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Abstract. Picture fuzzy set (PFS) is a novel concept for dealing with uncertainty and a generalization of the
traditional fuzzy set (FS) and intuitionistic fuzzy set (IFS) and can easily manage the uncertain nature of human
thoughts by incorporating the positive, neutral, negative and refusal membership degrees of an object. Many
conceptual ideas on PFSs have been developed so far and applied in diversified fields. In this paper, the concept
of picture fuzzy sublattices and picture fuzzy ideals are developed and some of their associated properties are
established in detail. Moreover, the sum and product of two picture fuzzy ideals are introduced with their properties.
Finally, some properties of picture fuzzy ideals under lattice homomorphism are explored.
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1 Introduction

In this era of globalization, we are to deal with numerous sorts of data for research and innovation in almost
all the fields. In real life application, researchers faced many difficulties in conducting many data which are
vague than exact. Fuzzy set theory introduced by Zadeh [1] is a generalization of the crisp set theory to handle
the uncertain and vague information. A fuzzy set which is expressed by a membership function allows a mem-
bership degree for every element of the universal set. The non-membership degree is the direct complement
of the membership degree. However, in many researches it is found that, this linguistic negation does not
satisfy the logical negation always in the real life applications. Because while selecting the membership degree
for an object (element), there may be some kinds of hesitation while defining the membership function, as
membership function may be Gaussian, triangular, exponential or any other membership functions. So, due
to this hesitation, the non-membership degree is less than or equal to the complement of the membership de-
gree. This is the reason why different results are obtained with different membership functions. To overcome
this situation, after about two decades, in 1986, Atanassov K.T. [2] suggested the concept of intuitionistic
fuzzy set, where the non-membership degree is not equal to the complement of the membership degree due
to the fact that some kinds of hesitations or lack of knowledge is present while defining the membership
function. So the intuitionistic fuzzy set theory is an important generalization of fuzzy set theory, where the
membership degree and the non-membership degree separately in such a way that, sum of the two degrees
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must not exceed 1. The subtraction of the sum of the membership and non-membership degrees from one
is considered the hesitation degree of that element. But in this extension, the degree of neutrality arose a
problem in decision making. To overcome this situation, Cuong and Kreinovich [3, 4] introduced the notion
of PFS where the hesitation degree is divided into two parts such as neutral degree and refusal degree. Hasan
et al. developed numerous theoretical concepts in picture fuzzy sets such as minimal and average extension
principles, minimal decomposition theorems, compositions in picture fuzzy relations, arithmetic operations
in picture fuzzy numbers, several types of operators etc. and discussed many applications of these concepts
in real life situations [5–12].

In 1971, Azriel Rosenfeld [13] developed the fundamental theory of fuzzy groups and many researchers
discussed about classical and fuzzy algebraic structures [14–22]. Liu W.J. [16] introduced the notion of
fuzzy subring and Kuroki [23] discussed some properties of fuzzy semigroups in 1991. The idea of fuzzy
sublattices and fuzzy ideals of a lattice were given by Yuan and Wu [24] and applied the concept of fuzzy sets
in lattice theory. The theory of fuzzy lattice ordered ideals was studied in [25]. Ajmal N. and Thomas K.
V. [26,27] established some structural theorems for fuzzy lattices. They also discussed about some properties
and characterizations of a fuzzy sublattice, fuzzy ideal and fuzzy prime ideal including their dual ideals.
Moreover, the idea of fuzzy convex sublattice is introduced by them. The IFSs are used to algebra by
numerous researchers and developed IF subgroups [28] and IF subring [29]. Swamy U. M. [18] introduced
fuzzy ideals on lattices. Tripathy B. K. [30] introduced intuitionistic fuzzy lattices and intuitionistic Boolean
algebras. Bharathi P. [31] introduced the idea of picture fuzzy lattices and ideals under picture fuzzy partial
order relation.

In this paper, the concept of picture fuzzy sublattices and picture fuzzy ideals are established. Also some
properties of picture fuzzy sublattices and picture fuzzy ideals are explored thoroughly. Also, the sum and
product of two picture fuzzy ideals are developed with some of their properties. Finally, some properties of
picture fuzzy ideals under lattice homomorphism are discussed.

2 Preliminaries

Definition 2.1. [1] A fuzzy set A in a non-empty set U is defined as

A = {(a, uA(a)) : a ∈ U}, where uA : U → [0, 1].

Definition 2.2. [32] Let L be a partially ordered set (poset). Then, the algebraic structure (L,∧,∨) is
called a lattice if ∀a, b ∈ L:

a ∧ b ∈ L and a ∨ b ∈ L.

