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Abstract  

 
The permeability matrix of rock is a physical/mechanical characteristic that closely relates to the microstructure of this heterogeneous 

geomaterial, and the orientation of micro-cracks led to some naturally existing micro-cracks. Upon the effects of loading/unloading and 

high-temperature development, micro-cracks appear in critical zones of rock media that can effectively change the conductivity against gas 

or other fluids. Finally, macro cracks are generated and increase the porosity of the rock matrix on the distribution and geometrical 

arrangement. Consequently, the permeability becomes higher and depends on the stress/strain level of the rock body during 

loading/unloading and the passing fluidity interaction process. The influence of stress level and high temperature on rock's gas and water 

permeability has been studied in the literature. Fractured rock formations show vastly different properties, such as adsorption, etc., 

concerning permeability and storage capacity, thus giving rise to mass exchange processes between fractures and the surrounding matrix. 

This interaction between fracture and matrix impacts the flow and transport processes in the fractured subsurface, which can be observed on 

each scale considered for investigation purposes. The influence of fracture-matrix interaction has to be scrutinized upon the planned tests 

conforming to the natural condition when dealing with safety investigations or remediation possibilities. This paper shows some of the 

effects of fracture-matrix interaction and its geometry on groundwater flow in a saturated fractured rock/concrete media and the parameters 

describing those processes concerning different scales. A damage model concept contains fracture network generation, mesh generation, 

and appropriate discretization techniques based on presumed sampling between planes and polygons. The influence of a polygon matrix of 

finite porosity on the effective hydraulic conductivity tensor of a fractured system is illustrated by an example. In this research, we focus on 

determining the gas and water permeability of rock commonly used in transportation works, including loose/low strength and high 

strength/dense rock/concrete in interaction with pre-peak stress and damage level in post-peak behavior of rocks. 
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1. Introduction 

Crack opening in brittle porous media such as concrete 

and rocks governs many fluid transfer properties that play 

a pivotal role in durability analyses. Instead of combining 

continuum and discrete models in computational analyses, 

it would be attractive to derive an estimate of crack 

opening from the continuum approach without 

considering the explicit description of a discontinuous 

displacement field in the constitutive and computational 

model. 

The crack opening is a crucial parameter for many 

concrete structures to estimate durability. Cracks are 

preferential paths along which fluids or corrosive 

chemical species may penetrate inside concrete structural 

elements. For structures such as confinement vessels, for 

instance, tightness to gas or liquids is a major 

serviceability criterion governed by Darcy’s law in which 

material permeability is involved. The material 

permeability is strongly related to the amount and 

orientation of cracking in concrete: permeability grows 

significantly as distributed micro-cracking develops (see, 

e.g., Choinska et al. 2007), and it jumps several orders of 

magnitude upon macro-cracking (Sugiyama et al. 1996, 

Hearn, N. 1999 and Hearn, N., & Lok, G. 1998). 

According to Poiseuille’s law, the permeability of a 

cracked structure (with a single crack) is proportional to 

the square of the crack opening. Hence, predicting the 

durability of structural components requires models that 

damage has been localized. 

Enhanced continuum and integral damage models are 

capable of representing diffuse damage, crack initiation, 

and possibly crack propagation (Pijaudier-Cabot, G., & 

Jason, L. 2002 and Pijaudier-Cabot, G. and Bazant, Z. 

1987 and Peerlings et al. 1996 , 2001). They regard 

cracking as an ultimate consequence of a gradual loss of 

material integrity. These models, however, do not predict 

crack opening and orientation as they rely on a continuum 

approach to fracture. 

Some fictitious crack models are based on explicitly 

describing the discontinuity within the material (e.g., the 

cohesive crack model of Hillerborg et al. 1976). They 

relate the crack opening to the stress/strain level and are 

based on linear elastic (or plastic) fracture mechanics. 

Cohesive crack models need proper algorithms for crack 

propagation, and more importantly, they cannot describe 

crack initiation. 

