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Abstract 
Industry 4.0 includes an important regeneration of production and management systems within 
manufacturing, where the majority of the procedures will be entirely or partially automated. However, 
there are insufficient research studies related to machines tool operation optimization considering the 
effective criteria for reliability in industry 4.0 to enable plants to measure their own conditions and to 
make future strategies for their activities in this field. Thus, this article proposes a decision-making 
model using a combination of DEMATEL, ANP and Shannon Entropy, and VIKOR methods with fuzzy 
features in cellular production systems, considering the effective criteria for reliability in Industry 4.0. 
Use of fuzzy features aims to bring the problem closer to the real world in this study. The efficiency of 
proposed model has been validated in a large automotive parts manufacturing plant as a case study. 
Based on the results, the most critical machine in the category of automatic lathe machines is Machine3, 
and the ordinary lathe machines is Machine31.  Sensitivity analysis shows that changing the weights of 
criteria affects the individual prioritization of machines but does not have any impact on their overall 
prioritization. This prioritization has a high level of alignment in terms of priority and accuracy with 
the perspectives of experts and decision-making teams. The selected critical machine is a sensitive 
machine in plant and cannot be replaced throughout its equipment lifetime. Finally, practical 
recommendations for Machines Tool Operation Optimization have been provided in Industry 4.0. 

Keywords:  Machine Tool, Operation, Optimization, Reliability, Industry 4.0. 
 
Introduction 

The term reliability was first used in the 
1800s to calculate human life insurance, 
while later this term was used mostly for 
machine products (mechanical, electrical, 
electronic, and structural) and not for humans 
themselves. Applying the term reliability to 
humans is usually more complicated due to 
the complexity of biological organisms 
compared to machine products, but it cannot 
be said that it is not measurable. Reliability is 
a quantitative measure of the correct 
functioning of parts, devices, and systems in 
general. These systems can be machine, 
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human-machine, or human. Although they 
are usually used for mechanical systems or 
engineering or man-made products and 
artifacts. In the past decades, reliability has 
been discussed in industries such as military, 
communications, oil, and gas production. 
With the accelerating globalization of the 
economy, competition among manufacturing 
industries has increasingly intensified. 
Automotive manufacturing has always been 
an important investment and development 
industry in various countries (Yue et al., 
2021). 
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An automotive company provides quality 
assurance services to customers based on two 
criteria, including time and distance traveled 
to ensure the quality of its products for them 
and to remind customers of their credibility 
(Lee et al., 2021). The factors of time and 
distance driven are referred to as two-
dimensional quality assurance areas, and if a 
minor error or accident occurs during this 
time, the automotive company offers a parts 
warranty that incurs quality assurance costs. 
For this reason, countless automotive 
manufacturers are increasing their scope of 
quality assurance in specific markets 
(Rajaguru & Matanda, 2013). 

Meanwhile, sales are continuously 
increasing rapidly, with companies 
subsequently paying tens of billions of 
dollars in after-sales parts warranties 
(Schumacher et al., 2016). As a result, 
identifying the durability of automotive parts 
and systems, along with determining the 
appropriate level of quality assurance and 
quality management, significantly affects the 
competitiveness of an automotive company 
(Lee et al., 2021). 

Hence, if the possibility of failure in terms 
of quality assurance can be determined by 
identifying poor machining processes, it will 
be easy to manage each part and reduce the 
cost of quality assurance. To support the 
reliability of automotive parts, machines are 
prioritized based on the reliability and 
manufacturing of intact and defective parts in 
various ways that can determine the 
reliability of using equipment. Therefore, one 
of the most challenging tasks in today's 
automotive industry is product quality 
control across the automotive supply chain 
(Chehade et al., 2022). The automotive 
industry is becoming customer-oriented and 
needs faster response times to cope with 
automotive accidents (Lee et al., 2021). 

Paying attention to the reliability of 
complex products is a serious challenge for 
most manufacturers. Numerous factors affect 
reliability and increase complexity [9]. 
Challenges that may jeopardize the reliability 
of automotive parts generally fall into two 
categories: First, the lifespan of the parts is 

different from each other because drivers act 
differently from each other and high-risk 
drivers can always cause unexpected 
accidents. Second, automobiles have a huge 
volume of parts and a relatively long 
warranty period compared to other products, 
which is a more difficult problem because 
many parts require prediction and the 
prediction of parts also takes a long time 
(Zhan & Xiao, 2022).   

The Fourth Industrial Revolution is a 
general concept that refers to a period of 
technological advancements in industry and 
production systems. This revolution is based 
on the integration of devices and systems into 
internet networks, artificial intelligence, 
cloud computing, and data analytics to 
improve performance and optimize 
production processes (Schumacher et al., 
2016).  

In the automotive industry, the Fourth 
Industrial Revolution plays a crucial role. 
These innovative technologies and concepts 
enhance production efficiency and quality, 
reduce production time and costs, increase 
flexibility and reliability in the production 
line, and improve the customer experience. 
For example, the use of smart systems and 
connecting production devices to the internet 
network can lead to the collection and 
analysis of big data to improve the 
performance of production lines, predict 
market needs, enhance quality supervision 
and control, and monitor system maintenance 
and repairs (Butollo et al., 2019). 

Additionally, the implementation of 
technologies such as artificial intelligence, 
robotics, the Internet of Things, and 
augmented reality in the automotive industry 
can result in increased automation of 
production processes, improved accuracy 
and speed of production, reduced errors and 
work-related accidents, enhanced security 
and productivity, and the creation of 
innovation and development opportunities in 
this industry. Therefore, the Fourth Industrial 
Revolution in the automotive industry, by 
harnessing advanced technologies, improves 
efficiency, optimizes processes, reduces 
costs, and brings about significant 
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transformations in this industry (Jafari-Asl et 
al., 2022). 

To address these challenges, a machine 
prioritization approach based on reliability 
factors to realize the goals of the fourth 
industrial revolution in the field of operation 
optimization seems essential. In this case, 
changes need to be managed to identify 
failures. In other words, the main goal of 
prioritizing auto parts manufacturing 
machines based on reliability enables us to 
obtain the probability of failures among 
machines and to decide on the process of 
using the future type of auto parts machining. 
Data related to the machining process, 
including Machine operation time, The total 
number of manufacturing parts, Number of 
non-defective parts, Planned manufacturing 
quantity, Machine availability, Efficiency, 
Overall Equipment Effectiveness(OEE), and 
Percentage of non-defective parts, index are 
required to identify the probability of 
failures(Butollo et al., 2019). 

In this research, the information recorded 
from the archived documents of a large 
automotive spare parts plant is used, which is 
known as a field claim to determine the parts 
manufactured by each machine, the operation 
time of machines, etc. The reason for using 
this data is that it gives us feedback on the 
expected life of the product. Because 
providing appropriate manufacturing 
products with optimal reliability for 
customers of auto parts manufacturing units 
to ensure proper operation of the product 
during its lifetime is considered by logistics, 
supply, and supply chain experts. 
Based on the above, the most important 
objectives of this research are as follows: 
1- Providing a decision-making model that, 
in addition to identifying the effect of criteria 
on reliability to realize the goals of the fourth 
industrial revolution in the field of operation 
optimization can determine the prioritization 
of machines using it. 
2- Applying the fuzzy property to bring the 
problem closer to the real world. 
3- Determining Cause-and-effect 
relationships between criteria affecting the 
reliability of machines, as well as 

determining the importance of criteria and 
prioritizing machines in groups. 

