
Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 17-28

17

Enhancing the accuracy of Quality-Based Web Service

Categorization via Advanced Feature Development

Mehdi Nozad Bonaba, Jafar Tanha ,b, Mohammad Masdaria

aDepartment of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
bElectrical and Computer Engineering Department, University of Tabriz, Tabriz, Iran

Received 22 August 2024, Accepted 06 Octobger 2024

Abstract

Web services facilitate machine-to-machine communication over the Internet and require precise classification to ensure

reliable and efficient service delivery. Accurate classification plays a crucial role in service discovery, recommendation

systems, and service composition. Web service brokers help users select the most suitable service based on quality parameters.

Currently, there is a limited availability of datasets focused on web service quality; among them, the QWS dataset — containing

nine quality features — is one of the most prominent. However, this dataset omits important non-functional attributes such as

security, interoperability, scalability, and robustness, which are vital for effective web service discovery. In this study, we

propose enhancing the QWS dataset through feature engineering to derive additional informative features from existing ones.

Experimental results using the SSL-WSC algorithm demonstrate that this approach significantly improves web service

classification performance, evidenced by a 5.05% increase in F1-Score, a 5.69% boost in accuracy, and a 6.92% rise in

precision.

Keywords: Web services, classification, quality, feature engineering, machine learning

1.Introduction

Web services are increasingly used for

interoperability and communication among diverse

systems and applications [1]. Brokers play a crucial

role in provisioning and managing web services. They

act as intermediaries between users and service

providers, helping to establish connections. By

aggregating and integrating user requirements,

brokers enable cost reduction in service utilization.

Moreover, brokers simplify the access to web services

for users, allowing them to search, compare, and

select appropriate services (Fig. 1) [2]. Additionally,

brokers can manage and allocate resources necessary

for service consumption, monitor the delivery of

 Corresponding author:

E-mail address:jtanha.2022@gmail.com (J. Tanha).

quality services by applying quality criteria, and

contribute significantly to ensuring the security and

privacy of interactions between users and web

services.

 The classification of web services is a crucial task in

service-oriented computing as it aids in discovering

and efficiently utilizing web services based on their

features [3]. A ranking system calculates the relative

value of different services based on the user's required

service quality and the characteristics of available

services. Once comparisons with other services are

made, the system can recommend the appropriate

service to the user. The recent proliferation of web

mailto:jtanha.2022@gmail.com

Mehdi Nozad Bonab et al/ Enhancing the accuracy of Quality-Based Web Service Categorization via Advanced Feature

Development

18

service providers has led to an increase in the number

of web services offering similar functionalities. The

main difference among these similar web services is

their performance quality. The service quality

component in the web services field encompasses

non-functional features such as cost and execution

time, availability, success rate, and security, among

others. Only a few datasets based on web service

quality are available in web services. This is because

generating a QoS dataset is a challenging, expensive,

and time-consuming task as services need to be

discovered, and their QoS behavior observed over

time to calculate non-functional feature values [4].

Therefore, gathering service information from

various sources and generating dataset structures

requires more human effort.

architecture. service 1. Web ig.F

Web services embody three fundamental

components: Simple Object Access Protocol (SOAP),

Universal Description, Discovery, and Integration

(UDDI), and Web Services Description Language

(WSDL)[5]. SOAP is a lightweight XML-driven

protocol designed for data exchange in decentralized

and distributed environments, working autonomously

of platforms and programming languages [6]. SOAP

over HTTP streamlines communication processes

through proxies and firewalls, offering unparalleled

ease compared to conventional remote execution

technologies. UDDI is a robust registry that facilitates

the publication of service specifics and operates as a

structured directory system [7]. As a platform-neutral

framework, UDDI enables the comprehensive

description of services, the exploration of enterprises,

and the integration of commercial services utilizing

the Internet. Furthermore, as an XML-centered

language, WSDL establishes a robust mechanism for

the universal exposure of web service definitions,

setting unwavering standards that web service

providers must adhere to when transmitting SOAP

messages.

The QWS dataset contains qualitative attributes of

2871 web services, with 364 services categorized into

four quality levels[8]. However, the dataset only

includes nine quality features and overlooks crucial

non-functional features such as security,

interoperability, scalability, and robustness. These

non-functional features are essential for applications

related to national security and financial transactions.

One of the critical technologies for deriving insights

from data and uncovering underlying patterns is the

field of machine learning and data mining [9, 10].

Given the need to select the best service through

system analysis and recommendations, data mining

and machine learning technologies are vital for

creating an automated system in this domain [11].

Acquiring precise information about services entails

collecting data from multiple service providers. There

are diverse methods and approaches to data mining,

each tailored for specific applications to extract

various types of knowledge. In the available dataset,

only a small part of the available data has been

labeled, while a significant part needs to be labeled.

