models with the designed 

features. Additionally, Rodriguez et al. [16] presented 

a new method for feature extraction from web 

services that focuses on analyzing the text and 

structure of their WSDL. This method aims to identify 

essential features for categorizing and discovering 

web services. The results suggested that using 

features extracted by this method leads to improved 

performance in categorizing web services compared 

to other feature extraction approaches. Furthermore, 

this method has low computational complexity, 

making it suitable for practical applications. 

However, the limitations of this method include 

focusing only on the textual and structural features of 

WSDL, a lack of attention to dynamic web services, 

no evaluation in real environments, and limited 

comparison with other advanced feature extraction 

methods. 

Kanter et al. [17] have developed a new method based 

on Collaborative Filtering to identify essential 

features in web services. The main purpose of this 

method is to enhance the performance of categorizing 

and discovering web services. This approach can 

effectively pinpoint valuable features by analyzing 

the interactions between features and web services. In 

another study, Srivastava et al. introduced a technique 

termed "Dropout" to address the issue of "Over-

fitting" in neural networks[18]. Overfitting occurs 

when a neural network becomes overly reliant on its 

training data, leading to poor performance when 

presented with new and unfamiliar data. The 

"Dropout" technique randomly excludes some 

neurons from the model during the training process. 

This prevents the network from becoming overly 

reliant on specific training data and thus improves its 

performance when dealing with new data. This simple 

yet effective technique can directly enhance the 

performance of machine learning models and 

influence the selection process of appropriate 

features. 

Chia et al. [19] have introduced a groundbreaking 

approach to adaptive feature engineering, 

significantly enhancing performance in ranking 

systems and user-specific recommendations. This 

method automatically derives effective features from 
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the data using deep learning. The article's empirical 

findings unequivocally demonstrate that this 

approach outperforms existing methods. However, its 

application has been predominantly focused on 

addressing ranking and recommendation issues, with 

the potential for further exploration in other areas of 

machine learning. 

The methods proposed for creating new features 

each have their strengths and weaknesses. The choice 

of method depends on the data type and the analysis's 

ultimate goal. Feature engineering techniques can be 

used to generate new interoperability, security, 

scalability, and robustness features from the existing 

features in the QWS dataset. 

 

3. Extended QWS(EQWS) 

This section introduces the QWS dataset in detail, and 

the new features this article considers to be added to 

this dataset are examined from different aspects. 

Additionally, it presents the formulas for obtaining 

the values of each of these new features. 

 

3.1. QWS Dataset 

It is challenging to discover services and observe 

their QoS behavior over time to compute the values 

of their non-functional features for creating a quality 

dataset. In reality, only a few datasets for web services 

based on their quality are available. 

 

Availability

Throughput

Success ability

Response Time

Reliability

Time taken to send a request and receive a response

Number of successful invocations/total invocations

Total Number of invocations for a given period of time

Number of response / number of request messages

Ratio of the number of error messages to total messages

The extent to which a WSDL document follows WSDL specification

The extent to which a Web service follows WS-I Basic Profile

Time taken for the server to process a given request

Measure of documentation (i.e. description tags) in WSDL

Web Service Relevancy Function: a rank for Web Service Quality

Levels representing service offering qualities (1 through 4)

Name of the Web service

Location of the Web Service Definition Language (WSDL) file on the Web

Compliance

Best Practices

Latency

Documentation

WsRF

Service Classification

Service Name

WSDL Address

QWS

 
Fig. 2. QWS Dataset Fields 

 

This paper utilizes the QWS dataset, which 

contains details of 2871 real web services. Within this 

dataset, 364 web services are categorized into four 

classes based on their quality, and 2507 unlabeled 

data points exist. The QWS dataset consists of 9 

quality features used to evaluate web services: 

Response Time, Availability, Throughput, Success 

ability, Reliability, Compliance, Best Practices, 

latency, and documentation. These Features are 

essential for ensuring high-quality web services that 

deliver expected results to users. Furthermore, the 

labeled data includes a service classification feature 

that assigns a value of one to four, representing the 

quality level of each service (1: Platinum, 2: Gold, 3: 

Silver, and 4: Bronze). Fig. 2 briefly overviews the 

QWS dataset fields, where the first nine boxes display 
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the dataset features and the last four boxes present 

supplementary information. 