The rest of the paper is organized as below. 
The second section provides a literature 
review of past studies on the main research 
topic. In the third section, the proposed 
research method is provided. In the fourth 
section, the computational results are 
implemented in a real case study. Finally, in 
the fifth section, a general conclusion is 
provided along with suggestions for future 
research. 
 
Literature Review 

Jafari-Asl et al, in their paper, proposed a 
new framework for accurate reliability 
analysis based on the improvement of 
directional simulation using meta-heuristic 
algorithms. To apply the proposed 
framework is first tested on five highly 
nonlinear criterion functions and then applied 
to solve four engineering problems with high 
dimensions. The performance of the six 
simulation-based reliability analysis methods 
and the first-order reliability method are 
compared with the proposed method. 
Furthermore, the feasibility of other meta-
heuristic algorithms is investigated. The 
results show the high-performance 
capabilities of the improved version of the 
directional simulation to solve highly 
nonlinear engineering problems. 

Manouchehrinia et al, proposed an 
evaluation of reliability based on failure to 
measure random vibration loads due to 
unexpected loads in different road 
conditions. Because random loads have been 
identified as the main cause of failure in 
reliability analysis. Acceleration signals were 
measured during road tests conducted on 
rural and highway road surfaces. The signals 
were taken from an accelerometer mounted 
on the suspension system of an urban sedan 
automobile. The results of this study showed 
that failure prediction is not affected by cases 
of dynamic behavior in components in the 
time domain. 

Huang et al, considered warranties for 
electronics with failure processes. In this 
study, the failures include minor failure, 
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excessive failure, and catastrophic failure. 
Also, a dynamic planning approach is 
designed to provide reliability to obtain 
optimal solutions for periodic planning. Mi et 
al, conducted a comprehensive evidence-
based network study to analyse the reliability 
of complex systems with continuously 
caused failures and complex uncertainties. In 
addition, two layers, namely a decomposed 
event layer and a paired layer, are embedded 
in the system evidence network, resulting in 
a hierarchical structure of system reliability. 
As a result, the importance and sensitivity of 
different components and their effect on 
system reliability are identified. 

Xiao et al. proposed a new learning 
function with a parallel processing strategy 
for selecting new training samples for 
complex systems using Surrogate models. 
Using the proposed parallel learning strategy 
for system reliability problems performed 
through the Cracking surrogate model, one or 
more new instructional samples can be 
selected in each iteration to modify the built 
surrogate models. Three numerical examples 
were examined to show the validity of the 
proposed method. The results show that this 
method has high applicability and accuracy 
for complex reliability problems. Wang et al. 
proposed a new reliability analysis method 
that is a combination of the improved 
Cracking method for the possibility of small 
failures. For this purpose, a new strategy for 
parallel learning is proposed to enable 
parallel computing and further reduce overall 
computational time. The proposed method 
can be applied to a system with low failure 
probability, multiple failure regions, high 
nonlinearity, and implicit functions. Finally, 
the efficiency and accuracy of the proposed 
method were demonstrated using four 
numerical examples and compared with the 
five competing methods reported. 

Lee et al. developed a failure and reliability 
prediction model for auto parts using the 
initial 6-month field claim. This paper 
proposes different deep learning methods and 
compares the work with different methods 
such as the parametric method, time series 
method, and machine learning. By 

conducting experiments, they confirmed that 
the proposed deep learning model is superior 
to the existing relevant study, therefore, it is 
suggested that the deep learning method can 
maximize performance compared to other 
existing methods. Soares et al. developed a 
method to support maintenance management 
to identify and analyse equipment reliability 
in a manufacturing factory. This method 
involves using Laplace test to identify 
equipment whose reliability decreases over a 
given period. Then, they carried out an 
analysis to identify the critical components 
and related failure factors. 

Abolghasemian et al, presented a new 
framework for prioritizing time in the 
construction process using an analytical 
method based on a mathematical model and 
simulation. For this purpose, the rework 
parameter and the variables of frequency, 
duration, and time of call-back have been 
considered. Also, the effects of these 
parameters on tangible performance criteria 
have been investigated. 

Ghazi and Pourghader, using fuzzy logic, 
tried to predict the reliability of passenger 
automotive tires using machine learning. 
Thus, they first identified the key criteria 
affecting the tire reliability, and then, using 
the opinions of experts, designed and 
considered rules for training the network. 
Finally, to validate the model in the best and 
worst conditions, the validity of the model 
was measured to investigate the effect of 
input variables on the output of the model.  
Hey et al, developed a two-stage supply chain 
for automotive logistics services. The 
computational results of the research show 
that if reliability increases, the optimal order 
quantity of logistics capability, purchase 
price, and all expected profits will decrease. 
Teymouri and Farahani , proposed a model 
that in addition to the reliability of the part, 
well investigates the environmental factors 
affecting the failure rate. Furthermore, since 
the consumption of many parts is due to their 
relationship with other parts and the 
existence of a concept called part failure 
interaction, these factors are also included in 
the model as another group of factors 
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affecting demand. The model proposed in 
this paper, using reliability models and the 
renewal process, predicts the consumption of 
spare parts by considering the reliability, 
factors in the operational environment, and 
failure interaction.  

Tortorella and Fettermann, assessed the 
development of Industry 4.0 in Brazilian 
manufacturing companies. They utilized a 
multivariate analysis to analyze the lean 
production (LP) practices of 110 companies 
which were collected by means of a 
questionnaire form. They found the 
implementation of the LP and Industry 4.0 
technologies has led to larger performance 
improvements in Brazilian companies. 
Skrzeszewska et al, assessed the 
effectiveness of Manufacturing Execution 
Systems (MES) for production management 
in Industry 4.0. They analyzed the readiness 
level of two companies in three levels of 
management: operational, tactical and 
strategic. Sadeghi-Niaraki, developed a 
comprehensive framework to assess the 
countries’ readiness level in Industry4.0 

development. The research conducted in 
several steps. First, the main required clusters 
and their criteria of Industry 4.0 development 
assessment such as technological, social, 
economic, political and environmental 
clusters determined. Second, the importance 
of the clusters and their criteria specified 
using the Fuzzy DEMATLE and Fuzzy ANP 
techniques. Third, the countries ranked using 
the VIKOR technique. 

According to literature review, machine 
learning, parametric, and deep learning 
methods have been considered in the studies 
to ensure reliability. However, a decision-
based model has not been investigated in 
Industry 4.0. Therefore, the proposed model 
in this research enables manufacturing 
companies to decrease huge costs by 
prioritizing the machines in Cellular 
Manufacturing Systems in Industry 4.0, with 
ensuring reliability, taking into account the 
exact number of future failures of each 
automotive part. Table 1, shows the literature 
review.