Our previous work introduced the SSL-WSC

algorithm [4] using a semi-supervised learning

approach [12]. This algorithm used a two-step

process to label the unlabeled data within the QWS

dataset, resulting in enhanced performance in service

classification based on three evaluation metrics: F1-

score, Accuracy, and Precision.

In today's dynamic digital landscape, the accurate

classification of web services is essential for

optimizing user experience and ensuring the delivery

of high-quality services. Feature engineering lies at

the heart of this effort, significantly enhancing the

performance of machine learning models by

introducing new features or modifying existing ones.

This process is paramount in fully leveraging machine

learning for web service classification, organization,

and optimization, ultimately resulting in heightened

service quality and user satisfaction. In the field of

web services classification, various algorithms have

been presented. Our goal in this paper is to improve

the efficiency of existing algorithms by enhancing the

QWS dataset. This is done by adding additional

features through feature engineering, which increases

classification accuracy by more accurately labeling

unlabeled services. We have named this new dataset

extended QWS (EQWS) .The key contributions of

this paper can be outlined as follows:

 Enhancing the performance of the semi-

supervised SSL-WSC algorithm to better

classify and access the required web services

based on quality.

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 17-28

19

 Providing empirical formulas to create new

features using feature engineering for QWS

datasets and generate new EQWS datasets.

 Striking a balance between user demands and

the optimal web services for them

 Decreasing the costs associated with

gathering additional information on web

services.

 Improving the accuracy of web service

classification.

 Presenting suggestions for future work aimed

at enhancing the classification of web

services.

 The remaining sections of the paper are organized as

follows: the second section reviews related works,

The third section introduces the EQWS, the fourth

section explains the experiments and results, and

finally, the fifth section includes conclusions and

suggestions for future work.

2.Related Works

To improve the web services features in datasets, one

can consider exploring methods such as feature

engineering, feature extraction, and feature selection.

Feature engineering is the process of creating new

features from the existing set of features. This can be

achieved by transforming the existing features or

combining them in a new way. For example, if the

dataset contains a feature for the service date, feature

engineering can be used to generate new features like

the day of the week or time of day. Feature

engineering requires domain expertise and creativity

to identify new features useful for the analysis [13].

Feature extraction is the process transforming

existing features into a new set of features. This can

be achieved using techniques such as Principal

Component Analysis (PCA) or Singular Value

Decomposition (SVD). These methods help in

reducing the dimensionality of the dataset while

retaining the most important information. Feature

extraction is particularly useful when dealing with

datasets that have a large number of features and the

aim is to simplify the analysis [14].

Feature selection involves selecting the most relevant

features from the existing features. This can be done

using techniques such as correlation analysis or

mutual information. Feature selection helps to reduce

the dimensionality of the dataset, which can improve

the performance of machine learning models and

reduce overfitting [15].

The importance and challenges of feature engineering

for classification issues in machine learning were

addressed by Nargesian et al. [13]. They provided

practical solutions for designing, selecting, and

combining effective features, including investigating

feature correlations, using advanced feature selection

methods, creating new features from combining

existing features, analyzing the physical meaning of

features, and evaluating models with the designed

features. Additionally, Rodriguez et al. [16] presented

a new method for feature extraction from web

services that focuses on analyzing the text and

structure of their WSDL. This method aims to identify

essential features for categorizing and discovering

web services. The results suggested that using

features extracted by this method leads to improved

performance in categorizing web services compared

to other feature extraction approaches. Furthermore,

this method has low computational complexity,

making it suitable for practical applications.

However, the limitations of this method include

focusing only on the textual and structural features of

WSDL, a lack of attention to dynamic web services,

no evaluation in real environments, and limited

comparison with other advanced feature extraction

methods.

Kanter et al. [17] have developed a new method based

on Collaborative Filtering to identify essential

features in web services. The main purpose of this

method is to enhance the performance of categorizing

and discovering web services. This approach can

effectively pinpoint valuable features by analyzing

the interactions between features and web services. In

another study, Srivastava et al. introduced a technique

termed "Dropout" to address the issue of "Over-

fitting" in neural networks[18]. Overfitting occurs

when a neural network becomes overly reliant on its

training data, leading to poor performance when

presented with new and unfamiliar data. The

"Dropout" technique randomly excludes some

neurons from the model during the training process.

This prevents the network from becoming overly

reliant on specific training data and thus improves its

performance when dealing with new data. This simple

yet effective technique can directly enhance the

performance of machine learning models and

influence the selection process of appropriate

features.

