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 Image performance often faces jeopardization due to the presence of 
undesired noise. Among the various forms of noise contamination, impulse 
noise remains a significant concern for digital images. Two primary categories 
of impulse noise are recognized: salt and pepper noise, and random valued 
noise. Salt and pepper noise perturbs images by causing individual corrupted 
pixels to adopt either the maximum or minimum gray level value. This study 
presents a novel approach for the identification and restoration of Salt and 
Pepper Image Impulse Noises, employing a three-tiered framework utilizing 
distinct Trained Artificial Neural Networks (ANNs). The core concept revolves 
around the training of two separate ANNs designed for the tasks of noise 
detection and subsequent restoration within digital images. The noise 
detection phase addresses two distinct categories of salt and pepper noises: 
White Range Noises and Black Range Noises. The initial artificial neural 
network (ANN-I) is dedicated to the identification of white range noises 
within images afflicted by salt and pepper noise. Subsequently, the second 
trained artificial neural network (ANN-II) is employed for the restoration of 
the previously detected white range noises. In the final stage, attention is 
directed toward detecting remaining black range noises and their subsequent 
restoration through the utilization of ANN-II, which has been specifically 
trained to rectify damaged pixels. To evaluate the efficacy of the proposed 
algorithm, two critical performance metrics are employed: Peak Signal-to-
Noise Ratio (PSNR) and Mean Square Error (MSE). These metrics are 
computed and subsequently compared against those produced by 
established filters for a variety of test cases. 
Index Terms—Impulse Noise, Image Processing, Neural Networks, Salt and 

Pepper Noise. 
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Introduction 

Image performance often faces jeopardization due to 
the presence of undesired noise. Among the various 
forms of noise contamination, impulse noise remains a 
significant concern for digital images. Impulse noise 
artifacts emerge during image transmission due to 
factors such as sensor inaccuracies and electrical 
interferences [1]. Two primary categories of impulse 
noise are recognized: salt and pepper noise, and random 
valued noise. Salt and pepper noise perturbs images by 
causing individual corrupted pixels to adopt either the 
maximum or minimum gray level value. To mitigate the 

effects of salt and pepper noise, several nonlinear 
filtering approaches have been proposed for image 
restoration. Addressing impulse noise is essential in 
numerous image-centric applications to enhance 
decision-making accuracy within systems [2,22]. Salt and 
pepper noise, attributed to data transmission anomalies, 
constitutes one of the most prevalent types of noise 
[2,22]. 
 
Numerous algorithms have been developed for impulse 
noise removal, including the Median Filter, Adaptive 
Median Filter [3], Rank Order based Adaptive Median 
Filter (RAMF), Switching Median Filter (SMF), Decision-
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based Filter (DBF), and Hybrid Median Filter (HMF) [4]. 
These algorithms primarily focus on neighboring pixel 
computations and exert an impact on all pixels within 
the digital image [5,20]. However, this global approach 
often results in blurring and reduced image quality, as 
many regions of the image may remain noise-free [4]. In 
recent years, artificial neural networks (ANNs) have 
garnered substantial attention in addressing such noise-
related challenges [8]. ANNs not only possess the 
capability to identify noise within images but also exhibit 
the potential to restore damaged noisy pixels based on 
their training [6]. The proposed approach ensures that 
regions containing uncorrupted pixels remain 
unaffected, presenting a distinct advantage for impulse 
noise mitigation systems. 
 
A recent development involves the introduction of an 
impulse noise detector based on the Rank Ordered 
Absolute Differences (ROAD) statistic [7]. This detector 
utilizes the ROAD factor to infer the presence of 
corruption, whereby higher ROAD values indicate 
corrupted pixels, while lower values indicate 
uncorrupted pixels. In recent years, advanced 
computational techniques have been harnessed to 
address image filtering through a nonlinear lens. 
Consequently, artificial neural networks are emerging as 
promising candidates due to their remarkable 
performance in tackling various image processing 
challenges. 