Here, ∧ and ∨ are two binary operations called ”Meet” and ”Join” respectively. We write

a ∧ b = inf{a, b} = min{a, b}, a ∨ b = sup{a, b} = max{a, b}.

Definition 2.3. [32] A lattice (L,∧,∨) is called a distributive lattice if ∀a, b, c ∈ L:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Definition 2.4. [24] A fuzzy set A = {(a, uA(a)) : a ∈ L} on a lattice L is called a fuzzy sublattice of L if
for all a, b ∈ L:

uA(a ∨ b) ≥ min{uA(a), uA(b)},

uA(a ∧ b) ≥ min{uA(a), uA(b)}.
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Definition 2.5. [2] An intuitionistic fuzzy set A in a non-empty set U is defined as

A = {(a, uA(a), vA(a)) : a ∈ U},

where the membership and the non-membership degrees are respectively uA : U → [0, 1] and vA : U → [0, 1],
with 0 ≤ uA(a) + vA(a) ≤ 1, ∀a ∈ U.

Definition 2.6. [25] Let A = {(a, uA(a), vA(a)) : a ∈ X} be an IFS of U . Then

[A] = {(a, uA(a), ucA(a)) : a ∈ U}, where ucA(a) = 1− uA(a)

⟨A⟩ = {(a, vA(a), vcA(a)) : a ∈ U}, where vcA(a) = 1− vA(a)

Definition 2.7. [25] An IFS A = {(a, uA(a), vA(a)) : a ∈ L} on a lattice L is called an intuitionistic fuzzy
sublattice of L if ∀a, b ∈ L:

uA(a ∨ b) ≥ min{uA(a), uA(b)}

uA(a ∧ b) ≥ min{uA(a), uA(b)}

vA(a ∨ b) ≤ max{vA(a), vA(b)}

vA(a ∧ b) ≤ max{vA(a), vA(b)}

Definition 2.8. [25] An IFS A = {(a, uA(a), vA(a)) : a ∈ L} of L is called an intuitionistic fuzzy ideal of L
if ∀a, b ∈ L:

uA(a ∨ b) ≥ min{uA(a), uA(b)}

uA(a ∧ b) ≥ max{uA(a), uA(b)}

vA(a ∨ b) ≤ max{vA(a), vA(b)}

vA(a ∧ b) ≤ min{vA(a), vA(b)}

Definition 2.9. [3, 4] A picture fuzzy set A in U is defined as

A = {(a, uA(a), wA(a), vA(a)) : a ∈ U},

where the positive, neutral, and negative membership degrees are respectively uA : U → [0, 1], wA : U → [0, 1],
and vA : U → [0, 1] with 0 ≤ uA(a) + wA(a) + vA(a) ≤ 1; ∀a ∈ U .

Here, 1− (uA(a) + wA(a) + vA(a)), ∀a ∈ U is the refusal membership degree of a in A.

Definition 2.10. [3, 4] For two PFSs A and B on U :

• A ⊆ B if and only if ∀a ∈ X,uA(a) ≤ uB(a), wA(a) ≤ wB(a), and vA(a) ≥ vB(a);

• A = B if and only if ∀a ∈ X,uA(a) = uB(a), wA(a) = wB(a), and vA(a) = vB(a);

• A ∪B = {(a,max{uA(a), uB(a)},min{wA(a), wB(a)},min{vA(a), vB(a)}) : a ∈ U};

• A ∩B = {(a,min{uA(a), uB(a)},min{wA(a), wB(a)},max{vA(a), vB(a)}) : a ∈ U};

• Ac = {(a, vA(a), wA(a), uA(a)) : a ∈ U}.
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Definition 2.11. [33] For U ̸= ϕ and V ̸= ϕ and a mapping f : U → V , a pair of mappings are defined as
follows:

f : PFS(U) → PFS(V ) and f−1 : PFS(V ) → PFS(U)

defined as:

f(A)(b) = (uf(A)(b), wf(A)(b), vf(A)(b)), where A ∈ PFS(U)

uf(A)(b) =

{
∨{uA(a) : a ∈ f−1(b)} ; f−1(b) ̸= ∅
0 ;Otherwise

wf(A)(b) =

{
∧{wA(a) : a ∈ f−1(b)} ; f−1(b) ̸= ∅
0 ;Otherwise

vf(A)(b) =

{
∧{vA(a) : a ∈ f−1(b)} ; f−1(b) ̸= ∅
0 ;Otherwise

and

f−1(B)(a) = (uf−1(B)(a), wf−1(B)(a), vf−1(B)(a)), where B ∈ PFS(V ) and

uf−1(B)(a) = uB(f(a)), wf−1(B)(a) = wB(f(a)), vf−1(B)(a) = vB(f(a))