Chia et al. [19] have introduced a groundbreaking

approach to adaptive feature engineering,

significantly enhancing performance in ranking

systems and user-specific recommendations. This

method automatically derives effective features from

Mehdi Nozad Bonab et al/ Enhancing the accuracy of Quality-Based Web Service Categorization via Advanced Feature

Development

20

the data using deep learning. The article's empirical

findings unequivocally demonstrate that this

approach outperforms existing methods. However, its

application has been predominantly focused on

addressing ranking and recommendation issues, with

the potential for further exploration in other areas of

machine learning.

The methods proposed for creating new features

each have their strengths and weaknesses. The choice

of method depends on the data type and the analysis's

ultimate goal. Feature engineering techniques can be

used to generate new interoperability, security,

scalability, and robustness features from the existing

features in the QWS dataset.

3. Extended QWS(EQWS)

This section introduces the QWS dataset in detail, and

the new features this article considers to be added to

this dataset are examined from different aspects.

Additionally, it presents the formulas for obtaining

the values of each of these new features.

3.1. QWS Dataset

It is challenging to discover services and observe

their QoS behavior over time to compute the values

of their non-functional features for creating a quality

dataset. In reality, only a few datasets for web services

based on their quality are available.

Availability

Throughput

Success ability

Response Time

Reliability

Time taken to send a request and receive a response

Number of successful invocations/total invocations

Total Number of invocations for a given period of time

Number of response / number of request messages

Ratio of the number of error messages to total messages

The extent to which a WSDL document follows WSDL specification

The extent to which a Web service follows WS-I Basic Profile

Time taken for the server to process a given request

Measure of documentation (i.e. description tags) in WSDL

Web Service Relevancy Function: a rank for Web Service Quality

Levels representing service offering qualities (1 through 4)

Name of the Web service

Location of the Web Service Definition Language (WSDL) file on the Web

Compliance

Best Practices

Latency

Documentation

WsRF

Service Classification

Service Name

WSDL Address

QWS

Fig. 2. QWS Dataset Fields

This paper utilizes the QWS dataset, which

contains details of 2871 real web services. Within this

dataset, 364 web services are categorized into four

classes based on their quality, and 2507 unlabeled

data points exist. The QWS dataset consists of 9

quality features used to evaluate web services:

Response Time, Availability, Throughput, Success

ability, Reliability, Compliance, Best Practices,

latency, and documentation. These Features are

essential for ensuring high-quality web services that

deliver expected results to users. Furthermore, the

labeled data includes a service classification feature

that assigns a value of one to four, representing the

quality level of each service (1: Platinum, 2: Gold, 3:

Silver, and 4: Bronze). Fig. 2 briefly overviews the

QWS dataset fields, where the first nine boxes display

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 17-28

21

the dataset features and the last four boxes present

supplementary information.

3.2. QWS with new features

This paper introduces new features to enrich the

dataset by establishing connections between these

features and target classes. New features can enhance

classification accuracy by capturing more nuanced

characteristics of web services. For this purpose, we

extract new features such as Interoperability,

Security, Scalability, and Robustness, which are

inherently sensitive parameters, using specific

formulas from existing features. Therefore,

generating new features will create a new EQWS

dataset that will enable access to a class of services

for defense programs related to national security,

heavy financial transactions, etc.

A. Interoperability

Interoperability refers to the ability of web services to

work together with other web services. This feature

can measure the compatibility of web services with

other system services. Additionally, this feature

enhances classification accuracy by recording service

compatibility and ease of integration with external

entities. For instance, one can calculate the percentage

of requests successfully processed by other web

services in the system. A combination of existing

features with specific relationships can be utilized to

extract the new interoperability feature from the QWS

dataset. Table 1 gives some suggestions on how to

extract the Interoperability feature from the features

present in the QWS dataset:

Table 1

The impact of existing features' value on creating Interoperability feature

Effect of feature(s) on creating Interoperability feature
Features

A service compliant with standards and well-documented is more likely to be interoperable with other systems.

Compliance and

Documentation

High reliability and immediate availability can signify improved interoperability since the systems are always

accessible and dependable for sharing data.

Reliability and

Availability

Reduced response time and latency can enhance interoperability, as delays in communication can hinder

interoperability among systems. Increased latency and response times could signal underlying communication issues

between systems.

Response Time and

Latency

Throughput can also impact interoperability, especially when high data transfer rates are required for seamless service

integration.
Throughput

 Services with high success rates and follow best practices are more likely to be interoperable with other systems, as

they are designed for efficient communication and interaction.

Success Ability and

Best Practices

Adherence to compliance and best practices could enhance interoperability by ensuring that systems follow industry

standards for data exchange.

Compliance and

Best Practices

Good documentation could also improve interoperability by providing clear guidelines on how different systems can

interact and exchange data effectively.
Documentation

By analyzing these relationships and exploring

potential connections in the dataset, we have utilized

compliance, documentation, and availability Features

to generate the Interoperability feature values

(equation 1)[20].