The heterogeneous properties of such geological systems 

strongly influence flow and transport processes in 

fractured porous concrete and rock. Under saturated 

conditions, fractures are usually characterized by a 
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comparatively high permeability and a low storability 

and, therefore, represent preferential pathways to a rapid 

migration of fluids. In contrast, the surrounding 

concrete/rock matrix shows a relatively low permeability 

and a high storage capacity. Fluids entering the matrix by 

diffusive processes may cause long-term chemical 

aggression to the system by advancing slowly in the low–

mobility matrix or by reentering the fractures. This 

interaction between fracture and matrix plays a significant 

role in fluid transport processes. Field tests like tracer or 

pumping tests and laboratory investigations provide some 

data necessary to examine flow and transport conditions. 

However, while the data received from field tests are 

usually not detailed enough to assess the behavior of a 

fractured aquifer, the data achieved from laboratory 

experiments are not likely to represent larger scales 

regarding the system's heterogeneity. Within the research 

project "Aquifer Analogy," laboratory and field 

experiments with fractured sandstone and numerical 

simulations with different model concepts are performed 

to formulate up-scaling possibilities that allow the 

information gained from small-scale investigations to be 

included in regional-scale models. 

The strong discontinuity approach initiated by Simo et al. 

(1993) and widely used over the last decade (e.g., Oliver 

et. 2002, Larsson et al. 1999) offers the possibility of 

merging in the same formulation a continuous damage 

model for the bulk response and a cohesive model for the 

discontinuous part of the kinematics. It is certainly a 

combination of continuum–discrete modeling that is 

sound from a theoretical point of view and appealing from 

the point of view of the physics of fracture. The issue in 

combining the continuum-based model for crack initiation 

and then a discrete crack model for propagation is the 

threshold upon which one switches from one analysis to 

the other. Usually, it is considered that discontinuity 

appears when damage, stresses, or strain energy reaches a 

certain threshold fixed beforehand, which remains 

arbitrary (Comi et al. 2007, Simone et al. 2003). As we 

will see further, one of the outcomes of the present model 

is to provide an indicator based on which the appearance 

of a discontinuity during a damage process can be defined 

with a given accuracy. 

The work presented in this research describes the 

influence of fracture–matrix– interaction on flow through 

damaged concrete and transport conditions in the 

fractured subsurface and the resulting effective 

parameters. The concept of scales and effective 

parameters will be explained, and the modeling setup used 

for numerical investigations with a discrete model concept 

will be outlined. For example, the seepage transport in the 

cracked rib base of the Sefid-rood concrete dam has been 

investigated and presented. The piezometer readings after 

earthquake cracks have been compared with the proposed 

model results to show the model's capability. 

2. General Permeabiliy Distributuin at a Location 

The permeability coefficient as a second-order physical 

tensor value represents the capability of a porous medium 

against the flow, keeping potential pressure at a certain 

location relative to the other surrounding locations. Any 

anisotropy and non-homogeneity in porosity and void 

geometry change through a porous medium can change 

the permeability tensor. This tensor, similar to the 

stress/strain tensor, represents an ellipsoidal variation 

around a certain location upon the change of orientation, 

as shown in Figure 1. 

 

Fig.1. Initial elliptical anisotropy of permeability coefficient and 

fracture/cracks effects 

Generally, the fracture–matrix – interactions and 

corresponding geometries influence the flow and transport 

processes and the effect on initial ellipsoidal permeability 

variation to an irregular/broken at a certain location 

through porous media. In real cases, the complexity of 

conductivity of a fractured concrete system, i.e., the 

disparity of the hydraulic properties of cracks/fractures 

and matrix combined with the irregular geometry of a 

fractured concrete, led to a more complex flow behavior. 