3 Picture Fuzzy Lattices and Ideals

Definition 3.1. A PFS A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} on a lattice L is said to be a picture fuzzy
sublattice (PFL) of L if ∀a, b ∈ L:

(i) uA(a ∨ b) ≥ min{uA(a), uA(b)}

(ii) uA(a ∧ b) ≥ min{uA(a), uA(b)}

(iii) wA(a ∨ b) ≥ min{wA(a), wA(b)}

(iv) wA(a ∧ b) ≥ min{wA(a), wA(b)}

(v) vA(a ∨ b) ≤ max{vA(a), vA(b)}

(vi) vA(a ∧ b) ≤ max{vA(a), vA(b)}

Example 1. Consider the lattice L = {1, 2, 3, 6} of ”divisors of 6,” which is represented in the Hasse diagram.
Let A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} be given by

A = {(1, 0.6, 0.2, 0.1), (2, 0.3, 0.1, 0.5), (3, 0.5, 0.2, 0.3), (6, 0.7, 0.0, 0.3)}

Then, A is a PFL of L.

Definition 3.2. A PFS A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} of L is called a picture fuzzy ideal (PFI) of
L if ∀a, b ∈ L:



Picture fuzzy lattices, ideals and homomorphism. Trans. Fuzzy Sets Syst. 2025; 4(2) 5

Figure 1

(i) uA(a ∨ b) ≥ min{uA(a), uA(b)}

(ii) uA(a ∧ b) ≥ max{uA(a), uA(b)}

(iii) wA(a ∨ b) ≥ min{wA(a), wA(b)}

(iv) wA(a ∧ b) ≥ max{wA(a), wA(b)}

(v) vA(a ∨ b) ≤ max{vA(a), vA(b)}

(vi) vA(a ∧ b) ≤ min{vA(a), vA(b)}

Example 2. Let L = {1, 2, 3, 4, 6, 12} of ”factors of 12” which is displayed in the Hasse diagram. Let
A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} be given by

A =



(1, 0.5, 0.1, 0.4),
(2, 0.4, 0.2, 0.4),
(3, 0.7, 0.1, 0.1),
(4, 0.3, 0.2, 0.5),
(6, 0.6, 0.1, 0.2),
(12, 0.4, 0.2, 0.3)


It is clear that A is a PFI of L.

Theorem 3.3. If A and B are two PFLs of L, then A ∩B is also a PFL of L.

Proof. Let A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} and B = {(a, uB(a), wB(a), vB(a)) : a ∈ L} be two PFLs
of L. Then,

A ∩B = {(a,min{uA(a), uB(a)},min{wA(a), wB(a)},max{vA(a), vB(a)}) : a ∈ L}

Now,
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Figure 2

uA∩B(a ∨ b) = min{uA(a ∨ b), uB(a ∨ b)}
≥ min{min{uA(a), uA(b)},min{uB(a), uB(b)}} (As A and B are PFLs of L)

= min{min{uA(a), uB(a)},min{uA(b), uB(b)}}
= min{uA∩B(a), uA∩B(b)}

∴ uA∩B(a ∨ b) ≥ min{uA∩B(a), uA∩B(b)}, ∀a, b ∈ L

and

uA∩B(a ∧ b) = min{uA(a ∧ b), uB(a ∧ b)}
≥ min{min{uA(a), uA(b)},min{uB(a), uB(b)}} (As A and B are PFLs of L)

= min{min{uA(a), uB(a)},min{uA(b), uB(b)}}
= min{uA∩B(a), uA∩B(b)}

∴ uA∩B(a ∧ b) ≥ min{uA∩B(a), uA∩B(b)}, ∀a, b ∈ L

Similarly,

wA∩B(a ∨ b) ≥ min{wA∩B(a), wA∩B(b)}

and

wA∩B(a ∧ b) ≥ min{wA∩B(a), wA∩B(b)}, ∀a, b ∈ L

Again,
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vA∩B(a ∨ b) = max{vA(a ∨ b), vB(a ∨ b)}
≤ max{max{vA(a), vA(b)},max{vB(a), vB(b)}} (As A and B are PFLs of L)

= max{max{vA(a), vB(a)},max{vA(b), vB(b)}}
= max{vA∩B(a), vA∩B(b)}

∴ vA∩B(a ∨ b) ≤ max{vA∩B(a), vA∩B(b)}, ∀a, b ∈ L

and

vA∩B(a ∧ b) = max{vA(a ∧ b), vB(a ∧ b)}
≤ max{max{vA(a), vA(b)},max{vB(a), vB(b)}} (As A and B are PFLs of L)

= max{max{vA(a), vB(a)},max{vA(b), vB(b)}}
= max{vA∩B(a), vA∩B(b)}

∴ vA∩B(a ∧ b) ≤ max{vA∩B(a), vA∩B(b)}, ∀a, b ∈ L

Hence, A ∩B is a PFL of L. □

Theorem 3.4. If A and B are two PFIs of L, then A ∩B is also a PFI of L.