(1)

𝐼𝑛𝑡𝑒𝑟𝑜𝑝𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= √
(𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 + 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛)

3

B. Security

Security refers to the protection of web services

from unauthorized access or attacks. This feature can

measure the security level of web services by, for

example, calculating the percentage of authenticated

and encrypted requests. To extract a new feature for

security from the QWS dataset, we can consider the

relationships between the existing features. Table 2

summarizes the potential relationships of the existing

features to extract the new feature.

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 17-28

22

Table 2

The impact of existing features' value on creating Security feature

Effect of feature(s) on creating Security feature
Features

High reliability and availability could be positively correlated with security. Secure systems are often reliable and

consistently available to prevent unauthorized access or breaches.

Reliability and

Availability

Adherence to compliance standards and best practices is crucial for security. Systems that follow security protocols and

industry standards are more likely to be secure.

Compliance and

Best Practices

Good documentation can positively impact security by providing guidelines for implementing security measures and

ensuring that security protocols are correctly followed.
Documentation

Lower response time and latency could be associated with better security. Quick response times and low latency indicate

efficient security measures in place to handle data securely.

Response Time

and Latency

Higher throughput might indicate better security, as it suggests that systems can handle a larger volume of data securely

and efficiently.
Throughput

A high success rate in data exchange could be related to security, as successful data transactions often imply secure

communication between systems.
Success ability

By analyzing these relationships and exploring

potential connections in the dataset, in this paper, we

have used the two attribute values of compliance and

reliability to generate security Feature values across

web services in the QWS dataset. This new feature

helps evaluate and understand systems' security

aspects(equation 2) [21].

(2) 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = 1 − (1 − 𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒) × (1 − 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

C. Scalability

Scalability in the context of web services refers to

the ability of web services to handle increasing

numbers of requests. The relationships between the

existing features can be considered to extract a new

feature for "scalability" from the QWS dataset. Table

3 summarizes how existing features can potentially be

related to deriving the new scalability feature.

Table 3

The impact of existing features' value on creating Scalability feature

Effect of feature(s) on creating Scalability feature
Features

Higher throughput is often associated with better scalability. Systems with higher throughput can handle more data or

requests, indicating scalability.
Throughput

Lower response time can be indicative of good scalability. Systems that can maintain low response times even under

increasing workloads are likely to be more scalable.
Response Time

High availability is crucial for scalability. Highly available systems can continue to function smoothly as the workload

increases, showing scalability.
Availability

Systems with high reliability are often more scalable, as they can handle increased demands without compromising

performance or stability.
Reliability

Lower latency can be linked to better scalability. Systems with low latency can efficiently process requests even as the

workload grows, showcasing scalability.
Latency

Good documentation can also play a role in scalability by providing guidelines for scaling the system effectively as

demands increase.
Documentation

By analyzing the above relationships in the dataset,

we have used the values of the two throughput and

latency characteristics to create scalability

characteristics. This new feature helps evaluate and

understand services' scalability aspects (equation 3)

[22].

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 17-28

23

(3) 𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

1 + √𝐿𝑎𝑡𝑒𝑛𝑐𝑦

D. Robustness

Robustness refers to the ability of web services to

effectively handle errors or failures and unexpected

situations. This feature can be used to measure the

level of robustness of web services. For instance, one

can calculate the percentage of requests successfully

processed despite errors or crashes. To derive a new

feature for "robustness" from the QWS dataset, one

can explore the relationships between the existing

features. Table 4 suggests how to extract the

Robustness feature from the features present in the

QWS dataset.

Table 4

The impact of existing features' value on creating Robustness feature

Effect of feature(s) on creating Robustness feature Features

High reliability and availability are often indicative of robust systems. Robust systems can maintain reliability and

availability even when faced with unexpected challenges.

Reliability and

Availability

Adherence to compliance standards and best practices can contribute to system robustness. Systems that follow industry

standards and best practices are more likely to be robust in handling various scenarios.

Compliance and

Best Practices

Systems with low response time and latency may be considered more robust. Quick response times and low latency can

help a system recover quickly from errors or unexpected events.

Response Time

and Latency

Good documentation can also enhance system robustness by effectively providing guidelines for handling errors,

exceptions, and unexpected situations.
Documentation

A high success rate in data exchange may indicate robustness. Systems that can maintain a high success rate even in

challenging conditions will likely be more robust.
Success ability

By examining the above relationships and

exploring potential connections in the dataset, we

created new Robustness feature values from the

combination of reliability and response time feature

values, which will help to evaluate and understand

Robustness (equation 4) [20].

(4) 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

1 + √𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒

Using formulas 1 to 4, four new features have been

added to the QWS dataset, and the labeling of services

and, of course, the classification of web services has

been done using the implementation of the SSL-WSC

algorithm on the new EQWS dataset.