3. Fracture–Matrix–Interaction 

The influence of fracture–interaction and crack geometry 

on the effective permeability parameters used for 

computational purposes must reflect the flow direction 

tendency at a certain location conforming with the flow 

nature motion. It will be set out in the sequel with two 

aspects: the effective hydraulic conductivity tensor and 

the effective hydrodynamic dispersion affected mainly by 

inherent and induced fracture/cracking. The effective 

hydraulic conductivity tensor describes the permeability 

of a porous medium, respectively, of a fractured 

formation/crack progression, which has usually been 

subjected to an averaging process over a change in 

physical condition concerning fluid properties and 

gravitation. To determine the hydraulic conductivity 

tensor of a fracture-oriented network, the system is rotated 

concerning the pressure gradient, and for each rotation 

angle (Figure 1), the K-value is computed using the 

corresponding in- and outflow (Long, J. C. 1983). The 

more accurately the computed K-values fit into an ideal 

balancing ellipsoid, the better a porous medium with the 

corresponding conductivity tensor represents the fracture-

oriented network. An effective hydraulic conductivity 

tensor can be determined by the same procedure for 

fracture–matrix–networks. However, considering a porous 

matrix in a fracture-oriented network affects the resulting 

hydraulic conductivity values in several ways. First, the 

porous matrix allows water to flow in the fractures/cracks 

and throughout the domain of interest. 

Consequently, while rotating the domain concerning the 

pressure gradient, the resulting K-values fit more to a 

balancing ellipsoid than the K values of the corresponding 

pure fracture/cracked network would do. Second, the 

fracture-oriented network's connectivity plays a less 

important role when a matrix is involved. In contrast to 
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pure fracture-oriented networks in which a connective 

fracture/crack pathway from one edge of the domain to 

the other is a prerequisite for finding an effective 

conductivity value, fracture–matrix–systems can balance 

the missing fracture/crack connection by establishing flow 

pathways in the matrix. Third, any anisotropy of the 

matrix may influence the effective conductivity tensor of 

the fracture–matrix–system. The described effects depend 

primarily on the permeability difference between fracture 

quantity and its orientation and matrix and on the fracture 

density of the considered networks. 

The quantity of effective dispersion has been introduced 

to describe the spreading of a fluid due to velocity 

fluctuations that arise from the heterogeneities of the 

underlying medium. Regarding the geometry of the single 

fracture, dispersive processes occur due to channeling 

effects in the rough fracture plane itself. If the single 

fracture is embedded in a matrix of finite porosity, the 

mass exchange between fracture and matrix must be 

considered. Depending on the porosity and the 

permeability of the matrix, and the pressure gradient 

between fracture and matrix, a considerable quantity of 

fluid will enter the matrix, leading to a strong tailing 

effect in the resulting breakthrough curve and a fast 

reduction of the concentration peak. 

A similar behavior can be observed on the fracture 

orientation network scale. Water migrating through a 

fracture network will use different possible pathways of 

connected fractures, leading to a macroscopic dispersion 

effect. Suppose the mass exchange between the fracture 

network and a surrounding porous matrix is considered 

additionally. In that case, the resulting breakthrough curve 

will show a pronounced tailing while the corresponding 

concentration peak diminishes rapidly. The contrast 

between fracture and matrix properties may lead to 

completely different time scales for the solute migration 

rate in both system components. A description of the 

behavior of the breakthrough curves that presents results 

from fluid transport processes in fracture–matrix–systems 

by the employment of a multi-layer model presented by 

(Wollrath, J. 1990). Also, the analysis of the fluid flow 

behavior by evaluating spatial moments is presented by 

(Dagan, G. 2012). 

4. Multi-Laminate Framework 

Grains and paste in porous media such as concrete and 

sandstone materials consisting of contacts and 

surrounding voids are cemented particulate media that are 

mostly considered a continuum for ease. The accurate 

behavior of such particulate materials is to be investigated 

through micro-mechanics. However, the micro-

mechanical behavior of cemented granular materials is 

inherently discontinuous and heterogeneous. The 

macroscopic as an overall or averaged behavior of 

cemented granular materials is determined by how 

discrete grains are arranged through a medium and by 

what kinds of interactions are operating among them. To 

investigate the micro-mechanical behavior of cementation 

and granular materials, the spatial distribution of contact 

points and orientation of grains must be identified. From 

an engineering point of view, the main goal is to 

formulate the macro-behavior of cemented granular 

materials in terms of micro-quantities. However, two 

well-known theories consistently explain the relation 

between micro-fields and macro-fields as macro-micro 

relations, as the average field theory and the 

homogenization theory. 