Proof. Proof: Same as Theorem 3.5. □

Definition 3.5. Let A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} be a PFS of L. Then

[A] = {(a, uA(a), wA(a), u
c
A(a)) : a ∈ L}, where ucA(a) = 1− uA(a)

and

⟨A⟩ = {(a, vA(a), wA(a), v
c
A(a)) : a ∈ L}, where vcA(a) = 1− vA(a)

Proposition 3.6. A is a PFL of L if and only if [A] and ⟨A⟩ are PFLs of L.

Proof. First consider A is a PFL of L. We have

[A] = {(a, uA(a), wA(a), u
c
A(a)) : a ∈ L}, where ucA(a) = 1− uA(a)

Then ∀a, b ∈ L;

uA(a ∨ b) ≥ min{uA(a), uA(b)} and uA(a ∧ b) ≥ min{uA(a), uA(b)}, as A is a PFL of L

Now,

ucA(a ∨ b) = 1− uA(a ∨ b)

≤ 1−min{uA(a), uA(b)}
= max{1− uA(a), 1− uA(b)}
= max{ucA(a), ucA(b)}

∴ ucA(a ∨ b) ≤ max{ucA(a), ucA(b)}

and
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ucA(a ∧ b) = 1− uA(a ∧ b)

≤ 1−min{uA(a), uA(b)}
= max{1− uA(a), 1− uA(b)}
= max{ucA(a), ucA(b)}

∴ ucA(a ∧ b) ≤ max{ucA(a), ucA(b)}

Hence, [A] is a PFL of L.

Again,

⟨A⟩ = {(a, vA(a), wA(a), v
c
A(a)) : a ∈ L}, where vcA(a) = 1− vA(a)

Then ∀a, b ∈ L;

vA(a ∨ b) ≤ max{vA(a), vA(b)} and vA(a ∧ b) ≤ max{vA(a), vA(b)}

Now,

vcA(a ∨ b) = 1− vA(a ∨ b)

≥ 1−max{vA(a), vA(b)}
= min{1− vA(a), 1− vA(b)}
= min{vcA(a), vcA(b)}

∴ vcA(a ∨ b) ≥ min{vcA(a), vcA(b)}

and

vcA(a ∧ b) = 1− vA(a ∧ b)

≥ 1−max{vA(a), vA(b)}
= min{1− vA(a), 1− vA(b)}
= min{vcA(a), vcA(b)}

∴ vcA(a ∧ b) ≥ min{vcA(a), vcA(b)}

Hence, ⟨A⟩ is a PFL of L.

Conversely, consider that if [A] and ⟨A⟩ are PFLs of L, then A is a PFL of L, which holds easily from the
definition. □

Lemma 3.7. The union of two PFLs need not be a PFL.

Proof.

Proof: Consider the lattice L = {1, 2, 5, 10} of ”divisors of 10” which is displayed in the Hasse diagram.
Define A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} by

A = {(1, 0.5, 0.2, 0.2), (2, 0.4, 0.3, 0.2), (5, 0.6, 0.1, 0.3), (10, 0.4, 0.0, 0.3)}

and B = {(a, uB(a), wB(a), vB(a)) : a ∈ L} by

B = {(1, 0.6, 0.2, 0.1), (2, 0.5, 0.1, 0.3), (5, 0.4, 0.2, 0.4), (10, 0.3, 0.1, 0.1)}
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Figure 3

Here note that A and B are two PFLs of L.

Now,

A ∪B = {(a,max{uA(a), uB(a)},min{wA(a), wB(a)},min{vA(a), vB(a)}) : a ∈ L}

= {(1, 0.6, 0.2, 0.1), (2, 0.5, 0.1, 0.2), (5, 0.6, 0.1, 0.3), (10, 0.4, 0.0, 0.1)}

Here, uA∪B(10) = uA∪B(5 ∨ 2) = 0.4 and

min{uA∪B(5), uA∪B(2)} = min{0.6, 0.5} = 0.5

But, uA∪B(10) = uA∪B(5 ∨ 2) = 0.4 ̸≥ min{uA∪B(5), uA∪B(2)} = 0.5

So, A ∪B is not a PFL of L.

Lemma 3.10. Every PFI is a PFL. But the converse is not true.