4. Experimentations Results

In this section, we examined the impact of newly

added features to the QWS dataset on enhancing the

efficiency of the SSL-WSS algorithm, which we

recently introduced[4]. We have demonstrated a clear

improvement in quality-based web service

classification. All algorithms have been implemented

using Python (version 3.11.7) and on a personal

computer with an Intel Core i7-3720QM processor

and 32 GB of RAM. The following subsections detail

the basic classification algorithms, evaluation criteria,

introduction of the SSL-WSC algorithm and its

parameter settings, and the results of the

implementations.

4.1. Basic classification algorithms

In the implementation of the proposed method,

the experiments have been used Decision Tree (D.T.),

Support-Vector Machines (SVM), Logistic

Regression (L.R.), K-Nearest Neighbors KNN),

Gaussian Naive Bayes (N.B.), Random Forest

Classifier (R.F.), multilayer perceptron (MLP), and

XGBoost (single and ensemble) as basic

classification algorithms. These classifiers have been

used to run the SSL-WSC semi-supervised algorithm on

the new EQWS dataset and compare it with that algorithm

running on the original QWS dataset.

Table 5 shows the modified parameter values used

for the different classifiers in the experiments. This

table provides an overview of the parameter values

used for each classifier, including learning rate,

maximum depth, number of estimators, etc. Default

values are provided for the parameters not mentioned

in the table [4].

Mehdi Nozad Bonab et al/ Enhancing the accuracy of Quality-Based Web Service Categorization via Advanced Feature

Development

24

Table 5

Modified parameters in base classifier settings

max_depth=3

Decision Tree

probability = True

SVM

max_iter=1500 Logistic egression

max_depth=25

n_estimators=10

max_features=1

Random Forest

Classifier

solver='adam'

alpha=1e-3

hidden_layer_sizes= (64,4)

random_state=1

MLP

objective="multi: SoftMax"

random_state=42

learning_rate=0.001

max_depth = 10

n_estimators = 15

eval_metric = 'mlogloss'

XGBoost

4.2. Evaluation Measures

After generating the new EQWS dataset and

employing the Base classifier algorithms discussed

earlier for model training and testing, we assessed the

performance of the proposed method in precision,

accuracy, and F1-Score. This assessment enables us

to analyze the influence of extra features in improving

the classification of web services.

Predicated Class

Negative

Positive

False Negative

(F.N.)

Type II Error

True Positive

(T.P.)

Positive

Actual

 Class

True Negative

(T.N.)

False Positive

(F.P.)

Type I Error

Negativ

e

 Fig. 3. Confusion Matrix

In the field of classification, the main objective is

to achieve the highest possible accuracy and correctly

identify categories. In artificial intelligence, the

confusion matrix is a matrix that shows the

performance of algorithms, allowing for a more

comprehensive evaluation of the model's

performance (Fig. 3) [23]. Each column of the matrix

represents the predicted class for each data (web

service), while each row contains the actual class of

each data [24]. The proposed method has been

evaluated based on the criteria of accuracy, precision,

and F1 score and compared with the results obtained

from implementing the SSL-WSC algorithm with the

original dataset.

Precision is the ratio of true positive samples to the

total number of positively predicted samples. Samples

that the model correctly labels positive are known as

true positives. False positives, on the other hand, are

negative samples that the model mistakenly labels as

positive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

According to the formula, the accuracy of a

model can be calculated by summing the true positive

and true negative samples and dividing it by the sum

of all entries of the Confusion Matrix. True positives

and true negatives refer to samples that are correctly

classified by the model and are in the main diameter

of the Confusion Matrix.

𝐴𝑐𝑐𝑢𝑟𝑎𝑟𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 F1-Score is a statistical measure used to

evaluate performance, calculated as the harmonic

mean between recall and precision with equal weight.

Usually, in machine learning, the F1-Score index is

widely used to evaluate the accuracy of classification

models [25].

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2. 𝑇𝑃

2. 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

A Type I error is a false positive where the model

detects the presence of a condition when it does not

exist, and a Type II error is a false negative where the

model fails to determine the presence of a condition

when it does exist. Both errors can have serious

consequences depending on the situation[26].

4.3. Baseline SSL-WSC algorithm

In this article, we have explored enhancing the

performance of our previous algorithm, SSL-WSC,

by expanding the features of the QWS dataset. As a

result, we have adopted the default parameters for

implementing the proposed approach, maintaining

consistency with the settings for implementing the

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 17-28

25

SSL-WSC semi-supervised algorithm on the original

dataset [4].

Different scenarios are considered in the

implementation of the proposed method. The test set

size within the labeled data is fixed at 20% and 30%

in different implementations, representing common

values in many machine-learning approaches. The

training steps are repeated 10, 20, 30, and 40 times,

with dynamically updated threshold values of 60, 70,

80, and 90 in each iteration. It is worth noting that the

results presented are derived from an average of 10

runs of the SSL-WSC algorithm using the proposed

methodology outlined in this paper, each run utilizing

distinct partitions of training and testing data.