The multi-laminate framework, by defining the small 

continuum structural units as an assemblage of particles 

and voids that fill infinite spaces between the sampling 

planes, has appropriately justified the   contribution   of   

interconnection  forces in overall macro-mechanics. Upon 

these assumptions, plastic deformations are to occur due 

to sliding and separation/closing of the boundaries, and 

elastic deformations are the overall responses of structural 

unit bodies. Therefore, the overall deformation of any 

small part of the medium comprises total elastic response 

and an appropriate summation of sliding, 

separation/closing phenomenon under the current 

effective normal and shear stress/strain on sampling 

planes. These assumptions adopt overall sliding, 

separation/closing of inter-granular points of presumed 

grains included in one structural unit, which are summed 

up and contributed as the result of sliding, 

separation/closing surrounding boundary planes. This 

implies yielding/failure or even ill-conditioning and 

bifurcation response possible over any randomly oriented 

sampling planes. Consequently, plasticity control, such as 

yielding, should be checked at each plane, and those of 

the sliding planes will contribute to plastic deformation. 

Therefore, the granular material mass has an infinite 

number of yield functions, usually one for each of the 

planes in the physical space.  

Figure 2 shows the arrangement of artificial polyhedrons 

simulated by real soil grains. The created polyhedrons are 

roughly by 13 sliding planes, passing through each point 

in the medium. The location of tip heads of normal to the 

planes defining corresponding direction cosines is shown 

on the surface of the unit radius sphere. In the ideal case, 

the normal integration is considered as summing up the 

individual micro effects corresponding to an infinite 

number of microsampling planes. The orientation of the 

sampling planes and direction cosines of two 

perpendiculars on plane coordinate axes and weighted 

coefficients for employed numerical integration rule and 

calculation of stress tensor of each plane are shown in 

Figure 3 and Table 1 (Peyman, F. 2022). 

 

 
(a) 
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(b) 

 
(c) 

Fig.2. Concrete grains, artificial polyhedrons, and sampling 

points a) Real grains b) Polyhedrons c) Numerical integration 

points 
 

 

 
Fig.3. Definition and Projection of stress tensor on the unit 

sphere's surface 

 

 
Table 1: Cosines of the normal axis and the weight coefficients 

for numerical integration 

Plane 

No 
Normal Axis 

wi li mi ni 

1 
3

1
 

3

1
 

3

1
 

840

27
 

2 
3

1
 

3

1
  

3

1
 

840

27
 

3 
3

1
  

3

1
 

3

1
 

840

27
 

4 
3

1
  

3

1
  

3

1
 

840

27
 

5 
2

1
 

2

1
 0 

840

32
 

6 
2

1
  

2

1
 0 

840

32
 

7 
2

1
 0 

2

1
 

840

32
 

8 
2

1
  0  

2

1
 

840

32
 

9 0  
2

1
  

2

1
 

840

32
 

10 0  
2

1
 

2

1
 

840

32
 

11 1  0  0  
840

40
 

12 0  1  0  
840

40
 

13 0  0  1  
840

40
 

When the on-plane stress condition exceeds the crack 

limits, sliding or widening/closing occurs as an active 

plane with progressing on-plane strain and cracking up to 

failure. Therefore, one of the important features of a 

multi-laminate framework is that it enables the 

identification of the activity, cracking, and failure planes 

as a matter of routine. The application of any stress path is 

accompanied by the actions of some of the 13 defined 

planes at any point in the medium. Plastic strain values on 

all the active planes are not necessarily the same. Some of 

these planes initiate plastic deformations earlier than 

others. These priorities and certain active planes can 

change due to any change of direction of the stress path; 

several active planes may stop the activity, some inactive 

ones become active, and some planes may take over 

others concerning the value of normal and shear strain. 

Thus, the framework can predict the cracked and final 

failure mechanism. 

5. Tensor Quantities as Ellipsoidal Variable 

A quantitative description of the initial micro-fabric 

would enhance the characterization and forecasting of 

anisotropic porous material behavior under different 

loading. These tensor quantities are naturally altered due 

to continuous loading changes. Hence, it is also necessary 

to develop techniques to quantify the changes in fabric. 