Proof: Let L = {1, 2, 5, 10} of ”divisors of 10” be a lattice. Let A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} be
defined by

A = {(1, 0.8, 0.0, 0.2), (2, 0.4, 0.2, 0.4), (5, 0.5, 0.4, 0.1), (10, 0.5, 0.2, 0.3)}

Here, A is a PFL of L but not a PFI, because

uA(2) = uA(2 ∧ 10) = 0.4 ̸≥ max{uA(2), uA(10)} = max{0.4, 0.5} = 0.5

Lemma 3.11. The union of two PFIs need not be a PFI.

Proof: Consider the lattice L = {1, 2, 3, 4, 6, 12} of ”divisors of 12”. Define A = {(a, uA(a), wA(a), vA(a)) :
a ∈ L} by

A = {(1, 0.5, 0.2, 0.3), (2, 0.6, 0.1, 0.1), (3, 0.7, 0.1, 0.1), (4, 0.3, 0.4, 0.3), (6, 0.4, 0.2, 0.2), (12, 0.8, 0.1, 0.1)}

and B = {(a, uB(a), wB(a), vB(a)) : a ∈ L} by
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B = {(1, 0.6, 0.3, 0.1), (2, 0.5, 0.4, 0.1), (3, 0.6, 0.2, 0.2), (4, 0.5, 0.1, 0.4), (6, 0.7, 0.1, 0.2), (12, 0.2, 0.3, 0.5)}

Here note that A and B are PFIs of L.
Now,

A ∪B = {(a,max{uA(a), uB(a)},min{wA(a), wB(a)},min{vA(a), vB(a)}) : a ∈ L}

= {(1, 0.6, 0.2, 0.1), (2, 0.6, 0.1, 0.1), (3, 0.7, 0.1, 0.1), (4, 0.5, 0.1, 0.3), (6, 0.7, 0.1, 0.2), (12, 0.8, 0.1, 0.1)}

Here, uA∪B(12) = uA∪B(3 ∨ 4) = 0.8 and

max{uA∪B(3), uA∪B(4)} = max{0.7, 0.5} = 0.7

But, uA∪B(12) = uA∪B(3 ∨ 4) = 0.8 ̸≤ max{uA∪B(3), uA∪B(4)} = 0.7
So, A ∪B is not a PFI of L.

□

Lemma 3.8. If A is a PFI of L and B is a PFL of L, then A ∩B is a PFL of L but not a PFI of L.

Proof.
Consider the lattice L = {1, 2, 3, 4, 6, 12} of ”divisors of 12”. Let A = {(a, uA(a), wA(a), vA(a)) : a ∈ L}

be defined by

A = {(1, 0.6, 0.2, 0.1), (2, 0.5, 0.1, 0.4), (3, 0.4, 0.2, 0.3), (4, 0.7, 0.1, 0.1), (6, 0.5, 0.2, 0.3), (12, 0.3, 0.3, 0.1)}

and B = {(a, uB(a), wB(a), vB(a)) : a ∈ L} be defined by

B = {(1, 0.3, 0.3, 0.1), (2, 0.4, 0.4, 0.2), (3, 0.5, 0.3, 0.1), (4, 0.4, 0.3, 0.2), (6, 0.2, 0.3, 0.5), (12, 0.5, 0.2, 0.1)}

Here, A is a PFI of L and B is a PFL of L.
Now,

A ∩B = {(a,min{uA(a), uB(a)},min{wA(a), wB(a)},max{vA(a), vB(a)}) : a ∈ L}

= {(1, 0.3, 0.2, 0.1), (2, 0.4, 0.1, 0.4), (3, 0.4, 0.2, 0.3), (4, 0.4, 0.1, 0.2), (6, 0.2, 0.2, 0.5), (12, 0.3, 0.2, 0.1)}

Clearly, A ∩B is a PFL of L but not a PFI of L, because

uA∩B(1) = uA∩B(2 ∧ 3) = 0.3 ̸≥ max{uA∩B(2), uA∩B(3)} = max{0.4, 0.4} = 0.4

□

Proposition 3.9. A is a PFI of L if and only if [A] and ⟨A⟩ are PFIs of L.

Proof. Same as Theorem 3.8. □
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4 Sum and Product of Two Picture Fuzzy Ideals

Definition 4.1. Let A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} and B = {(a, uB(a), wB(a), vB(a)) : a ∈ L} be
two PFSs of L. Then their sum A+B is defined as

A+B = {(a, uA+B(a), wA+B(a), vA+B(a)) : a ∈ L}

where,

uA+B(a) = sup
a=p∨q

{min{uA(p), uB(q)}}

wA+B(a) = sup
a=p∨q

{min{wA(p), wB(q)}}

vA+B(a) = inf
a=p∨q

{max{vA(p), vB(q)}}

Theorem 4.2. The sum of two PFIs in a distributive lattice L is again a PFI of L.