When introducing the SSL-WSC algorithm, a two-

step approach was employed to select a subset of the

unlabeled data to incorporate into the labeled set, with

one step involving the utilization of data distance. In

the aforementioned paper, we optionally used

Mahalanobis, Manhattan, and Minkowski distances

to compute the distance among the known distance

functions. The results of implementing the semi-

supervised SSL-WSC algorithm show that the

Mahalanobis method emerged as the most effective

approach for distance calculation. These findings

were consistent when the test section size was 20% of

the labeled data. Therefore, the outcomes of the

proposed method are solely reported for these specific

scenarios in this paper.

Typically, the Mahalanobis distance computation is

utilized when features are interdependent within a

dataset. Within the QWS dataset, interrelations are

observed among different features, such as response

time with delay and throughput, as well as

accessibility with other attributes. Therefore, using

the Mahalanobis technique for distance computation

is suitable for this dataset.

Assuming two data 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑑) and 𝐵 =
(𝑏1, 𝑏2, … 𝑏𝑑). The Mahalanobis distance between A

and B can be calculated using the following formula:

𝑑𝑖𝑠𝑡𝑴𝒂𝒉𝒂𝒍𝒂𝒏𝒐𝒃𝒊𝒔 (𝐴, 𝐵) = √∑
(𝑎𝑖 − 𝑏𝑖)

2

𝑣𝑖
2

𝑑

𝑖=1

)8)

Where 𝑉 = (𝑣1, 𝑣2, … 𝑣𝑑) is the standard deviation

of A and B, and d is their dimension.

4.4. The Effect of new features on the Performance

of the SSL-WSC algorithm

In this paper, the three parameters, average (Avg),

maximum (Max), and standard deviation (Std), are

used to evaluate F1-Score, Accuracy, and Precision

criteria. Table 6 compares the implementation results

of the SSL-WSC semi-supervised algorithm with the

original QWS dataset and the new EQWS dataset for

different classifiers to classify quality-based web

services.

The results in Table 6 demonstrate that, aside from

the basic MLP algorithm, the implementation of the

proposed method yields notable improvements across

all three criteria for most classifiers. For the F1-Score

and accuracy metrics, the XGboost (single) classifier

shows a maximum improvement of 17.40% and

17.61%, respectively, and for the precision metric, the

SVM classifier shows a maximum improvement of

25.46%. In general, the proposed method with the

new dataset, compared to the original dataset, has

improved the performance of the SSL-WSC

algorithm in most of the classifiers and evaluation

criteria, and the most significant improvement has

been observed in the XGboost classifier. On average,

the proposed method increases the performance by

5.05%, 5.69%, and 6.92% in F1-Score, accuracy, and

precision, respectively. Therefore, using the EQWS

dataset with more features in the proposed method to

create classification models can perform better than

the previous method with the original dataset.

Also, the small standard deviation values in the

proposed dataset for some base classifier algorithms

compared to the original method show that

implementing the SSL-WSC algorithm using the

proposed method works optimally like the original

method. As a result, the algorithm is stable.

Mehdi Nozad Bonab et al/ Enhancing the accuracy of Quality-Based Web Service Categorization via Advanced Feature

Development

26

Table 6

Average (Avg), maximum (Max), and standard deviation (Std) of F1-score, Accuracy, and Precision criteria obtained from the

implementation of the SSL-WSC algorithm with the proposed EQWS dataset and the original QWS dataset

XGboost

(Single)
XGboost

(Ensemble)
Multilayer

Perceptron
Random

Forest
Naive

Bayes
k-Nearest

Neighbors
Logistic

Regression SVM Decision

Tree

48.22% 47.85% 24.06% 50.67% 41.12% 47.11% 48.09% 27.47% 45.67% Avg

EQWS

F
1

-S
co

re

55.99% 56.03% 28.86% 62.25% 48.85% 56.88% 55.07% 38.36% 48.67% Max

0.0648 0.0594 0.0331 0.0717 0.0477 0.0545 0.0425 0.0616 0.0172 Std

41.07% 44.51% 36.69% 48.41% 36.91% 46.22% 43.91% 23.77% 40.84% Avg

QWS 46.83% 52.37% 43.49% 56.22% 47.63% 52.27% 52.21% 30.6% 47.07% Max

0.0498 0.0402 0.0435 0.0359 0.0539 0.0447 0.0481 0.0497 0.0479 Std

17.40% 7.51% -34.41% 4.67% 11.43% 1.92% 9.53% 15.58% 11.83%
The amount of improvement of