 

3.2. QWS with new features 

This paper introduces new features to enrich the 

dataset by establishing connections between these 

features and target classes. New features can enhance 

classification accuracy by capturing more nuanced 

characteristics of web services. For this purpose, we 

extract new features such as Interoperability, 

Security, Scalability, and Robustness, which are 

inherently sensitive parameters, using specific 

formulas from existing features. Therefore, 

generating new features will create a new EQWS 

dataset that will enable access to a class of services 

for defense programs related to national security, 

heavy financial transactions, etc. 

 
A. Interoperability 

Interoperability refers to the ability of web services to 

work together with other web services. This feature 

can measure the compatibility of web services with 

other system services. Additionally, this feature 

enhances classification accuracy by recording service 

compatibility and ease of integration with external 

entities. For instance, one can calculate the percentage 

of requests successfully processed by other web 

services in the system. A combination of existing 

features with specific relationships can be utilized to 

extract the new interoperability feature from the QWS 

dataset. Table 1 gives some suggestions on how to 

extract the Interoperability feature from the features 

present in the QWS dataset:

 

Table 1 

The impact of existing features' value on creating Interoperability feature 

Effect of feature(s) on creating Interoperability feature 
Features 

A service compliant with standards and well-documented is more likely to be interoperable with other systems.

  

Compliance and 

Documentation 

High reliability and immediate availability can signify improved interoperability since the systems are always 

accessible and dependable for sharing data. 

Reliability and 

Availability 

Reduced response time and latency can enhance interoperability, as delays in communication can hinder 

interoperability among systems. Increased latency and response times could signal underlying communication issues 

between systems. 

Response Time and 

Latency 

Throughput can also impact interoperability, especially when high data transfer rates are required for seamless service 

integration. 
Throughput 

 Services with high success rates and follow best practices are more likely to be interoperable with other systems, as 

they are designed for efficient communication and interaction.  

Success Ability and 

Best Practices 

Adherence to compliance and best practices could enhance interoperability by ensuring that systems follow industry 

standards for data exchange. 

Compliance and 

Best Practices 

Good documentation could also improve interoperability by providing clear guidelines on how different systems can 

interact and exchange data effectively. 
Documentation 

By analyzing these relationships and exploring 

potential connections in the dataset, we have utilized 

compliance, documentation, and availability Features 

to generate the Interoperability feature values 

(equation 1)[20]. 
 

 
 

(1) 

 

 

 

𝐼𝑛𝑡𝑒𝑟𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= √
(𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 + 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛)

3
 

 

B. Security 

Security refers to the protection of web services 

from unauthorized access or attacks. This feature can 

measure the security level of web services by, for 

example, calculating the percentage of authenticated 

and encrypted requests. To extract a new feature for 

security from the QWS dataset, we can consider the 

relationships between the existing features. Table 2 

summarizes the potential relationships of the existing 

features to extract the new feature. 
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Table 2 

The impact of existing features' value on creating Security feature 

Effect of feature(s) on creating Security feature 
Features 

High reliability and availability could be positively correlated with security. Secure systems are often reliable and 

consistently available to prevent unauthorized access or breaches.  

Reliability and 

Availability 

Adherence to compliance standards and best practices is crucial for security. Systems that follow security protocols and 

industry standards are more likely to be secure. 

Compliance and 

Best Practices 

Good documentation can positively impact security by providing guidelines for implementing security measures and 

ensuring that security protocols are correctly followed. 
Documentation 

Lower response time and latency could be associated with better security. Quick response times and low latency indicate 

efficient security measures in place to handle data securely.  

Response Time 

and Latency 

Higher throughput might indicate better security, as it suggests that systems can handle a larger volume of data securely 

and efficiently. 
Throughput 

A high success rate in data exchange could be related to security, as successful data transactions often imply secure 

communication between systems. 
Success ability 

 
 

 
 
 
 
 

By analyzing these relationships and exploring 

potential connections in the dataset, in this paper, we 

have used the two attribute values of compliance and 

reliability to generate security Feature values across 

web services in the QWS dataset. This new feature 

helps evaluate and understand systems' security 

aspects(equation 2) [21]. 

 
(2) 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = 1 − (1 − 𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒) × (1 − 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦) 

 
 

C. Scalability 

Scalability in the context of web services refers to 

the ability of web services to handle increasing 

numbers of requests. The relationships between the 

existing features can be considered to extract a new 

feature for "scalability" from the QWS dataset. Table 

3 summarizes how existing features can potentially be 

related to deriving the new scalability feature. 