 
Table 1.  
Literature review 
Author Year Goal Tools Solution 

approach 

Sadeghi-Niaraki  2020 
Evaluation countries’ readiness 
level in Industry 4.0 
development 

Decision making 

Fuzzy 
DEMATLE - 
Fuzzy ANP and 
VIKOR 

Soares et al  (2021) 
Support maintenance 
management to identify and 
analyse equipment reliability 

Experimental Laplace test 

Lee et al (2021) Predicting the failure and 
reliability of automotive parts Statistical Time series 

Jafari- Asl, et al (2022) 
Calculate reliability analysis 
based on the improvement of 
directional simulation 

Simulation Meta-Heuristic 

Manouchehrinia, et al (2022)  Calculate an evaluation of  
reliability based on failure Experimental - 

Huang et al (2022) 
Evaluation warranties 
reliability for electronics with 
failure processes 

Experimental - 

Mi et al (2022) 

Conducted a comprehensive 
evidence-based network study 
to analyse the reliability of 
complex systems 

 
Experimental - 

Xiao et al (2022) Studied reliability using a 
surrogate model Surrogate model Cracking  
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Author Year Goal Tools Solution 
approach 

Wang et al (2022) Analysis reliability using a 
surrogate model Surrogate model Machine 

learning 

This research (2024) 

To prioritize and select the 
most critical machine in 
cellular manufacturing systems 
using effective criteria for 
reliability in Industry 4.0 

Decision making 

A Fuzzy Hybrid 
Method of  
DEMATEL-
ANP- Shannon 
Entropy/VIKOR 

 
Methodology 

The proposed framework of this research 
includes four basic pillars as follows:  1- 
Determining the complete relationship 
between criteria, 2- Determining the 
importance of criteria,  3- Prioritizing the 
critical machines to determine the most 
critical machine in manufacturing halls, and 
4- Sensitivity Analysis.To carry out this 
research, a hybrid decision-making 
framework using DEMATEL (Decision-
Making Trial and Evaluation) method is used 
to determine the complete relationships 
between criteria and ANP-Shannon Entropy 
method is used to calculate weight of criteria. 

Because, the most significant constraint in 
using decision-making methods is 
considering the mental importance of criteria, 
which may lead to different results by 
changing its value compared to what has been 
calculated. To overcome this limitation, this 
article uses combined weights obtained from 
Shannon Entropy and ANP methods. Finally, 
using VIKOR (Vlse Kriterijumsk 
Optimizacija Kompromisno Resenje) 
method, the prioritization of machines is 
determined according to the importance 
determined for the criteria and their 
criticality. Figure 1 shows the research 
implementation framework. 

 
Figure 1. Research method framework 

 
DEMATEL Method 
Using DEMATEL method, the effect of 
criteria on each other is addressed. The steps 
of this method are: 
Step 1: Forming the initial relation matrix 

The values of each column and row represent 
the opinion of experts for the criteria. This 
matrix shows how each factor affects the 
other factors of the study. Any criterion that 
does not affect the similar criterion, its value 
is considered zero. 
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(1)𝐴𝐴 = �
0 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 0

�                           

Step 2: Normalizing the initial relation 
matrix 
The normal matrix for the initial relations 
based on Equation 2 can be calculated as 
follows: 
(2)        𝑋𝑋 = 1

max∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

�  

(3)       𝑁𝑁 = 𝑋𝑋.𝐴𝐴 
Where X is the normalized value of each 
factor and A is the initial relation matrix. 
Step 3: Total relation matrix 
The total relation matrix Y can be calculated 
using the normalized matrix N as follows.  

𝑌𝑌 = 𝑁𝑁(𝐼𝐼 − 𝑁𝑁)−1 

(5)         𝐼𝐼𝑛𝑛 = �
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

� 

Step 4: Calculating sum of the rows and 
columns in the total relation matrix 
In this step, the column matrix 𝑅𝑅𝑛𝑛×1 is 
calculated using sum of the rows of the total 
relation matrix, and the row matrix 𝐶𝐶1×𝑛𝑛 is 
calculated using sum of columns of the total 
relation matrix as follows: 
(6)            𝑅𝑅 = [∑ 𝑚𝑚𝑖𝑖𝑖𝑖

𝑛𝑛
𝑖𝑖−1 ] 

(7)            𝐶𝐶 = [∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖−1 ]    

Step 5: Drawing the degree of influence 
cause and effect criteria diagram 
In this step, by calculating (𝑅𝑅𝑖𝑖 + 𝐶𝐶𝑖𝑖) and 
(𝑅𝑅𝑖𝑖 − 𝐶𝐶𝑖𝑖) the degree of influence cause and 
effect criteria diagram is drawn to show the 
effect of factors on each other.  
 
ANP Method 
The steps of ANP method are follows: 
Step 1: Building a model and turning the 
problem into a network structure 
In this stage, the problem needs to be turned 
into a logical system like a network. The 
network structure can be obtained by 
brainstorming, nominal group, or any other 
suitable method. In this research, the 
relationship between the criteria is obtained 
using DEMATEL method. 
Step 2: Forming a pairwise comparison 
matrix and determining relative weights 
vector 

The decision elements in each cluster should 
be compared two by two based on their 
importance in the equation to the control 
criteria. Clusters are also compared two by 
two according to their role and influence in 
achieving the goal. Also, due to the 
interdependencies between the elements of a 
cluster, pairwise comparisons should be 
made between them. 
Step 3: Forming a super matrix and 
converting it to a limit super matrix 
To achieve the final weights in the network, 
the relative weight vectors are inserted into 
the appropriate columns of a matrix. The 
result is a super matrix, each part of which 
represents the relationship between two 
clusters in a system. 
Step 4: Selecting the top option 
The overall priority of the options is obtained 
from the options column in the normalized 
limit super matrix. 
 
Shannon Entropy Method 
In this step, using Shannon Entropy method, 
the importance of each of considered criteria 
for critical equipment prioritizing is 
determined. To determine the weight, it is 
necessary to calculate the entropy uncertainty 
criterion by a certain probability distribution 
such as 𝑝𝑝𝑖𝑖 in Equation 8: 
(8)         𝐸𝐸𝑖𝑖 = −𝑘𝑘∑ 𝑝𝑝𝑖𝑖 ln�𝑝𝑝𝑖𝑖�𝑚𝑚

𝑖𝑖=1  
Therefore, value of 𝑑𝑑𝑖𝑖 or the degree of 
deviation is calculated, which shows how 
much useful information the relevant j index 
provides to the decision maker. The closer 
measured values are to each other, it shows 
that the other options are not much different 
from each other in terms of the index. 
(9)        𝑑𝑑𝑖𝑖 = 1 − 𝐸𝐸𝑖𝑖 
Finally, the weight of 𝑊𝑊𝑖𝑖 is calculated as 
follow: 
(10)        𝑊𝑊𝑖𝑖 = 𝑑𝑑𝑗𝑗

∑ 𝑑𝑑𝑗𝑗𝑛𝑛
𝑗𝑗=1

 