SSL-WSC with the EQWS dataset

48.49% 47.95% 34.11% 50.96% 42.19% 47.67% 48.63% 37.81% 47.95% Avg

EQWS

A
cc

u
ra

cy

56.16% 56.16% 36.99% 63.01% 49.32% 57.53% 56.16% 46.58% 52.05% Max

0.0628 0.0558 0.0290 0.0730 0.0382 0.0561 0.0421 0.0438 0.0212 Std

41.23% 44.66% 39.45% 48.63% 38.63% 46.58% 44.52% 36.44% 43.42% Avg

QWS 46.57% 52.05% 46.58% 56.16% 49.32% 52.05% 52.05% 39.73% 49.32% Max

0.0496 0.0374 0.0474 0.0359 0.0485 0.0463 0.043 0.0254 0.0438 Std

17.61% 7.36% -13.54% 4.79% 9.22% 2.35% 9.23% 3.76% 10.41%
The amount of improvement of

SSL-WSC with the EQWS dataset

49.24% 48.63% 29.40% 51.40% 46.37% 49.66% 49.67% 31.08% 49.72% Avg

EQWS

P
re

ci
si

o
n

56.16% 56.86% 47.41% 65.49% 55.15% 59.57% 56.23% 59.81% 56.75% Max

0.0600 0.0625 0.1053 0.0784 0.0636 0.0544 0.0441 0.1148 0.0425 Std

41.94% 45.85% 37.05% 49.67% 44.17% 48.62% 44.70% 24.78% 44.29% Avg

QWS 48.72% 53.40% 42.67% 59.07% 54.67% 55.06% 52.81% 59.32% 57.91% Max

0.0519 0.0479 0.0334 0.042 0.0567 0.041 0.0463 0.1323 0.066 Std

17.41% 6.06% -20.64% 3.50% 5.00% 2.14% 11.12% 25.46% 12.25%
The amount of improvement of SSL-

WSC with the EQWS dataset

Fig. 4 represents the average results obtained for f1-

score, accuracy, and precision criteria for better

comparison. As shown in the figures, adding new

non-functional qualitative features to the QWS

dataset to label the unlabeled data and thus more

accurately classify the data in the proposed method

outperforms the original dataset using the SSL-WSC

algorithm.

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 17-28

27

Fig. 4. Comparison of the implementation of the SSL-WSC

algorithm using the original QWS dataset and the EQWS dataset

in terms of F1-Score, accuracy, and precision criteria

4.5. Discussion

The presence of appropriate features in the datasets

about quality-based web services can enhance service

classification. However, gathering data about these

features can be challenging. Calculating values for

new features by analyzing their relationships with

existing features using feature engineering can help

classify web services with similar functionality and

lead to favorable results.

5. Conclusions and Future Works

The Internet provides a platform for sharing

services, and web service brokers help users choose

the right service from a wide range of similar services

based on ratings. Service quality is important in

evaluating the service needs of the user. However,

collecting information about the quality

characteristics of services is challenging and time-

consuming. Consequently, service providers resort to

data mining and machine learning techniques to

ensure that users receive the best possible service and

use service classification to identify the most

appropriate service. However, the small number of

features in the datasets has made us use the feature

engineering method in this paper to create new

features from the features in the datasets. New non-

functional features such as interoperability, security,

scalability, and robustness are crucial for applications

related to national security and financial transactions.

The results of the experiments show that the process

of upgrading the famous QWS dataset significantly

improves the accuracy of web service classification

compared to the original dataset under the

implementation of the SSL-WSC semi-supervised

algorithm. This is evidenced by the 5.05% increase in

F1-Score, 5.69% increase in accuracy, and 6.92%

increase in precision evaluation criteria. The enriched

EQWS dataset provides a more comprehensive

representation of the web service features and thus

increases the efficiency of the classification models.

This approach has great potential for advanced web

service classification and implications for various

service-oriented computing applications.

In future research, it would be beneficial to

investigate more advanced feature engineering

techniques and consider integrating domain-specific

knowledge to enhance the dataset. Additionally,

exploring ensemble methods and deep learning

architectures to classify web services using

augmented datasets could be an intriguing approach

to consider.

Conflict of Interest

The authors whose names are listed immediately

below certify that they have no affiliations with or

involvement in any organization or entity with any

financial interest or non-financial interest in the

subject matter or materials discussed in this

manuscript.

Mehdi Nozad Bonab, Jafar Tanha & Mohammad

Masdari

Supplementary description

We are continuing our research from a previous

paper where we introduced the SSL-WSC semi-

supervised algorithm. In this new paper, we focused

on boosting the performance of existing datasets

through feature engineering. You can find additional

Mehdi Nozad Bonab et al/ Enhancing the accuracy of Quality-Based Web Service Categorization via Advanced Feature

Development

28

details from the previous article in Section 4.3. For

more information, please see the original article at the

following address:

https://doi.org/10.1109/ACCESS.2024.3385341

References

1. Amin, M.M., et al., Interoperability framework

for integrated e-health services. Bulletin of

Electrical Engineering and Informatics, 2020.