While the material is distorted, the fabric of the material 

changes, and so there is the strain or displacement field in 

the material. Consequently, the strain and induced fabric 

of a material and related corresponding tensor quantitative 
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such as permeability or flow conductivity are inherently 

related. 

A popular approach for formulating tensor quantitative 

criteria for the anisotropy of porous materials is the 

generalization of isotropic ones. Such a criterion is 

usually geometrically interpreted as a limiting envelope in 

a strain/stress space, meaning that a failure condition 

occurs when a given strain/stress vector touches the 

failure envelope. Since the condition for failure is intrinsic 

to the material, the failure criterion can be defined 

differently for any probable sliding plane through the 

material. Accordingly, the strain/stress ratio cannot 

exceed the corresponding limit value on the planes of 

weakness or any other plane that does not tend to slide. 

On a loading orientation inclined by three angles 

(direction cosines) concerning fracture orientation 

network or the bedding plane of natural porous media, a 

certain sliding mechanism composed of active sliding 

planes provides a value of strain/stress ratio, which 

corresponds to the most active plane and has a limitation 

of c and tan(φ) that is governing porous medium strength 

against sliding. Similarly, these criteria can be adopted for 

flow resistance of porous media that is permeability. 

Therefore, the Permeability matrix or flow conductivity at 

a single point initially has an ellipsoidal variation that any 

fracture/crack/fault can break locally to a higher level. 

Therefore, on any orientation within the porous media, the 

permeability state depends on the geometry and 

orientation of fracture/crack/joint. Flow speed distribution 

at a certain location is configured based on 

fracture/crack/joint orientations. To describe the 

permeability at any orientation, it is necessary to find a 

way of summarizing the configuration of different 

permeability corresponding to all the probable directions 

passing through any single point of the medium. 

A spherical permeability envelope may provide uniform 

flow velocity on any orientation for ideal isotropic porous 

media with no preferential orientation. However, to 

consider fracture/crack/joint effects or even due to 

bedding plane, an irregular/broken ellipsoidal envelope of 

permeability may be the most suitable presentation of 

permeability variation in different directions. The longest 

diameter of this ellipsoid is always oriented along the 

major principal permeability direction, and the other 

medium and minor directions are normal to each other 

principal axes. Configuring the 13 predefined planes in 

permeability ellipsoid provides a certain elliptical section 

on each plane that presents the permeability variation 

concerning fracture/crack/joint orientations. In other 

words, the tips of the arrowhead of permeability value of 

different orientations collectively define a built-up 

geometrical surface called the permeability ellipsoid. The 

size of the permeability ellipsoid of each plane is different 

and presents maximum and minimum permeability for 

flow conductivity along the longest and shortest ellipse, 

respectively. The other flow conductivity orientations face 

permeability limitations depending on the direction of 

fracture/crack/joint on the plane concerning ellipsoid 

orientation. 

Adopting the multi-laminate network mechanism of 

permeability, configured in Figure 3 concerning the 

orientation of the existing major principal permeability 

axis, these planes are configured symmetrically around a 

major principal axis. Any change in principal 

permeability axis direction creates a new set of 

permeability ellipses with different flow conductivity 

along fracture/crack/joint or sliding directions on different 

planes. 

This study carried out for micro-fabric behavior of loose, 

medium, and dense granular materials led to the 

establishment of a statistical criterion of natural 

anisotropy based on hypotheses that experience accepted 

as probable. The fabric anisotropy law is represented as a 

spatial closed ellipsoid permeability function in x, 

y, and z coordinates as follows: 

0
A

z

B

y

B

x 222

  (1) 

A, B, and C are three mutually perpendicular diameters of 

the ellipsoid. A construction of a typical ellipsoid is 

shown in Figure 4. 