 
Notably, G. Kaliraj et al. [11] have advocated for ANN 
deployment in noise detection, while employing mean-
based algorithms for noise removal through pixel value 
estimation. Furthermore, P. Luiz has proposed an 
innovative concept involving neural networks for the 
recovery of salt and pepper noisy images [1]. However, 
amalgamating the treatment of the two distinct forms of 
salt and pepper noise could potentially lead to the 
oversight of crucial noise constituents during the 
recovery process. 
In recent investigations concerning the application of 

neural networks for impulse noise mitigation, 

conventional methodologies uniformly process all noisy 

pixels. However, the present study introduces a novel 

approach wherein noisy pixels are systematically 

categorized. This categorization facilitates the 

application of distinct noise removal neural network 

strategies tailored to each subset of noisy pixels, leading 

to observable enhancements in the final denoising 

outcomes [24]. 

Our proposed technique for addressing salt and pepper 

noise perturbations entails a systematic classification of 

noisy pixels. Subsequently, a tandem of artificial neural 

networks is deployed for the purposes of noise detection 

and subsequent removal from image data. The efficacy 

of this approach is gauged through the computation of 

peak signal-to-noise ratio (PSNR) and mean squared 

error (MSE) metrics for the resultant denoised images. 

Comparative evaluations are conducted against 

established methodologies. The central premise of this 

study revolves around the innovation of novel artificial 

neural network methodologies aimed at restoring noisy 

images, while deliberately abstaining from any 

alterations to intact pixels. This approach is designed to 

avert the generation of degraded or blurred images 

during the image restoration process. 

 

Definitions 

A.  Salt and Pepper Noise 
      Salt and Pepper noise constitutes a prevalent type of 

noise encountered in images, manifesting as sporadically 

positioned white and black pixels. The extent of noise 

prevalence determines the proportion of pixels that 

undergo alteration [7]. For instance, in a 256 × 256 pixel 

image, a 50% noise level implies that 32,768 pixels are 

susceptible to being randomly altered to either white or 

black with equal likelihood [9]. The application of Salt 

and Pepper noise serves to replicate defects arising from 

sources such as charge-coupled devices (CCDs) or image 

transmission anomalies [10]. An illustrative depiction of 

Salt and Pepper noise is presented in Figure 1, 

showcasing an example of its presence on the Lena 

image [13, 19].    

 

 
Fig 1: Lena Image (a) Original. (b) with 20% salt  

and pepper noise 

 

The proposed method categorizes noises in two 

categories white range noises and black range noises. In 

this paper, white noises are noisy pixel in range of 200-

255 (Gray scale) and black noises are in range of 0-10 

(Gray scale). 
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Table 1: Impulse Noises Categorization 

Pixel Color Scale Range Group 

Gray Scale (0-10) Black Range 

Gray Scale (200-255) White Range 

 

B.  Artificial Neural Networks 

ANNs are flexible, nonparametric modeling tools. 

They can perform any complex function mapping with 

arbitrarily desired accuracy. An ANN is typically 

composed of several layers of many computing elements 

called nodes. Each node receives an input signal from 

other nodes or external inputs and then after processing 

the signals locally through a transfer function, it outputs 

a transformed signal to other nodes or final result. ANNs 

are characterized by the network architecture, that is, 

the number of layers, the number of nodes in each layer 

and how the nodes are connected. In a popular form of 

ANN called the multi-layer perceptron (MLP), all nodes 

and layers are arranged in a feed forward manner. The 

first or the lowest layer is called the input layer where 

external information is received [21,22,23]. The last or 

the highest layer is called the output layer where the 

network produces the model solution. In between, there 

are one or more hidden layers which are critical for 

ANNs to identify the complex patterns in the data [7]. 