In this research, it is suggested that the weight 
of criteria be determined using the combined 
ANP-Entropy method. If the calculated 
weight of ANP method for considered factors 
is assumed to be equal to 𝛿𝛿𝑖𝑖 and the 
calculated weight of criteria using Shannon 
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Entropy method is assumed to be equal to 𝛾𝛾𝑖𝑖, 
then the combined weight will be equal to: 
(11)           𝑊𝑊𝑖𝑖 = 𝛿𝛿𝑗𝑗𝛾𝛾𝑗𝑗

∑ 𝛿𝛿𝑗𝑗𝛾𝛾𝑗𝑗𝑛𝑛
𝑗𝑗=1

 

 
VIKOR Prioritization Method 
The steps of VIKOR method are: 
Step 1: Calculating 𝑓𝑓𝑖𝑖∗ and 𝑓𝑓𝑖𝑖− of criteria: for 
each of criteria   𝑗𝑗 = 1, … ,𝑛𝑛, the best 𝑓𝑓𝑖𝑖𝑖𝑖 is 
specified as 𝑓𝑓𝑖𝑖∗, and the worst 𝑓𝑓𝑖𝑖𝑖𝑖 is specified 
as 𝑓𝑓𝑖𝑖−. The values of 𝑓𝑓𝑖𝑖∗ and 𝑓𝑓𝑖𝑖−  for positive 
criteria, are determined from Equation 12. 
(12)               𝑓𝑓𝑖𝑖∗ = max 𝑓𝑓𝑖𝑖𝑖𝑖 ;  𝑓𝑓𝑖𝑖− = min 𝑓𝑓𝑖𝑖𝑖𝑖  
Also, values   𝑓𝑓𝑖𝑖∗ and 𝑓𝑓𝑖𝑖−  for negative criteria 
are determined from Equation 13.  
(13)            𝑓𝑓𝑖𝑖∗ = min 𝑓𝑓𝑖𝑖𝑖𝑖 ;  𝑓𝑓𝑖𝑖− = max 𝑓𝑓𝑖𝑖𝑖𝑖   
 
Step 2: Calculating 𝑆𝑆𝑖𝑖 and 𝑅𝑅𝑖𝑖 according to 
Equations 14 and 15: 

(14)        𝑆𝑆𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖
(𝑓𝑓𝑗𝑗

∗−𝑓𝑓𝑖𝑖𝑗𝑗)

(𝑓𝑓𝑗𝑗
∗−𝑓𝑓𝑗𝑗

−)
𝑛𝑛
𝑖𝑖=1  

(15)          𝑅𝑅𝑖𝑖 = max [𝑤𝑤𝑖𝑖
(𝑓𝑓𝑗𝑗

∗−𝑓𝑓𝑖𝑖𝑗𝑗)

(𝑓𝑓𝑗𝑗
∗−𝑓𝑓𝑗𝑗

−)
] 

Therefore,  𝑆𝑆∗ = min 𝑆𝑆𝑖𝑖 ;  𝑆𝑆− =
max 𝑆𝑆𝑖𝑖 ;  𝑅𝑅∗ = min𝑅𝑅𝑖𝑖 ;  𝑅𝑅− = max𝑅𝑅𝑖𝑖.  

 
Step 3: Calculating value of VIKOR index 
for each option according to Equation 16: 
(16)                      𝑄𝑄𝑖𝑖 = 𝑣𝑣 × � 𝑆𝑆𝑖𝑖−𝑆𝑆

∗

𝑆𝑆−−𝑆𝑆∗
� + (1 − 𝑣𝑣) ×

[𝑅𝑅𝑖𝑖−𝑅𝑅
∗

𝑅𝑅−−𝑅𝑅∗
] 

It is assumed that 𝑣𝑣 is a strategic weight and 
often consider equal to 0.5.  
 
Results 

The results of this research have been 
implemented in alarge automotive spare parts 

plant. This plant produces aluminum 
automotive parts, which is considered the 
main engine parts manufacturer for 
automotive manufacturers. In the following, 
the applied results are shown step by step 
until the results are obtained to determine the 
critical machines. 
 
The Effect of criteria on each other  

By collecting information from the 
designed questionnaire based on DEMATEL 
method, considering the scale in Table 2, the 
decision matrix shown in Table 3 is 
completed. Table 3 shows direct relation 
matrix, which is based on the arithmetic 
mean of the opinions of the experts 
participating in the research based on 
DEMATEL scale. 

 
Table 2. 
DEMATEL method scale 

Verbal phrase Corresponding value 
Much more important 500 
Important 400 
Intermediate 300 
Less important 200 
Much less important 100 
 
The triangular fuzzy numbers 

corresponding to the 5-point Likert spectrum 
are shown in Table 3. In this table, the certain 
value corresponding to each verbal value, 
fuzzy value, and triangular number is written. 
Fuzzy numbers are converted to crisp 
numbers using Minkowski formula 
according to 𝑥𝑥 = 𝑚𝑚 + 𝑢𝑢 − 𝑙𝑙

4� . In this 
relation, 𝑚𝑚 is the center of the interval, 𝑢𝑢 is 
the upper bound, and 𝑙𝑙 is the lower bound of 
the interval. 

 
Table 3. 
Fuzzy numbers of 5-degree Likert spectrum 

Verbal variable Fuzzy 
value 

Triangular 
fuzzy numbers Crisp value 

Much more 
Important 1�  (0,0,0.25) 0.0625 

Important 2�  (0,0.25,0.25) 0.3125 
Intermediate 3�  (0.25,0.5,0.25) 0.625 
Less important 4�  (0.5,0.75,1) 0.875 
Much less important  5�  (0.75,1,1) 1.0625 
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Table 4. 
Direct relation matrix of DEMATEL method 

Direct relation 
matrix C1 C2 C3 C4 C5 C6 C7 C8 

C1 0.000 0.763 0.786 0.768 0.603 0.705 0.714 0.781 
C2 0.777 0.000 0.781 0.741 0.585 0.723 0.737 0.719 
C3 0.723 0.759 0.000 0.696 0.473 0.763 0.830 0.777 
C4 0.808 0.643 0.540 0.000 0.576 0.705 0.799 0.862 
C5 0.625 0.692 0.464 0.496 0.000 0.364 0.531 0.879 
C6 0.790 0.571 0.786 0.670 0.371 0.000 0.763 0.781 
C7 0.808 0.826 0.737 0.741 0.509 0.835 0.000 0.821 
C8 0.692 0.710 0.656 0.817 0.817 0.728 0.786 0.000 

 
To normalize Table 4, it is necessary to 

specify the sum of rows and columns in the 
table of the total relation matrix and to divide 
each of the numbers in this table by the 
maximum value of these sums. Table 5 
shows the sum of the rows and columns of 
the total relation matrix to determine the 
maximum value. 

 
Table 5. 
Sum of rows and columns  

Sum of columns Sum of  rows 
5.223 5.120 
4.964 5.062 

Sum of columns Sum of  rows 
4.75 5.022 
4.928 4.933 
3.933 4.051 
4.823 4.731 
5.160 5.276 
5.620 5.205 

 
According to table 5, maximum value for 

rows is 5.276 and maximum value for 
columns is 5.620. Therefore, maximum value 
is set to 5.620, which is calculated by 
dividing values of total relation matrix by this 
value of normal matrix according to Table 6. 