 
Fig.4. Initial permeability ellipsoid and planes 

Furthermore, to overcome the fracture/crack/joint 

anisotropy concerns the effects of loading orientation, a 

possible having all different probable micro-crack 

widening/closing/sliding mechanisms must be provided in 

the used model. In this way, applying any arbitrary 

loading or strain/stress path leads to a certain 

crack/sliding mechanism that obeys the minimum energy 

level in natural law. These possibilities are provided in a 

nonlinear constitutive multi-laminate model (Sadrnejad, 

S. A. 1992, June, Peyman, F. 2022, Sadrnejad, S. A. 

(2014). To find the initial permeability ellipsoid 

diameters, two institute permeability tests measuring two 

principal permeability values must be conducted; 

generally, one normal flow direction to the horizontal 

bedding plane and the other along with the bedding plane 

(assuming axisymmetry condition). However, due to 

axisymmetry, two major diameters of permeability 

ellipsoid are equal, so B=C. When measuring 

permeability on two perpendicular axes different from 

principal axes, knowing the two sets of direction cosines, 

the permeability ellipsoid can be built up. In this case, the 

geometry of the permeability ellipsoid is the same in both 

tests. However, different minor permeabilities provide the 

second relation between permeability ellipsoid 

parameters. The simultaneous solution of both equations 

presents the unknown parameters A, B, and C. Assuming 

the direction cosines of the advanced active planes in the 

first and second tests as and, respectively, A and B are 

calculated as follows: 
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Performing a plane strain case, the axe-symmetry 

condition is not available anymore. In preventing out-of-

plane flow conductivity, the permeability ellipsoid is 

changed into an ellipse with no permeability to out-of-

plane flow. In this case, the conservation of the minimum 

level of energy law forces the flow mechanism to occur in 

the plane. A two-dimensional flow is conducted, and the 

change in sliding orientation on an active plane, which is 

an active line, conducted from the first natural possible 

case, may make a necessity of being confined under 

constrained conditions. This may lead the crack 

widening/opening/sliding to face on local higher oriented 

permeability to change the flow regime. 

To find out the values of internal permeability 

components of 13 planes oriented inside a certain 

permeability ellipsoid, first, the direction cosines of 

normal vectors as l'i, m'i, and n'i are calculated as follows: 
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The value of kni in direction l'i, m'i, and n'i is obtained as 

follows: 

22
i

22
i

2
i

ni

BnA)ml(

B.A
k


  (6) 

The direction of calculated kxi, kyi on i
th

 plane is associated 

with a certain value of internal permeability kni in the 

permeability ellipsoid. This permeability can be obtained 

through the equation of intersected ellipse plane with 

permeability ellipsoid having the direction of kxi, kyi 

direction cosines. Simply, any change of kxi, kyi on planes, 

is faced on new permeability mechanism and ellipsoid. 

Therefore, the initial plane permeability matrix Ki
0
 a 3 by 

3 matrix composed of normal kni and kxi, kyi permeability 

components. The direction of calculated kxi, kyi on i
th

 plane 

is associated with a certain value of internal 

permeability kni in the permeability ellipsoid. This 

permeability can be obtained through the equation of 

intersected ellipse plane with permeability ellipsoid 

having the direction of kxi, kyi direction cosines. , any 

change of kxi, kyi on planes is faced on new permeability 

mechanism and ellipsoid. Therefore, the initial plane 

permeability matrix Ki
0
 is a three-by-three matrix 

composed of normal kni, kxi, and kyi permeability 

components. Based on general mathematical matrix 

algebra, the initial permeability matrix of i
th

 plane can be 

calculated as follows: 

i
0
i

T
i

G0
i TKTK   (7) 

Ki
0G

, Ki
0
, and Ti are the initial permeability matrix 

of i
th

 plane in the global coordinate, the initial 

permeability matrix of the same plane in the local 

coordinate, and the i
th

 plane transformation matrix, 

respectively. 

6. Modeling Fracture/Crack Orientation 

A multi-laminate-based model concept has been applied 

to analyze the influence of fracture–matrix interaction on 

the flow and transport processes on different scales. This 

implies that the single fracture and the adjacent matrix, 

the fracture orientation network, and the matrix in 

between are described rationally in space. The modeling 

setup includes several steps, which will be briefly outlined 

in the following. The first step in the multi-laminate 

modeling of fracture matrix–systems is the generation of a 

heterogeneous permeability field upon predefinition of 

sampling planes passing through a single point that the 

effects of any real fracture/crack with variable aperture 

can occur on these planes respectively. The corresponding 

opening/widening/sliding of all points through the porous 

medium simulates the generation of a fracture network 

(Peyman, F., & Sadrnejad, S. A. 2018 and Peyman, F. 