Through empirical investigation, the optimal 

configuration for the initial artificial neural network 

(ANN-I) was determined to be a 3-16-3-1 feedforward 

Multi-Layer Perceptron (MLP) architecture. This 

architecture encompasses two hidden layers, with the 

input layer comprising 3 nodes, the output layer 

consisting of 1 node, the first hidden layer incorporating 

16 nodes, and the second hidden layer accommodating 3 

nodes. The architectural depiction of ANN-I is illustrated 

in Figure 2. 

 
 

Fig. 2:  Architecture of ANN-I 

 
 The structure of ANN-II is different from ANN-I, ANN-II is 

developed to recover the noisy pixels detected by ANN-I. 

Later it will be proven why the difference in structure of 

these two ANNs is needed (Section 3). Figure 3 shows 

the structure of ANN-II. 

 

 
Fig 3:  Structure of ANN-II. 
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The proposed approach encompasses a sequence of 

seven primary phases. Initially, the method ingests the 

noisy image as its input. Subsequently, the method 

invokes ANN-I on the noisy input image to identify and 

isolate regions containing white range noisy pixels. In the 

third phase, ANN-II comes into play, facilitating the 

restoration of the marked white noisy pixels, effectively 

replacing them with accurately trained pixel values. 

ANN-II is trained to reconstitute noisy pixels, ensuring 

their alignment with suitable trained counterparts. 

Progressing to the fourth phase, the algorithm 

commences the identification of black range noisy pixel 

clusters. The fifth phase involves the utilization of ANN-II 

on the images marred by black noise, resulting in the 

replacement of these pixels with appropriate values. The 

ultimate output materializes in the form of a 

rejuvenated image. The progression of these stages is 

visually outlined in Figure 4, highlighting the delineation 

of the proposed approach. In subsequent sections, each 

of these steps will be elucidated in meticulous detail. 

 

C.  White Range Noise Detection (ANN-I) 

The ANN-I is responsible for detecting the white range 

noises. ANN-I must be trained to take a noisy digital 

image as an input and specify the white noisy pixels. 

 In this paper three important and popular factors which 

have the most impacts on noise detection for a pixel 

considered and given to the ANN-I to be trained. The 

factors are as follows: 

1. ROAD Factor 

2. Median of Neighbor Pixels 

3. X (Center Pixel) 

4. Calculate the differences between center pixel and it 

is related neighbors.  

                      

5. Sort  d(n) as increasing order.

 6. Sum up first four sorted numbers. 

                      

ROAD Factor  

The ROAD factor is a very useful factor to distinguish 

corrupted and uncorrupted pixels [11]. ROAD factor is 

high for noisy pixels, and low for uncorrupted pixels [16]. 

The ROAD factor calculation process is simple, according 

to the Figure 5:  

 

Fig. 4:  The Proposed Method. 

 

Median of Neighbor Pixels  

The median is calculated by sorting all the pixel values 

from the surrounding neighborhood into numerical 

order and then replacing the pixel being considered with 

the middle pixel  value [12,13]. (If the neighborhood 

under consideration contains an even number of pixels, 

the average of the two middle pixel values is used) [14]. 

 

The training of ANN-I constitutes a pivotal facet within 

this neural network paradigm, with its training 

procedure devised for practical applicability across a 

diverse range of images exhibiting a grayscale color 

spectrum [2, 3]. The training process for ANN-I unfolds 

as follows: 

 

( ) | |id n CenterPixel X 

1 2 3 4ROAD Factor d d d d    
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Fig. 5: Center Pixel and 8 Neighbors. 

 
1. The original image (depicted in Figure 6.a) 

undergoes corruption by a 40% proportion of salt and 

pepper noise (Figure 6.b). 

2. The Difference Image, delineating the variance 

between the noisy image and the original image, is 

computed (Figure 6.c). 

3. The input for ANN-I comprises the median factor 

and center pixel derived from the noisy image. 

4. The target output for ANN-I corresponds to the 

central pixel found in the Difference Image. 