 
Table 6. 
Normal matrix    

Normal 
matrix C1 C2 C3 C4 C5 C6 C7 C8 

C1 0.000 0.136 0.140 0.137 0.107 0.125 0.127 0.139 
C2 0.138 0.000 0.139 0.132 0.104 0.129 0.131 0.128 
C3 0.129 0.135 0.000 0.124 0.084 0.136 0.148 0.138 
C4 0.144 0.114 0.096 0.000 0.102 0.125 0.142 0.153 
C5 0.111 0.123 0.083 0.088 0.000 0.065 0.095 0.156 
C6 0.141 0.102 0.140 0.119 0.066 0.000 0.136 0.139 
C7 0.144 0.147 0.131 0.132 0.091 0.149 0.000 0.146 
C8 0.123 0.126 0.117 0.145 0.145 0.129 0.140 0.000 

 

According to tables 7 and 8, using normal 
matrix and performing necessary operations 
the total relation matrix 𝑁𝑁 × (𝐼𝐼 − 𝑁𝑁)−1 is 
calculated. For this purpose, first, the inverse 
matrix obtained by subtracting the identity 

matrix from the normalized matrix. Then, 
product of normal matrix in the inverse 
matrix is obtained as the total relation matrix. 
In Table 7, the matrix (𝐼𝐼 − 𝑁𝑁)−1 is 
calculated. 

 
Table 7. 
Matrix (𝐼𝐼 − 𝑁𝑁)−1 

(𝑰𝑰 − 𝑵𝑵)−𝟏𝟏 C1 C2 C3 C4 C5 C6 C7 C8 
C1 1.849 0.928 0.907 0.932 0.701 0.91 0.956 1.019 
C2 0.918 1.758 0.859 0.879 0.608 0.866 0.908 0.954 
C3 0.953 0.917 1.776 0.912 0.674 0.91 0.962 1.007 
C4 0.948 0.885 0.848 1.786 0.679 0.885 0.941 1.002 
C5 0.786 0.765 0.712 0.739 1.492 0.709 0.769 0.862 
C6 0.923 0.854 0.862 0.871 0.633 1.754 0.914 0.966 
C7 1.001 0.961 0.952 0.954 0.706 0.954 1.87 1.052 
C8 0.965 0.927 0.895 0.944 0.737 0.918 0.972 1.905 
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Table 8.  
Total relation matrix 
 
 
 
 
 
 
 
 
 
 
According to table 9, by calculating sum of 
each row and column, value of D and R are 
obtained, respectively. 
 
Table 9.  
Values of R, D, (D+R) and (D-R) 

 
 
 
 
 
 
 

By calculating value of D+R and D-R, it is 
possible to show the degree of influence 
cause and effect criteria on each other. In this 
way, the position of each criterion is 
determined by a point with coordinates 
(D+R, D-R) in system. Diagram 1 shows the 
degree of influence cause and effect criteria 
based on value of D+R and D-R. 

 

 

 
Diagram 1. The degree of influence cause and effect criteria 

 
Cause-and-effect variables are also 

determined using DEMATEL method. 
Accordingly, Machine operation time, 
Planned manufacturing quantity, Percentage 
of non-defective parts, and OEE are causal 
factors, while Total number of manufactured 
parts, Number of non-defective parts, 
Machine availability, and Efficiency are 
effect factors in this research. 

In general, sum of the elements of each row 
(D) for each factor indicates the degree of 
influence of that factor on other factors of 

system. If amount of this variable is more, it 
means that the factor has more influence. 
Therefore, Efficiency has the most influence 
and Machine availability has the least 
influence on machinery reliability planning. 
On the other hand, sum of the column 
elements(R) for each factor indicates the 
degree of influence of that factor on other 
factors of system. If value of this variable is 
higher, it means that the factor is more 
effective. Based on the results, OEE has the 

C1 C2 C3 C4 C5 C6 C7 C8
D-R 0 0.146 0.261 0 0.51 0 0.073 0
D+R 14.608 14.234 13.962 14.04 11.16 13.73 14.769 15.09
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𝑁𝑁 × (𝐼𝐼 − 𝑁𝑁)−1 C1 C2 C3 C4 C5 C6 C7 C8 
C1 0.849 0.928 0.911 0.932 0.701 0.91 0.965 1.019 
C2 0.968 0.807 0.908 0.926 0.704 0.911 0.957 1.009 
C3 0.953 0.917 0.78 0.912 0.674 0.91 0.962 1.007 
C4 0.948 0.885 0.852 0.786 0.679 0.885 0.94 1.002 
C5 0.786 0.765 0.714 0.739 0.491 0.709 0.769 0.862 
C6 0.923 0.854 0.866 0.871 0.633 0.753 0.914 0.966 
C7 1.001 0.961 0.925 0.953 0.706 0.954 0.869 1.052 
C8 0.965 0.927 0.898 0.944 0.737 0.918 0.972 0.906 

Criteria D R D-R D+R 
C1 7.215 7.393 -0.178 14.608 
C2 7.19 7.044 0.146 14.234 
C3 7.115 6.854 0.261 13.962 
C4 6.977 7.063 -0.086 14.04 
C5 5.835 5.325 0.51 11.16 
C6 6.78 6.95 -0.17 13.73 
C7 7.421 7.348 0.073 14.769 
C8 7.267 7.823 -0.556 15.09 
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most impact and Machine availability is the 
least impact. 

Based on the above, the horizontal vector 
(D+R) is how much the intended factor affect 
in   system. In other words, the higher D+R 
factor, the more it interacts with other system 
factors. Based on the results, OEE has the 
most interaction with other criteria and 
Machine availability has the least interaction. 
In contrast, the vertical vector (D-R) 
indicates the effect of each factor. If D-R is 
positive, factor is a cause variable, and if it is 
negative, it is an effect. 

Accordingly, Machine operation time, 
Planned manufacturing quantity, Percentage 
of non-defective parts, and OEE are the 
criteria of cause, and Total number of 
manufactured parts, Number of non-
defective parts, Machine availability, and 

Efficiency are the criteria of effect in this 
research. 
 
Calculation of initial weight using ANP 
method 
To get the initial weight for eight considered 
criteria, first a network is drawn. The main 
points of this network as figure 3 are: 
Objective: To determine the importance of 
criteria 
Criteria: The eight main criteria are: 
Machine operation time (C1). 
Total number of manufactured parts (C2), 
Number of non-defective parts (C3), 
Planned manufacturing quantity (C4), 
Machine availability (C5), 
Percentage of non-defective parts (C6), 
Efficiency (C7), 
OEE (C8). 
Options: 33 machines are considered as 
options.  

Figure 2. Relationship network of objective, criteria and options  
 

In this stage using ANP method, initial 
importance of the considered criteria is 
determined using Super Decision software. 
For this purpose, the total relation matrix of 
DEMATEL method is considered as input to 
pairwise comparison matrix of criteria in 
ANP method. For the intended pairwise 
comparison, the incompatibility rate and the 
importance of criteria are collected. 