 
 

Table 3 

The impact of existing features' value on creating Scalability feature 

Effect of feature(s) on creating Scalability feature 
Features 

Higher throughput is often associated with better scalability. Systems with higher throughput can handle more data or 

requests, indicating scalability. 
Throughput 

Lower response time can be indicative of good scalability. Systems that can maintain low response times even under 

increasing workloads are likely to be more scalable.  
Response Time 

High availability is crucial for scalability. Highly available systems can continue to function smoothly as the workload 

increases, showing scalability. 
Availability 

Systems with high reliability are often more scalable, as they can handle increased demands without compromising 

performance or stability. 
Reliability 

Lower latency can be linked to better scalability. Systems with low latency can efficiently process requests even as the 

workload grows, showcasing scalability. 
Latency 

Good documentation can also play a role in scalability by providing guidelines for scaling the system effectively as 

demands increase. 
Documentation 

By analyzing the above relationships in the dataset, 

we have used the values of the two throughput and 

latency characteristics to create scalability 

characteristics. This new feature helps evaluate and 

understand services' scalability aspects (equation 3) 

[22]. 
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(3) 𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

1 + √𝐿𝑎𝑡𝑒𝑛𝑐𝑦
 

 

 

 

D. Robustness 

Robustness refers to the ability of web services to 

effectively handle errors or failures and unexpected 

situations. This feature can be used to measure the 

level of robustness of web services. For instance, one 

can calculate the percentage of requests successfully 

processed despite errors or crashes. To derive a new 

feature for "robustness" from the QWS dataset, one 

can explore the relationships between the existing 

features. Table 4 suggests how to extract the 

Robustness feature from the features present in the 

QWS dataset. 
 

 

Table 4 

The impact of existing features' value on creating Robustness feature 

Effect of feature(s) on creating Robustness feature Features 

High reliability and availability are often indicative of robust systems. Robust systems can maintain reliability and 

availability even when faced with unexpected challenges.  

Reliability and 

Availability 

Adherence to compliance standards and best practices can contribute to system robustness. Systems that follow industry 

standards and best practices are more likely to be robust in handling various scenarios.  

Compliance and 

Best Practices 

Systems with low response time and latency may be considered more robust. Quick response times and low latency can 

help a system recover quickly from errors or unexpected events. 

Response Time 

and Latency 

Good documentation can also enhance system robustness by effectively providing guidelines for handling errors, 

exceptions, and unexpected situations.  
Documentation 

A high success rate in data exchange may indicate robustness. Systems that can maintain a high success rate even in 

challenging conditions will likely be more robust.  
Success ability 

 

By examining the above relationships and 

exploring potential connections in the dataset, we 

created new Robustness feature values from the 

combination of reliability and response time feature 

values, which will help to evaluate and understand 

Robustness (equation 4) [20]. 

 
 

 

(4) 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

1 + √𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒
 

 
 

 

Using formulas 1 to 4, four new features have been 

added to the QWS dataset, and the labeling of services 

and, of course, the classification of web services has 

been done using the implementation of the SSL-WSC 

algorithm on the new EQWS dataset. 

 
 

4. Experimentations Results 

In this section, we examined the impact of newly 

added features to the QWS dataset on enhancing the 

efficiency of the SSL-WSS algorithm, which we 

recently introduced[4]. We have demonstrated a clear 

improvement in quality-based web service 

classification. All algorithms have been implemented 

using Python (version 3.11.7) and on a personal 

computer with an Intel Core i7-3720QM processor 

and 32 GB of RAM. The following subsections detail 

the basic classification algorithms, evaluation criteria, 

introduction of the SSL-WSC algorithm and its 

parameter settings, and the results of the 

implementations. 
 

4.1. Basic classification algorithms 

In the implementation of the proposed method, 

the experiments have been used Decision Tree (D.T.), 

Support-Vector Machines (SVM), Logistic 

Regression (L.R.), K-Nearest Neighbors KNN), 

Gaussian Naive Bayes (N.B.), Random Forest 

Classifier (R.F.), multilayer perceptron (MLP), and 

XGBoost (single and ensemble) as basic 

classification algorithms. These classifiers have been 

used to run the SSL-WSC semi-supervised algorithm on 

the new EQWS dataset and compare it with that algorithm 

running on the original QWS dataset. 