 
Following this iterative training process, ANN-I 

becomes adept at predicting specific pixels, while 

considering the median and road factors of their 

neighbors as input. Moreover, the network learns to 

forecast the dissimilarities between the original image 

and the noise-affected counterpart. Consequently, when 

the output of ANN-I approximates zero, it suggests that 

the pixel under consideration is devoid of noise, as the 

difference between this pixel and its counterpart in the 

noisy image is negligible. Conversely, elevated output 

values imply the presence of noise around the pixel in 

question. 

 
The ANN-I architecture utilized for noise detection 

adopts a feed-forward Multi-Layer Perceptron (MLP) 

structure denoted as 3-16-1. Within this configuration, 

hyperbolic tangent (Tansig) activation functions are 

allocated to the hidden and output layers. For the 

purpose of training, the back propagation algorithm is 

employed over a maximum of 1000 iterations, with a 

learning rate of 0.01 and a tolerance error of 0.0001. 

Referencing Figure 6 provides a visual representation of 

the ANN-I structure employed in this research. 

 

  
Fig. 6: (a) Original training image (b) Original image corrupted 

by 40% noise (c) Difference image. 

 
Fig. 7: Training ANN-I with Three Inputs, ROAD Factor, Center Pixel and Median of Neighbors. 

D.  Recovering White Range Noises by ANN-II 

Utilized for the rectification of previously identified 

noisy pixels, ANN-II assumes the task of amending these 

pixels to their original undamaged states, a role initially 

identified by the noise detector, ANN-I. The operation of 

ANN-II draws on three pivotal features, which are 

integral to its training process within this study. These 

encompass the central pixel, its eight neighboring pixels, 

and the median factor of these neighbors. Employing a 

diverse array of images spanning the entire grayscale 

spectrum for input, with the corresponding salt and 

pepper noisy counterparts as targets, the ANN-II is 

subjected to training. Following the training phase, the 

ANN-II effectively approximates the appropriate pixel 

value from the input data. 

The structure of the ANN-II employed in this research 

consists of three layers. The input layer comprises 10 

neurons, each representing a specific pixel within the 

noisy neighborhood, while the output layer 

encompasses a solitary neuron assigned to the newly 

estimated value. The intermediate hidden layer houses 
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32 neurons. Consequently, the optimal architecture for 

ANN-II, delivering the most favorable performance in 

estimating the values of noisy pixels, adopts the 

configuration 10-32-1. Activation functions applied to 

the layers are sigmoid (logsig) for the input and hidden 

layers, and linear (purelin) for the output layer. Training 

of the ANN-II is executed utilizing the back-propagation 

algorithm over a maximum of 1000 iterations, with a 

learning rate of 0.27 and a desired error threshold of 

0.000001. For a visual representation, refer to Figure 8 

illustrating the architecture of the ANN-II featured in this 

study. 

 

 

 
Fig. 8 Training ANN-II  With Ten Inputs. 

 

 
Fig 9: (a)  removed noised by proposed approach, (b) The 

original noisy image. 

 

E.  Black Range Noise Detection 

The culmination of the preceding steps yields an 

image largely devoid of conspicuous white noise 

distortions. Subsequently, the focus shifts towards the 

restoration of black noise artifacts. These black noise 

elements correspond to pixels residing within the 

intensity range of 0 to 10. The algorithm undertakes an 

evaluation of such pixels, and when identified, replaces 

them with new values drawn from the output of ANN-II. 

It is noteworthy that although a subset of pixels within 

the 0 to 10 intensity range may not inherently qualify as 

black noise, this dynamic does not significantly impede 

the overarching functionality of ANN-II. This is since the 

correct pixels are aptly substituted with the appropriate 

pixel values as provided by ANN-II. 

During this phase, the input comprises black pixels 

extracted from the partially restored image, and the 

resultant image forms the definitive and fully recovered 

iteration. The process of detecting and restoring black 

range noise elements is illustrated in Figure 10, outlining 

the sequential procedure in question. 