It is noteworthy that the software has been 
designed to perform network calculations 
that focus on ANP method. Therefore, after 
establishing connections between nodes, it 
automatically considers the desired network 
and performs its calculations based on 
criteria dependencies. Then, by specifying 
the network relationships in Super Decision 
software, the pairwise comparison matrix in 
ANP is obtained that shows in table 10. 
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Table 10.  
ANP pairwise comparison matrix 
 
 
 
 
 
 
 
 
 

By determining the matrix of pairwise 
comparisons, the importance of each criteria 
and the incompatibility rate of pairwise 
comparison of criteria are calculated. Table 
11 shows the importance of all criteria. Given 
that the incompatibility rate for calculated 
pairwise comparison is 0.004 and it is less 
than 0.1, the results of pairwise comparison 
are acceptable. 

 
 
 
 

Table 11.  
Incompatibility rate of criteria 

Criteria 
Number Value Criteria 

Number Value 

C1 0.109 C5 0.119 
C2 0.126 C6 0.117 
C3 0.135 C7 0.101 
C4 0.139 C8 0.151 

 
Calculating combined weight  
According to table 12, combined weight of 
criteria is determined using Shannon Entropy 
method and weights of ANP method. 

Table 12. 
Calculations of Shannon Entropy method 

Machine  
Number C1 C2 C3 C4 C5 C6 C7 C8 

Machine1 0.0278 0.0350 0.0351 0.0352 0.0032 0.0031 0.0029 0.0309 
Machine2 0.0190 0.0321 0.0323 0.0328 0.0022 0.0031 0.0029 0.0209 
Machine3 0.0278 0.0633 0.0637 0.0642 0.0032 0.0031 0.0029 0.0307 
Machine4 0.0243 0.0058 0.0058 0.0059 0.0028 0.0031 0.0029 0.0268 
Machine5 0.0379 0.0449 0.0451 0.0456 0.0029 0.0031 0.0029 0.0279 
Machine6 0.0422 0.0383 0.0376 0.0380 0.0032 0.0030 0.0030 0.0310 
Machine7 0.0358 0.0366 0.0368 0.0373 0.0027 0.0031 0.0029 0.0263 
Machine8 0.0379 0.0261 0.0262 0.0266 0.0029 0.0031 0.0029 0.0277 
Machine9 0.0278 0.0592 0.0596 0.0604 0.0032 0.0031 0.0029 0.0306 

Machine10 0.0293 0.0310 0.0312 0.0314 0.0033 0.0031 0.0029 0.0324 
Machine11 0.0376 0.0184 0.0183 0.0069 0.0029 0.0018 0.0133 0.0739 
Machine12 0.0379 0.0218 0.0209 0.0214 0.0029 0.0030 0.0030 0.0275 
Machine13 0.0385 0.0375 0.0377 0.0380 0.0029 0.0031 0.0029 0.0284 
Machine14 0.0464 0.0413 0.0413 0.0421 0.0035 0.0031 0.0029 0.0339 
Machine15 0.0271 0.0279 0.0281 0.0283 0.0031 0.0031 0.0029 0.0299 
Machine16 0.0248 0.0738 0.0742 0.0749 0.0028 0.0031 0.0029 0.0273 
Machine17 0.0403 0.0321 0.0323 0.0328 0.0031 0.0031 0.0029 0.0295 
Machine18 0.0263 0.0343 0.0345 0.0345 0.0030 0.0031 0.0029 0.0294 
Machine19 0.0225 0.0259 0.0260 0.0262 0.0026 0.0031 0.0029 0.0249 
Machine20 0.0190 0.0364 0.0366 0.0369 0.0022 0.0031 0.0029 0.0210 
Machine16 0.0248 0.0738 0.0742 0.0749 0.0028 0.0031 0.0029 0.0273 

         

𝑵𝑵 × (𝑰𝑰 − 𝑵𝑵)−𝟏𝟏 C1 C2 C3 C4 C5 C6 C7 C8 
C1 0.849 0.928 0.911 0.932 0.701 0.91 0.965 1.019 
C2 0.968 0.807 0.908 0.926 0.704 0.911 0.957 1.009 
C3   0.78 0.912 0.674 0.91 0.962 1.007 
C4    0.786 0.679 0.885 0.94 1.002 
C5     0.491 0.709 0.769 0.862 
C6      0.753 0.914 0.966 
C7       0.869 1.052 
C8        0.906 
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Machine  
Number C1 C2 C3 C4 C5 C6 C7 C8 

Machine17 0.0403 0.0321 0.0323 0.0328 0.0031 0.0031 0.0029 0.0295 
Machine18 0.0263 0.0343 0.0345 0.0345 0.0030 0.0031 0.0029 0.0294 
Machine19 0.0225 0.0259 0.0260 0.0262 0.0026 0.0031 0.0029 0.0249 
Machine20 0.0190 0.0364 0.0366 0.0369 0.0022 0.0031 0.0029 0.0210 
Machine21 0.0420 0.0415 0.0408 0.0414 0.0032 0.0030 0.0030 0.0307 
Machine22 0.0286 0.0345 0.0347 0.0352 0.0033 0.0031 0.0029 0.0314 
Machine23 0.0278 0.0319 0.0321 0.0325 0.0032 0.0031 0.0029 0.0307 
Machine24 0.0278 0.0308 0.0310 0.0311 0.0032 0.0031 0.0029 0.0309 
Machine25 0.0293 0.0348 0.0350 0.0356 0.0033 0.0031 0.0029 0.0321 
Machine26 0.0247 0.0087 0.0087 0.0086 0.0028 0.0031 0.0030 0.0278 
Machine27 0.0278 0.0064 0.0064 0.0069 0.0032 0.0031 0.0027 0.0287 
Machine28 0.0266 0.0096 0.0097 0.0097 0.0030 0.0031 0.0029 0.0297 
Machine29 0.0231 0.0113 0.0114 0.0114 0.0026 0.0031 0.0029 0.0257 
Machine30 0.0299 0.0034 0.0033 0.0033 0.0034 0.0031 0.0030 0.0336 
Machine31 0.0285 0.0273 0.0260 0.0263 0.3117 0.2928 0.3111 0.0301 
Machine32 0.0266 0.0226 0.0223 0.0226 0.2935 0.3080 0.2955 0.0284 
Machine33 0.0269 0.0157 0.0152 0.0158 0.3051 0.3072 0.2954 0.0294 

𝐸𝐸𝑖𝑖 0.1052 0.1016 0.1015 0.1012 0.0487 0.0490 0.0496 0.1051 
𝑑𝑑𝑖𝑖 0.8948 0.8984 0.8985 0.8988 0.9513 0.9510 0.9504 0.8949 
𝑤𝑤𝑖𝑖  0.1219 0.1224 0.1224 0.1225 0.1296 0.1296 0.1295 0.1220 
𝜆𝜆𝑖𝑖 0.1090 0.1260 0.1350 0.1390 0.1190 0.1170 0.1010 0.1510 

𝑤𝑤𝑖𝑖 ∗ 𝜆𝜆𝑖𝑖 0.0133 0.0154 0.0165 0.0170 0.0154 0.0152 0.0131 0.0184 
𝑊𝑊𝑖𝑖 0.1069 0.1240 0.1329 0.1369 0.1241 0.1219 0.1052 0.1481 

 
VIKOR ranking 

Table 13 shows the decision matrix in 
VIKOR method. This table has been 
compiled based on the classified information 
contained in the archived documents of a 

large automotive spare parts plant in the 
period from April 2020 to April 2022. In this 
table, Machine operation time is a negative 
criteria and other criteria are positive. 