Table 5 shows the modified parameter values used 

for the different classifiers in the experiments. This 

table provides an overview of the parameter values 

used for each classifier, including learning rate, 

maximum depth, number of estimators, etc. Default 

values are provided for the parameters not mentioned 

in the table [4]. 
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Table 5 

Modified parameters in base classifier settings 
  

max_depth=3 
 

Decision Tree 

probability = True 
 

SVM 

max_iter=1500 Logistic egression 
 

max_depth=25  

n_estimators=10 

max_features=1 
 

 
 

Random Forest 

Classifier 

solver='adam' 

alpha=1e-3                          

hidden_layer_sizes= (64,4) 

random_state=1 
 

MLP 

objective="multi: SoftMax"               

random_state=42                             

learning_rate=0.001                               

max_depth = 10                                

n_estimators = 15                                

eval_metric = 'mlogloss' 

XGBoost 

 

 

4.2. Evaluation Measures 

After generating the new EQWS dataset and 

employing the Base classifier algorithms discussed 

earlier for model training and testing, we assessed the 

performance of the proposed method in precision, 

accuracy, and F1-Score. This assessment enables us 

to analyze the influence of extra features in improving 

the classification of web services. 
 

Predicated Class 
 

 

 

 

 

 

Negative 

 

Positive 

False Negative 

(F.N.) 

Type II Error 

True Positive 

(T.P.) 

 

Positive 

 

 

 

Actual 

 Class 

True Negative 

(T.N.) 

False Positive 

(F.P.) 

Type I Error 

 

Negativ

e 

 

 Fig. 3. Confusion Matrix   

 

In the field of classification, the main objective is 

to achieve the highest possible accuracy and correctly 

identify categories. In artificial intelligence, the 

confusion matrix is a matrix that shows the 

performance of algorithms, allowing for a more 

comprehensive evaluation of the model's 

performance (Fig. 3) [23]. Each column of the matrix 

represents the predicted class for each data (web 

service), while each row contains the actual class of 

each data [24]. The proposed method has been 

evaluated based on the criteria of accuracy, precision, 

and F1 score and compared with the results obtained 

from implementing the SSL-WSC algorithm with the 

original dataset. 

Precision is the ratio of true positive samples to the 

total number of positively predicted samples. Samples 

that the model correctly labels positive are known as 

true positives. False positives, on the other hand, are 

negative samples that the model mistakenly labels as 

positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

According to the formula, the accuracy of a 

model can be calculated by summing the true positive 

and true negative samples and dividing it by the sum 

of all entries of the Confusion Matrix. True positives 

and true negatives refer to samples that are correctly 

classified by the model and are in the main diameter 

of the Confusion Matrix. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑟𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

 F1-Score is a statistical measure used to 

evaluate performance, calculated as the harmonic 

mean between recall and precision with equal weight. 

Usually, in machine learning, the F1-Score index is 

widely used to evaluate the accuracy of classification 

models [25]. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=  

2. 𝑇𝑃

2. 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 
 

A Type I error is a false positive where the model 

detects the presence of a condition when it does not 

exist, and a Type II error is a false negative where the 

model fails to determine the presence of a condition 

when it does exist. Both errors can have serious 

consequences depending on the situation[26]. 
 

4.3. Baseline SSL-WSC algorithm  

In this article, we have explored enhancing the 

performance of our previous algorithm, SSL-WSC, 

by expanding the features of the QWS dataset. As a 

result, we have adopted the default parameters for 

implementing the proposed approach, maintaining 

consistency with the settings for implementing the 
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SSL-WSC semi-supervised algorithm on the original 

dataset [4].  

Different scenarios are considered in the 

implementation of the proposed method. The test set 

size within the labeled data is fixed at 20% and 30% 

in different implementations, representing common 

values in many machine-learning approaches. The 

training steps are repeated 10, 20, 30, and 40 times, 

with dynamically updated threshold values of 60, 70, 

80, and 90 in each iteration. It is worth noting that the 

results presented are derived from an average of 10 

runs of the SSL-WSC algorithm using the proposed 

methodology outlined in this paper, each run utilizing 

distinct partitions of training and testing data. 