9(1): p. 354-361.

2. Masdari, M., M. Nozad Bonab, and S. Ozdemir,

QoS-driven metaheuristic service composition

schemes: a comprehensive overview. Artificial

Intelligence Review, 2021. 54: p. 3749-3816.

3. Ye, H., et al., Web services classification based on

wide & Bi-LSTM model. IEEE Access, 2019. 7: p.

43697-43706.

4. Bonab, M.N., J. Tanha, and M. Masdari, A Semi-

supervised Learning Approach to Quality-based

Web Service Classification. IEEE Access, 2024.

5. Al-Shargabi, B., S. Al-Jawarneh, and S.

Hayajneh, A cloudlet based security and trust

model for e-government web services. Journal of

Theoretical and Applied Information Technology,

2020. 98(1): p. 27-37.

6. Moritz, G., F. Golatowski, and D. Timmermann.

A lightweight SOAP over CoAP transport binding

for resource constraint networks. in 2011 IEEE

eighth international conference on mobile ad-hoc

and sensor systems. 2011. IEEE.

7. Das, M.S., A. Govardhan, and D.V. Lakshmi,

Classification of web services using data mining

algorithms and improved learning model.

TELKOMNIKA (Telecommunication

Computing Electronics and Control), 2019. 17(6):

p. 3191-3202.

8. Al-Masri, E. and Q.H. Mahmoud. Qos-based

discovery and ranking of web services. in 2007

16th international conference on computer

communications and networks. 2007. IEEE.

9. Brunton, S.L., B.R. Noack, and P. Koumoutsakos,

Machine learning for fluid mechanics. Annual

review of fluid mechanics, 2020. 52: p. 477-508.

10. Kaur, M.J., V.P. Mishra, and P. Maheshwari, The

convergence of digital twin, IoT, and machine

learning: transforming data into action. Digital

twin technologies and smart cities, 2020: p. 3-17.

11. Hasnain, M., et al., Machine learning methods for

trust-based selection of web services. KSII

Transactions on Internet and Information Systems

(TIIS), 2022. 16(1): p. 38-59.

12. Tanha, J., M. Van Someren, and H. Afsarmanesh,

Semi-supervised self-training for decision tree

classifiers. International Journal of Machine

Learning and Cybernetics, 2017. 8: p. 355-370.

13. Nargesian, F., et al. Learning Feature

Engineering for Classification. in Ijcai. 2017.

14. Guyon, I. and A. Elisseeff, An introduction to

feature extraction, in Feature extraction:

foundations and applications. 2006, Springer. p.

1-25.

15. Kumar, V. and S. Minz, Feature selection.

SmartCR, 2014. 4(3): p. 211-229.

16. Rodriguez-Mier, P., et al., An integrated semantic

web service discovery and composition

framework. IEEE transactions on services

computing, 2015. 9(4): p. 537-550.

17. Kanter, J.M. and K. Veeramachaneni. Deep

feature synthesis: Towards automating data

science endeavors. in 2015 IEEE international

conference on data science and advanced

analytics (DSAA). 2015. IEEE.

18. Srivastava, N., et al., Dropout: a simple way to

prevent neural networks from overfitting. The

journal of machine learning research, 2014. 15(1):

p. 1929-1958.

19. Chia, Z.L., et al., Machine Learning and feature

engineering-based study into sarcasm and irony

classification with application to cyberbullying

detection. Information Processing &

Management, 2021. 58(4): p. 102600.

20. Sommerville, I., Engineering software products.

Vol. 355. 2020: Pearson London.

21. Thomas, D. and A. Hunt, The Pragmatic

Programmer: your journey to mastery. 2019:

Addison-Wesley Professional.

22. Burns, B., Designing distributed systems: patterns

and paradigms for scalable, reliable services.

2018: " O'Reilly Media, Inc.".

23. Wu, M.-T., Confusion matrix and minimum cross-

entropy metrics based motion recognition system

in the classroom. Scientific Reports, 2022. 12(1):

p. 3095.

24. Hasnain, M., et al., Evaluating trust prediction

and confusion matrix measures for web services

ranking. Ieee Access, 2020. 8: p. 90847-90861.

25. Grandini, M., E. Bagli, and G. Visani, Metrics for

multi-class classification: an overview. arXiv

preprint arXiv:2008.05756, 2020.

26. Ruuska, S., et al., Evaluation of the confusion

matrix method in the validation of an automated

system for measuring feeding behaviour of cattle.

Behavioural processes, 2018. 148: p. 56-62.