 
Table 13. 
Decision matrix in VIKOR method 

Machine  
Number C1 C2 C3 C4 C5 C6 C7 C8 

Machine1 18960 10308 10289 10200 73.15 99.80 101.10 73.79 
Machine2 12960 9461 9461 9500 50.00 100.00 99.60 49.79 
Machine3 18920 18658 18651 18600 72.99 100.00 100.30 73.19 
Machine4 16560 1704 1704 1700 63.89 100.00 100.20 64.04 
Machine5 25860 13225 13197 13200 66.51 99.80 100.20 66.5 
Machine6 28746 11294 11007 11000 73.94 97.50 102.70 73.98 
Machine7 24425 10781 10773 10800 62.82 99.90 99.82 62.66 
Machine8 25800 7682 7669 7700 66.36 99.80 99.80 66.09 
Machine9 18960 17464 17464 17500 73.15 100.00 99.80 73 

Machine10 19960 9129 9129 9100 77.01 100.00 100.30 77.25 
Machine11 25620 5424 5357 2000 65.90 58.70 456.50 176.5 
Machine12 25860 6414 6124 6200 66.51 95.50 103.50 65.7 
Machine13 26215 11055 11041 11000 67.43 99.90 100.50 67.68 
Machine14 31650 12175 12111 12200 81.40 99.50 99.80 80.81 
Machine15 18480 8217 8217 8200 71.30 100.00 100.20 71.44 
Machine16 16880 21759 21736 21700 65.12 99.90 100.30 65.23 
Machine17 27500 9470 9470 9500 70.73 100.00 99.70 70.51 
Machine18 17960 10117 10117 10000 69.29 100.00 101.20 70.1 
Machine19 15360 7630 7630 7600 59.26 100.00 100.40 59.49 
Machine20 12960 10729 10729 10700 50.00 100.00 100.30 50.14 
Machine21 28620 12247 11949 12000 73.61 97.60 102.10 73.3 
Machine22 19480 10167 10162 10200 75.15 100.00 99.70 74.87 
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Machine  
Number C1 C2 C3 C4 C5 C6 C7 C8 

Machine23 18960 9413 9413 9400 73.15 100.00 100.10 73.25 
Machine24 18960 9087 9081 9000 73.15 99.90 101.00 73.81 
Machine25 19960 10260 10260 10300 77.01 100.00 99.60 76.71 
Machine26 16840 2554 2553 2500 64.97 100.00 102.20 66.35 
Machine27 18960 1875 1875 2000 73.15 100.00 93.80 68.58 
Machine28 18160 2832 2829 2800 70.06 99.90 101.10 70.79 
Machine29 15760 3329 3329 3300 60.80 100.00 100.90 61.34 
Machine30 20400 989 969 950 78.70 98.00 104.10 80.28 
Machine31 19422.00 8054.33 7613.00 7616.67 71.80 93.73 107.00 71.77 
Machine32 18109.17 6652.00 6541.17 6533.33 67.62 98.57 101.63 67.71 
Machine33 18344.17 4630.33 4461.33 4583.33 70.27 98.32 101.60 70.12 

 
According to table 14, Si and Ri criteria are calculated using VIKOR method.  

 
Table 14. 
Values of 𝑆𝑆𝑖𝑖 and 𝑅𝑅𝑖𝑖  

Machine 
Number 𝑆𝑆𝑖𝑖 𝑅𝑅𝑖𝑖 

Machine 
Number 𝑆𝑆𝑖𝑖 𝑅𝑅𝑖𝑖 

Machine1 0.7603 0.1237 Machine18 0.7740 0.1243 
Machine2 0.8381 0.1481 Machine19 0.8480 0.1367 
Machine3 0.6024 0.1237 Machine20 0.8140 0.1477 
Machine4 0.9480 0.1320 Machine21 0.6716 0.1236 
Machine5 0.6737 0.1285 Machine22 0.7577 0.1236 
Machine6 0.6884 0.1236 Machine23 0.7772 0.1237 
Machine7 0.7324 0.1330 Machine24 0.7832 0.1237 
Machine8 0.7793 0.1290 Machine25 0.7509 0.1236 
Machine9 0.6244 0.1237 Machine26 0.9279 0.1287 

Machine10 0.7722 0.1236 Machine27 0.9248 0.1300 
Machine11 0.7142 0.1300 Machine28 0.9097 0.1247 
Machine12 0.8068 0.1295 Machine29 0.9251 0.1346 
Machine13 0.7115 0.1272 Machine30 0.9207 0.1369 
Machine14 0.6434 0.1235 Machine31 0.4635 0.1224 
Machine15 0.8048 0.1237 Machine32 0.5047 0.1271 
Machine16 0.5648 0.1300 Machine33 0.5345 0.1243 
Machine17 0.7302 0.1239    

 
According to Table 15 and consider value 

of 𝑆𝑆∗ = 0.463, 𝑆𝑆− = 0.948, 𝑅𝑅∗ = 0.122, 
and 𝑅𝑅− = 0.1, VIKOR index 𝑄𝑄𝑖𝑖 is calculated.  

 
Table 15. 
VIKOR index Qi 

Machine 
Number 𝑸𝑸𝒊𝒊 

Machine 
Number 𝑸𝑸𝒊𝒊 

Machine1 0.3308 Machine18 0.3584 
Machine2 0.8865 Machine19 0.6762 
Machine3 0.1680 Machine20 0.8538 
Machine4 0.6863 Machine21 0.2391 
Machine5 0.3368 Machine22 0.3275 
Machine6 0.2563 Machine23 0.3482 
Machine7 0.4847 Machine24 0.3545 
Machine8 0.4551 Machine25 0.3199 

Machine 
Number 𝑸𝑸𝒊𝒊 

Machine 
Number 𝑸𝑸𝒊𝒊 

Machine9 0.1906 Machine26 0.6025 
Machine10 0.3418 Machine27 0.6238 
Machine11 0.4064 Machine28 0.5054 
Machine12 0.4923 Machine29 0.7136 
Machine13 0.3490 Machine30 0.7544 
Machine14 0.2074 Machine31 0.0000 
Machine15 0.3774 Machine32 0.1349 
Machine16 0.2533 Machine33 0.1108 
Machine17 0.3039   

 
According to table 16 and VIKOR index, 
general and separate prioritization is 
determined for each of machines.  
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Table 16. 
Prioritization of machines 

Machine 
Number 𝑄𝑄𝑖𝑖 

General 
priority 

Separate 
Priority 

Machine 
Number 𝑄𝑄𝑖𝑖 

General 
priority 

Separate 
Priority 

Machine1 0.3308 13 10 Machine18 0.3584 19 16 
Machine2 0.8865 33 30 Machine19 0.6762 28 25 
Machine3 0.1680 4 1 Machine20 0.8538 32 29 
Machine4 0.6863 29 26 Machine21 0.2391 7 4 
Machine5 0.3368 14 11 Machine22 0.3275 12 9 
Machine6 0.2563 9 6 Machine23 0.3482 17 14 
Machine7 0.4847 23 20 Machine24 0.3545 18 15 
Machine8 0.4551 22 19 Machine25 0.3199 11 8 
Machine9 0.1906 5 2 Machine26 0.6025 26 23 