When introducing the SSL-WSC algorithm, a two-

step approach was employed to select a subset of the 

unlabeled data to incorporate into the labeled set, with 

one step involving the utilization of data distance. In 

the aforementioned paper, we optionally used 

Mahalanobis, Manhattan, and Minkowski distances 

to compute the distance among the known distance 

functions. The results of implementing the semi-

supervised SSL-WSC algorithm show that the 

Mahalanobis method emerged as the most effective 

approach for distance calculation. These findings 

were consistent when the test section size was 20% of 

the labeled data. Therefore, the outcomes of the 

proposed method are solely reported for these specific 

scenarios in this paper. 

Typically, the Mahalanobis distance computation is 

utilized when features are interdependent within a 

dataset. Within the QWS dataset, interrelations are 

observed among different features, such as response 

time with delay and throughput, as well as 

accessibility with other attributes. Therefore, using 

the Mahalanobis technique for distance computation 

is suitable for this dataset. 

 

Assuming two data 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑑) and 𝐵 =
(𝑏1, 𝑏2, … 𝑏𝑑). The Mahalanobis distance between A 

and B can be calculated using the following formula: 
 

𝑑𝑖𝑠𝑡𝑴𝒂𝒉𝒂𝒍𝒂𝒏𝒐𝒃𝒊𝒔 (𝐴, 𝐵) =  √∑
(𝑎𝑖 − 𝑏𝑖)

2

𝑣𝑖
2

𝑑

𝑖=1

 

                                                          

)8) 

 

Where 𝑉 = (𝑣1, 𝑣2, … 𝑣𝑑) is the standard deviation 

of A and B, and d is their dimension. 

 

4.4. The Effect of new features on the Performance 

of the SSL-WSC algorithm 

In this paper, the three parameters, average (Avg), 

maximum (Max), and standard deviation (Std), are 

used to evaluate F1-Score, Accuracy, and Precision 

criteria. Table 6 compares the implementation results 

of the SSL-WSC semi-supervised algorithm with the 

original QWS dataset and the new EQWS dataset for 

different classifiers to classify quality-based web 

services. 

The results in Table 6 demonstrate that, aside from 

the basic MLP algorithm, the implementation of the 

proposed method yields notable improvements across 

all three criteria for most classifiers. For the F1-Score 

and accuracy metrics, the XGboost (single) classifier 

shows a maximum improvement of 17.40% and 

17.61%, respectively, and for the precision metric, the 

SVM classifier shows a maximum improvement of 

25.46%. In general, the proposed method with the 

new dataset, compared to the original dataset, has 

improved the performance of the SSL-WSC 

algorithm in most of the classifiers and evaluation 

criteria, and the most significant improvement has 

been observed in the XGboost classifier. On average, 

the proposed method increases the performance by 

5.05%, 5.69%, and 6.92% in F1-Score, accuracy, and 

precision, respectively. Therefore, using the EQWS 

dataset with more features in the proposed method to 

create classification models can perform better than 

the previous method with the original dataset. 

Also, the small standard deviation values in the 

proposed dataset for some base classifier algorithms 

compared to the original method show that 

implementing the SSL-WSC algorithm using the 

proposed method works optimally like the original 

method. As a result, the algorithm is stable. 
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Table 6 

Average (Avg), maximum (Max), and standard deviation (Std) of F1-score, Accuracy, and Precision criteria obtained from the 

implementation of the SSL-WSC algorithm with the proposed EQWS dataset and the original QWS dataset 

XGboost 

(Single) 
XGboost 

(Ensemble) 
Multilayer 

Perceptron 
Random 

Forest 
Naive 

Bayes 
k-Nearest 

Neighbors 
Logistic 

Regression SVM Decision 

Tree  
 

  

48.22% 47.85% 24.06% 50.67% 41.12% 47.11% 48.09% 27.47% 45.67% Avg 

EQWS 

F
1

-S
co

re
 

55.99% 56.03% 28.86% 62.25% 48.85% 56.88% 55.07% 38.36% 48.67% Max 

0.0648 0.0594 0.0331 0.0717 0.0477 0.0545 0.0425 0.0616 0.0172 Std 

41.07% 44.51% 36.69% 48.41% 36.91% 46.22% 43.91% 23.77% 40.84% Avg 

QWS 46.83% 52.37% 43.49% 56.22% 47.63% 52.27% 52.21% 30.6% 47.07% Max 

0.0498 0.0402 0.0435 0.0359 0.0539 0.0447 0.0481 0.0497 0.0479 Std 

17.40% 7.51% -34.41% 4.67% 11.43% 1.92% 9.53% 15.58% 11.83% 
The amount of improvement of 