Proof.

Let A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} and B = {(a, uB(a), wB(a), vB(a)) : a ∈ L} be two PFSs of L.
Then

A+B = {(a, µA+B(a), wA+B(a), vA+B(a)) : a ∈ L}

where,

uA+B(a) = sup
a=p∨q

{min{uA(p), uB(q)}}

wA+B(a) = sup
a=p∨q

{min{wA(p), wB(q)}}

vA+B(a) = inf
a=p∨q

{max{vA(p), vB(q)}}

Let a, b ∈ L and min{uA+B(a), uA+B(b)} = ω1. Then for any ϵ > 0,

ω1 − ϵ < uA+B(a) = sup
a=p∨q

{min{uA(p), uB(q)}}

and

ω1 − ϵ < uA+B(b) = sup
b=r∨s

{min{uA(r), uB(s)}}

So there exist representations a = p ∨ q and b = r ∨ s such that,

ω1 − ϵ < min{uA(p), uB(q)} and ω1 − ϵ < min{uA(r), uB(s)}

Then,

ω1 − ϵ < uA(p), ω1 − ϵ < uB(q), ω1 − ϵ < uA(r), and ω1 − ϵ < uB(s)

Therefore,
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ω1 − ϵ < min{uA(p), uA(r)} ≤ uA(p ∨ r), since A is a PFI of L

Also,

ω1 − ϵ < min{uB(q), uB(s)} ≤ uB(q ∨ s), since B is a PFI of L

Therefore,

ω1 − ϵ < min{uA(p ∨ r), uB(q ∨ s)}

Note that, a ∨ b = (p ∨ q) ∨ (r ∨ s) = (p ∨ r) ∨ (q ∨ s). So

uA+B(a ∨ b) = sup
a∨b=m∨n

{min{uA(m), uB(n)}} ≥ min{uA(p ∨ r), uB(q ∨ s)} > ω1 − ϵ

Since ϵ > 0 is arbitrary,

uA+B(a ∨ b) ≥ ω1 = min{uA+B(a), uA+B(b)}. (1)

Now, let ω2 = max{uA+B(a), uA+B(b)} = uA+B(a) (say). Then for any ϵ > 0,

ω2 − ϵ < uA+B(a) = sup
a=p∨q

{min{uA(p), uB(q)}}

So there exists a representation a = p ∨ q such that,

ω2 − ϵ < min{uA(p), uB(q)} =⇒ ω2 − ϵ < uA(p), ω2 − ϵ < uB(q)

So for b = r ∨ s, we have

ω2 − ϵ < max{uA(p), uA(r ∨ s)} ≤ uA(p ∧ (r ∨ s)), since A is a PFI of L

Also,

ω2 − ϵ < max{uB(q), uB(r ∨ s)} ≤ uB(q ∧ (r ∨ s)), since B is a PFI of L

Therefore,

ω2 − ϵ < min{uA(p ∧ (r ∨ s)), uB(q ∧ (r ∨ s))}

Note that, a ∧ b = (p ∨ q) ∧ (r ∨ s) = (p ∧ (r ∨ s)) ∨ (q ∧ (r ∨ s)).
So,

uA+B(a ∧ b) = sup
a∧b=m∨n

{min{uA(m), uB(n)}} ≥ min{uA(p ∧ (r ∨ s)), uB(q ∧ (r ∨ s))} > ω2 − ϵ

Since ϵ > 0 is arbitrary,

µA+B(a ∧ b) ≥ ω2 = max{uA+B(a), uA+B(b)}. (2)

Similarly, we get

wA+B(a ∨ b) ≥ ω3 = min{wA+B(a), wA+B(b)}. (3)
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wA+B(a ∧ b) ≥ ω4 = max{wA+B(a), wA+B(b)}. (4)

Again,
Let ω5 = max{vA+B(a), vA+B(b)}. Then for any ϵ > 0,

ω5 + ϵ > vA+B(a) = inf
a=p∨q

{max{vA(p), vB(q)}}

and

ω5 + ϵ > vA+B(b) = inf
b=r∨s

{max{vA(r), vB(s)}}

So there exist representations a = p ∨ q and b = r ∨ s such that,

ω5 + ϵ > max{vA(p), vB(q)}

and

ω5 + ϵ > max{vA(r), vB(s)}

Then,

ω5 + ϵ > vA(p), ω5 + ϵ > vB(q), ω5 + ϵ > vA(r), and ω5 + ϵ > vB(s)