Machine10 0.3418 15 12 Machine27 0.6238 27 24 
Machine11 0.4064 21 18 Machine28 0.5054 25 22 
Machine12 0.4923 24 21 Machine29 0.7136 30 27 
Machine13 0.3490 16 13 Machine30 0.7544 31 28 
Machine14 0.2074 6 3 Machine31 0.0000 1 1 
Machine15 0.3774 20 17 Machine32 0.1349 3 3 
Machine16 0.2533 8 5 Machine33 0.1108 2 2 
Machine17 0.3039 10 7     

 
According to prioritization, the most 

critical machine in the category of automatic 
lathe machines is Machine3, and the ordinary 
lathe machines is Machine31. Based on the 
results obtained, this prioritization has a high 
level of conformity with the views of experts 
and the decision-making team because, in 
practice, the selected critical machine is one 
of the sensitive and expensive machines in 
the plant, and replacing it is impossible to 
sustain the production process. This 
underscores the importance of selecting 
optimal maintenance and repair strategies for 
the equipment of this plant. 
 
Sensitivity Analysis 

By changing value of weight parameter of 
criteria the alternatives are re-prioritized. For 

this purpose, the obtained combined weight 
is replaced by calculated weights of ANP and 
Shannon Entropy method. Therefore, by 
using each of the weights for criteria, a 
separate prioritization has been determined 
using VIKOR method. Finally, the overall 
ranking is calculated using the average ranks. 
It should be noted that the alternative that has 
the lowest average in the ranks is given 
higher priority. Based on this, Machine31, 
Machine33, and Machine32 are placed in the 
first, second, and third priorities respectively. 
According to table 17 and diagram 2, the 
change in the weight of criteria affects the 
individual prioritization of machines and 
does not affect the overall prioritization. 

 
Table 17. 
Changing the criteria weights and re-prioritization of machines 

Machine 
Number 

𝑸𝑸𝒊𝒊 Rank 

Hybrid ANP Shannon 
Entropy Hybrid ANP Shannon

Entropy 
Rank 

average 
Final 

Ranking 
Machine1 0.330838 0.358668 0.82506 13 13 17 14.33333 14 
Machine2 0.886533 0.882092 0.902838 33 33 26 30.66667 33 
Machine3 0.167972 0.200148 0.682204 4 3 5 4 4 
Machine4 0.686265 0.738937 0.996903 29 29 33 30.33333 30 
Machine5 0.33677 0.399044 0.737927 14 17 9 13.33333 12 
Machine6 0.256325 0.27768 0.748194 9 8 10 9 9 
Machine7 0.484705 0.532482 0.792393 23 23 14 20 21 
Machine8 0.455076 0.519949 0.833708 22 22 18 20.66667 22 
Machine9 0.190602 0.227232 0.702177 5 6 6 5.666667 6 

Machine10 0.341812 0.312218 0.835296 15 11 19 15 15 
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Machine 
Number 

𝑸𝑸𝒊𝒊 Rank 

Hybrid ANP Shannon 
Entropy Hybrid ANP Shannon

Entropy 
Rank 

average 
Final 

Ranking 
Machine11 0.406396 0.455636 0.78975 21 21 13 18.33333 19 
Machine12 0.492311 0.556606 0.857623 24 24 23 23.66667 24 
Machine13 0.348982 0.418048 0.771873 17 18 11 15.33333 16 
Machine14 0.207403 0.17247 0.705653 6 2 7 5 5 
Machine15 0.377362 0.449498 0.865835 20 20 24 21.33333 23 
Machine16 0.253334 0.305677 0.64952 8 10 4 7.333333 7 
Machine17 0.303916 0.386249 0.787875 10 15 12 12.33333 11 
Machine18 0.358379 0.440973 0.838116 19 19 20 19.33333 20 
Machine19 0.676158 0.714979 0.907322 28 28 27 27.66667 26 
Machine20 0.853781 0.849885 0.881102 32 32 25 29.66667 29 
Machine21 0.239107 0.272113 0.733184 7 7 8 7.333333 7 
Machine22 0.327474 0.336069 0.822566 12 12 16 13.33333 12 
Machine23 0.348246 0.386676 0.840514 16 16 21 17.66667 17 
Machine24 0.354489 0.382909 0.845851 18 14 22 18 18 
Machine25 0.319858 0.295071 0.816126 11 9 15 11.66667 10 
Machine26 0.602522 0.674987 0.978187 26 26 32 28 27 
Machine27 0.623771 0.682375 0.975043 27 27 30 28 27 
Machine28 0.505416 0.583759 0.960936 25 25 28 26 25 
Machine29 0.713644 0.76386 0.976613 30 30 31 30.33333 30 
Machine30 0.754432 0.786056 0.968877 31 31 29 30.33333 30 
Machine31 0 0.097321 0 1 1 1 1 1 
Machine32 0.134885 0.215618 0.107977 3 5 3 3.666667 3 
Machine33 0.110838 0.203723 0.09424 2 4 2 2.666667 2 

 
The results of sensitivity analysis implementation is shown in diagram 2. 

 
Diagram 2. The results of sensitivity analysis 

 
Conclusion 

The Industry 4.0 refers to a new concept of 
industrial and technological advancements in 
the modern world. Ensuring system safety 
and reliability is increasingly becoming a 
fundamental issue in the digital 
transformation paradigm, also known as 
Industry 4.0, with the introduction of new 
technologies and the growth of system 

complexity. In fact, the concern about 
reliability and safety is developing in various 
industries, which plays an important role in 
meeting demand and increasing productivity 
and availability at the lowest possible cost 
and with the least unexpected breakdowns. In 
order to identify and mitigate process 
bottlenecks, proactive approaches to 
reliability and safety analysis are critical in 
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high-risk sectors. As part of the efforts to 
development of operational strategies in the 
fourth industrial revolution is prioritization 
of machinery based on comprehensive 
analysis of maintenance risks and operational 
repairs. Based on this, in this paper, a 
combination of DEMATEL, ANP and 
Shannon entropy and VIKOR methods with 
fuzzy features in cellular production systems 
is presented, considering effective criteria for 
reliability in Industry 4.0. Based on the 
results, the implementation of this method 
can contain valuable knowledge for 
continuous improvement of maintenance, 
productivity, increasing the level of 
equipment availability and increasing 
efficiency by monitoring equipment 
performance for maintenance managers. The 
presented method provides additional 
information for decision-making, enabling 
the most critical machine selection in 
Cellular Manufacturing Systems. As 
suggestions for future research to optimize 
machine performance in Industry 4.0, 
determining critical machine failures, 
prioritizing critical machine failures, 
identifying the most critical failures, and 
investigating the causes of these failures can 
be considered. Also, solutions can be 
explored to reduce or eliminate identified 
critical machine failures. 
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