SSL-WSC with the EQWS dataset 

48.49% 47.95% 34.11% 50.96% 42.19% 47.67% 48.63% 37.81% 47.95% Avg 

EQWS 

A
cc

u
ra

cy
 

56.16% 56.16% 36.99% 63.01% 49.32% 57.53% 56.16% 46.58% 52.05% Max 

0.0628 0.0558 0.0290 0.0730 0.0382 0.0561 0.0421 0.0438 0.0212 Std 

41.23% 44.66% 39.45% 48.63% 38.63% 46.58% 44.52% 36.44% 43.42% Avg 

QWS 46.57% 52.05% 46.58% 56.16% 49.32% 52.05% 52.05% 39.73% 49.32% Max 

0.0496 0.0374 0.0474 0.0359 0.0485 0.0463 0.043 0.0254 0.0438 Std 

17.61% 7.36% -13.54% 4.79% 9.22% 2.35% 9.23% 3.76% 10.41% 
The amount of improvement of 

SSL-WSC with the EQWS dataset 

49.24% 48.63% 29.40% 51.40% 46.37% 49.66% 49.67% 31.08% 49.72% Avg 

EQWS 

P
re

ci
si

o
n

 

56.16% 56.86% 47.41% 65.49% 55.15% 59.57% 56.23% 59.81% 56.75% Max 

0.0600 0.0625 0.1053 0.0784 0.0636 0.0544 0.0441 0.1148 0.0425 Std 

41.94% 45.85% 37.05% 49.67% 44.17% 48.62% 44.70% 24.78% 44.29% Avg 

QWS 48.72% 53.40% 42.67% 59.07% 54.67% 55.06% 52.81% 59.32% 57.91% Max 

0.0519 0.0479 0.0334 0.042 0.0567 0.041 0.0463 0.1323 0.066 Std 

17.41% 6.06% -20.64% 3.50% 5.00% 2.14% 11.12% 25.46% 12.25% 
The amount of improvement of SSL-

WSC with the EQWS dataset 

 

Fig. 4 represents the average results obtained for f1-

score, accuracy, and precision criteria for better 

comparison. As shown in the figures, adding new 

non-functional qualitative features to the QWS 

dataset to label the unlabeled data and thus more 

accurately classify the data in the proposed method 

outperforms the original dataset using the SSL-WSC 

algorithm. 
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Fig. 4. Comparison of the implementation of the SSL-WSC 

algorithm using the original QWS dataset and the EQWS dataset 

in terms of F1-Score, accuracy, and precision criteria 

 

4.5. Discussion 

The presence of appropriate features in the datasets 

about quality-based web services can enhance service 

classification. However, gathering data about these 

features can be challenging. Calculating values for 

new features by analyzing their relationships with 

existing features using feature engineering can help 

classify web services with similar functionality and 

lead to favorable results. 
 

 

5. Conclusions and Future Works 

The Internet provides a platform for sharing 

services, and web service brokers help users choose 

the right service from a wide range of similar services 

based on ratings. Service quality is important in 

evaluating the service needs of the user. However, 

collecting information about the quality 

characteristics of services is challenging and time-

consuming. Consequently, service providers resort to 

data mining and machine learning techniques to 

ensure that users receive the best possible service and 

use service classification to identify the most 

appropriate service. However, the small number of 

features in the datasets has made us use the feature 

engineering method in this paper to create new 

features from the features in the datasets. New non-

functional features such as interoperability, security, 

scalability, and robustness are crucial for applications 

related to national security and financial transactions. 

The results of the experiments show that the process 

of upgrading the famous QWS dataset significantly 

improves the accuracy of web service classification 

compared to the original dataset under the 

implementation of the SSL-WSC semi-supervised 

algorithm. This is evidenced by the 5.05% increase in 

F1-Score, 5.69% increase in accuracy, and 6.92% 

increase in precision evaluation criteria. The enriched 

EQWS dataset provides a more comprehensive 

representation of the web service features and thus 

increases the efficiency of the classification models. 

This approach has great potential for advanced web 

service classification and implications for various 

service-oriented computing applications.  

In future research, it would be beneficial to 

investigate more advanced feature engineering 

techniques and consider integrating domain-specific 

knowledge to enhance the dataset. Additionally, 

exploring ensemble methods and deep learning 

architectures to classify web services using 

augmented datasets could be an intriguing approach 

to consider. 
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