Therefore,

ω5 + ϵ > max{vA(p), vA(r)} ≥ vA(p ∨ r), since A is a PFI of L

Also,

ω5 + ϵ > max{vB(q), vB(s)} ≥ vB(q ∨ s), since B is a PFI of L

Therefore,

ω5 + ϵ > max{vA(p ∨ r), vB(q ∨ s)}

Note that, a ∨ b = (p ∨ q) ∨ (r ∨ s) = (p ∨ r) ∨ (q ∨ s). So

νA+B(a ∨ b) = inf
a∨b=m∨n

{max{vA(m), vB(n)}} ≤ max{vA(p ∨ r), vB(q ∨ s)} < ω5 + ϵ

Since ϵ > 0 is arbitrary,

νA+B(a ∨ b) ≤ ω5 = max{vA+B(a), vA+B(b)}. (5)

Now, let ω6 = min{vA+B(a), vA+B(b)} = vA+B(a) (say). Then for any ϵ > 0,

ω6 + ϵ > vA+B(a) = inf
a=p∨q

{max{vA(p), vB(q)}}

So there exists a representation a = p ∨ q such that,

ω6 + ϵ > max{vA(p), vB(q)} =⇒ ω6 + ϵ > vA(p), ω6 + ϵ > vB(q)

So for b = r ∨ s, we have
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ω6 + ϵ > min{vA(p), vA(r ∨ s)} ≥ vA(p ∧ (r ∨ s)), since A is a PFI of L

Also,

ω6 + ϵ > min{vB(q), vB(r ∨ s)} ≤ vB(q ∧ (r ∨ s)), since B is a PFI of L

Therefore,

ω6 + ϵ > max{vA(p ∧ (r ∨ s)), vB(q ∧ (r ∨ s))}

Note that, a ∧ b = (p ∨ q) ∧ (r ∨ s) = (p ∧ (r ∨ s)) ∨ (q ∧ (r ∨ s)).

So,

νA+B(a ∧ b) = inf
a∧b=m∨n

{max{νA(m), νB(n)}} ≤ max{vA(p ∧ (r ∨ s)), vB(q ∧ (r ∨ s))} < ω6 + ϵ

Since ϵ > 0 is arbitrary,

vA+B(a ∧ b) ≤ ω6 = min{vA+B(a), vA+B(b)}. (6)

From (1), (2), (3), (4), (5), and (6), it is proved that A+B is a PFI of L.

□

Definition 4.3. Let A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} and B = {(a, uB(a), wB(a), vB(a)) : a ∈ L} be
two PFSs of L. Then their product A⊗B is defined as

A⊗B = {(a, uA⊗B(a), wA⊗B(a), vA⊗B(a)) : a ∈ L}

where,

uA⊗B(a) = sup
a=p∧q

{min{uA(p), uB(q)}}

wA⊗B(a) = sup
a=p∧q

{min{wA(p), wB(q)}}

vA⊗B(a) = inf
a=p∧q

{max{vA(p), vB(q)}}

Theorem 4.4. The product of two PFIs in a distributive lattice L is again a PFI of L.

Proof. Same as Theorem 4.2. □

5 Picture Fuzzy Ideals and Homomorphism

Definition 5.1. Let f : L → L′ be a mapping and A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} be a PFS of L.
Then the image f(A) is defined by

f(A) = {(y, uf(A)(b), wf(A)(b), vf(A)(b)) : b ∈ L′},

where
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uf(A)(b) =

{
sup{uA(a) : a ∈ f−1(b)} ; f−1(b) ̸= ∅
0 ;Otherwise

wf(A)(b) =

{
inf{wA(a) : a ∈ f−1(b)} ; f−1(b) ̸= ∅
0 ;Otherwise

vf(A)(b) =

{
inf{vA(a) : a ∈ f−1(b)} ; f−1(b) ̸= ∅
0 ;Otherwise

Similarly, if B = {(b, uB(b), wB(b), vB(b)) : b ∈ L′} is a PFS of L′, then

f−1(B) = {(a, uf−1(B)(a), wf−1(B)(a), vf−1(B)(a)) : a ∈ L},

where

uf−1(B)(a) = uB(f(a)), wf−1(B)(a) = wB(f(a)), vf−1(B)(a) = vB(f(a)).

Theorem 5.2. If f : L → L′ is a lattice epimorphism (onto homomorphism) and A is a PFI of L, then f(A)
is a PFI of L′.

Proof.
Let A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} be a PFI of L. Then

f(A) = {(b, uf(A)(b), wf(A)(b), vf(A)(b)) : b ∈ L′}.