 

 
Fig. 10: (a) Black noises detection process. 

 

Experimental Results 

To facilitate result comparison, two pivotal metrics 

are computed for each restored image: X is the original 

image and Y is the recovered one [15]. 
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                                         (2) 
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The higher MSE means less accurate recovery and the 

higher PSNR means much better recovery [16]. Figure 10 

shows the variations of the average PSNR values of the 

operators as a function of noise density. 

 

 
Fig. 11: (a) Noisy image (30%) (b) Restored image by Median 

Filter. 

 

 
Fig. 12: (a) Noisy image (30%) (b) Restored image by 

Proposed Algorithm 

 

Fig. 13:PSNR of Different Algorithms vs. Prop (Proposed 

Method) on our Tested Data Set. 

 

The experimental images utilized within this study are 

generated by introducing impulse noise to the original 

images at an appropriate noise density. In a comparative 

context, the distorted experimental images are 

subjected to restoration using several established 

impulse noise removal techniques, including the median 

filter (MF) [15], the progressive switching median filter 

(PSMF) [16], the modified peak and valley filter (MPVF), 

the two-output nonlinear filter (TONF) [17], the 

Threshold Boolean filter (TBF), Yuksel's approach [12], 

the adaptive fuzzy switching filter (AFSF) [3,12], the 

recent NNBID method [18] and Window of Neighbors 

(WN) [25]. The outcomes of these established methods 

are juxtaposed with the outcomes of our proposed 

algorithm. The alteration trends of Peak Signal-to-Noise 

Ratio (PSNR) for the compared methods are illustrated in 

Figure 13. Notably, our proposed approach 

demonstrates significantly enhanced PSNR values 

compared to the other widely recognized methods, 

particularly in scenarios featuring high levels of noise. 

 
Table 2: Mean Squared Error Comparison Using Averages 

Noise Ours WN NNB YUK TONF MPVF ASFS TBF PSMF 

5% 12.24 11.21 5.68 19.44 21.22 30.11 43.13 45.58 58.56 

10% 15.69 16.71 11.47 30.32 32.57 44.14 60.65 63.80 80.88 

15% 17.57 36.9 25.16 48.06 72.25 82.38 82.36 86.26 108.10 

20% 19.99 38.4 33.97 62.78 66.50 85.06 100.4 105.6 136.28 

30% 24.14 41.25 38.58 107.36 114.24 143.16 166.28 173.31 199.91 

Average (5-90%) 33.07 37.89 63.78 480.39 521.18 631.68 666.98 681.55 676.92 

 
 

Conclusions 

This study has elucidated the pivotal significance of 

artificial neural networks in the realm of image 

processing. Upon revisiting the algorithms introduced at 

the study's outset, it becomes evident that the three-

stage impulse noise restoration strategy yielded superior 

outcomes across the spectrum of (15 − 100)% noise 

levels, when compared to alternative methodologies. An 
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eminent revelation stemming from this investigation 

underscores that the employment of artificial neural 

networks in such problem domains yields enhanced 

outcomes due to the intrinsic nature of these challenges, 

which entail learning over time and instances. 

Furthermore, the systematic categorization and 

individualized processing of noise constituents 

circumvent pitfalls associated with overgeneralization 

Our devised approach exhibited enhanced precision 

within the realms of Medium and High noise intensities. 

The partitioning of noisy pixels into categories and their 

subsequent distinct processing strategies demonstrated 

pronounced efficacy in contrast to uniform treatment of 

all pixels. 

Future Works 

The present study was not primarily structured to 

elements pertinent to extremely high-resolution images. 

The time-consuming nature of training neural networks 

is further exacerbated when dealing with high-resolution 

imagery due to increased computational costs. The 

aspect of time constraints presents an interesting 

avenue for potential exploration in future research 

endeavors. Similarly, the notion of developing a feature 

selection mechanism in scenarios where numerous 

features are at the network's disposal also presents an 

intriguing prospect for further investigation 
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