Let b, c ∈ L′. Then

uf(A)(b ∨ c) = sup{uA(a) : a ∈ f−1(b ∨ c)}

≥ sup{uA(m ∨ n) : m ∈ f−1(b), n ∈ f−1(c)}

≥ sup{min{uA(m), uA(n)} : m ∈ f−1(b), n ∈ f−1(c)}

= min{supuA(m) : m ∈ f−1(b), supuA(n) : n ∈ f−1(c)}

= min{uf(A)(b), uf(A)(c)}, since A is a PFI of L

∴ uf(A)(b ∨ c) ≥ min{uf(A)(b), uf(A)(c)}.

Also,

uf(A)(b ∧ c) = sup{uA(a) : a ∈ f−1(b ∧ c)}

≥ sup{uA(m ∧ n) : m ∈ f−1(b), n ∈ f−1(c)}

≥ sup{max{uA(m), uA(n)} : m ∈ f−1(b), n ∈ f−1(c)}
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= max{supuA(m) : m ∈ f−1(b), supuA(n) : n ∈ f−1(c)}

= max{uf(A)(b), uf(A)(c)}, since A is a PFI of L

∴ uf(A)(b ∧ c) ≥ max{uf(A)(b), µf(A)(c)}.

Again,

wf(A)(b ∨ c) = inf{wA(a) : a ∈ f−1(b ∨ c)}

≤ inf{wA(m ∨ n) : m ∈ f−1(b), n ∈ f−1(c)}

≤ inf{max{wA(m), wA(n)} : m ∈ f−1(b), n ∈ f−1(c)}

= max{inf wA(m) : m ∈ f−1(b), inf wA(n) : n ∈ f−1(c)}

= max{wf(A)(b), wf(A)(c)}, since A is a PFI of L

∴ wf(A)(b ∨ c) ≤ max{wf(A)(b), wf(A)(c)}.

□

Definition 5.3. Let f : L → L′ be a function and A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} be a PFS of L.
Then A is said to be f -invariant if

f(a) = f(b) ⇒ uA(a) = uA(b), wA(a) = wA(b), and vA(a) = vA(b)

Proposition 5.4. If a PFS A is f-invariant, then f−1[f(A)] = A.

Proof. Proof: Same as Theorem 5.4. □

Theorem 5.5. Let f : L → L′ be a function and A,B be two PFSs of L and A′, B′ be two PFSs of L′. Then

A ⊆ B ⇒ f(A) ⊆ f(B);

A′ ⊆ B′ ⇒ f−1(A′) ⊆ f−1(B′).

Proof.
(i) Let A = {(a, uA(a), wA(a), vA(a)) : a ∈ L} and B = {(a, uB(a), wB(a), vB(a)) : a ∈ L} be two PFSs of

L. Then

A ⊆ B ⇒ uA(a) ≤ uB(a), wA(a) ≤ wB(a), and vA(a) ≥ vB(a).

Then

f(A) = {(b, uf(A)(b), wf(A)(b), vf(A)(b)) : b ∈ L′}
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and

f(B) = {(b, uf(B)(b), wf(B)(b), vf(B)(b)) : b ∈ L′}.

Now,

uf(A)(b) = sup{uA(a) : a ∈ f−1(b)}

≤ sup{uB(a) : a ∈ f−1(b)}, since A ⊆ B and uA(a) ≤ uB(a)

= uf(B)(b)

∴ uf(A)(b) ≤ uf(B)(b)

wf(A)(b) = inf{wA(a) : a ∈ f−1(b)}

≤ inf{wB(a) : a ∈ f−1(b)}, since A ⊆ B and wA(a) ≤ wB(a)

= wf(B)(b)

∴ wf(A)(b) ≤ wf(B)(b)

and

vf(A)(b) = inf{vA(a) : a ∈ f−1(b)}

≥ inf{vB(a) : a ∈ f−1(b)}, since A ⊆ B and vA(a) ≥ vB(a)

= vf(B)(b)

∴ vf(A)(b) ≥ vf(B)(b)

Hence, f(A) ⊆ f(B).

□
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6 Conclusion

Picture fuzzy set is capable enough to handle uncertain situation. Since the innovation of this concept, a host
of researchers have involved to develop this concept in several dimensions. In this work, the notion of picture
fuzzy sublattices and picture fuzzy ideals are introduced with some of their properties. In addition, the sum
and product of two picture fuzzy ideals are defined and some of their properties are described. Finally, some
properties of picture fuzzy ideals under lattice homomorphism are established. In future, the outcomes of
this paper will open diverse areas to explore more algebraic structures and their properties in boolean algebra
in terms of picture fuzzy fields with applications especially in switching circuits.
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