2022 and Peyman, F., & Sadrnejad, S. A. 2017). The 

necessary geometry and material property database is 

gained from laboratory or field investigations and 

evaluated using not stochastic methods and geostatistical 

optimization tools but the real oriented values of each 

predefined sampling plane. Suppose the fracture density 

in the domain of interest is low. In that case, the initial 

values of different realizations of fracture networks with 

ellipsoidal properties are usually generated to fulfill the 

requirements of the ellipsoidal concept (Sadrnejad, S. A. 

1992 and Sadrnejad, S. A., & PANDE, G. 1989). 

The next step is the geometrical description of a plane 

fracture and its effects on permeability tensors with 

different impacts. 

7. The Relation of On-Plane Permeability to Crack 

Picandet et al. (2001) presented an empirical powered 

equation for permeability changes as follows: 
B0

i
D
i )Dexp(.KK   (8) 

Ki
D
 and Ki

0
 are damaged and initial permeability 

coefficients, respectively.  and B are two constants, and 

D is the damage function depending on crack geometry. 

The expansion of this equation leads to a plane 

permeability equation as follows: 

6

)D(

2

)D(
)D1.(KK

B3B2
B0

i
D
i


   (9) 

According to Pijaudier-Cabot et al. (2009), the general 

permeability changes versus the strain ratio defining 

damage function for different types of concrete have been 

presented in Figure 5. 
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Fig, 5. Permeability changes vs. the strain ratio 

A cracked sampling upon corresponding on-plane strain 

ratio as a damaged plane makes a local jumped value on 

the permeability ellipsoid of Gauss point to evaluate the 

crack effects of hydraulic conductivity. This local jump 

can be assumed to belong to a new higher level similar 

permeability ellipsoid with its diameters multiplied by 

 that can be accounted as follows (Figure 6): 
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Fig,6. Initial, cracked affected ellipsoids 

With this regard, calculating the i
th

 plane strain ratio, the 

damaged permeability matrix is provided, and the new 

permeability matrix of the i
th

 plane has been replaced to 

obtain the corresponding Gauss point permeability matrix 

in the FEM solution. The strain components and damage 

function for 13 planes can be computed using a multi-

laminate damage model (Labibzadeh, M., Sadrnejad, S. 

A., 2006). 

The governing equations for single-phase flow and 

transport in a saturated aquifer are the continuity equation 

combined with Darcy’s law as follows: 

q)]h(grad)TKTw8[(div
t

h
S i

D
i

T
i

n

1i
i0 







  (11) 

Therefore, the advection-dispersion transport–equation 

employed is as follows: 

r)]cgrad)TKTw8[(div)cv(div
t

c
i

D
i

T
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1i
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
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  (12) 

where S0 represents the specific storage coefficient, h the 

piezometric head, t the time, Ki
D
 the hydraulic 

conductivity tensor for i
th

 plane, c the solute 

concentration, v the seepage velocity, q flow flux, r 

externally applied source and sink terms, Ti is 

transformation matrix for i
th

 plane and n is number of 

sampling planes. The permeability matrix Ki
D
 for i

th
 plane 

is a 3×3 matrix in Cartesian coordinate of i
th

 plane, 

including the effects of strain tensor variations of 

corresponding plane. The transformation matrix is defined 

for three perpendicular planes at global Cartesian 

coordinate of each Gauss points; therefore, Ti for each  set 

of three planes corresponding to i
th

 plane is as follows: 

Where S0 represents the specific storage coefficient, h the 

piezometric head, t the time, Ki
D
 the hydraulic 

conductivity tensor for i
th

 plane, c the solute 

concentration, v the seepage velocity, q flow 

flux, r externally applied source and sink terms, Ti is 

transformation matrix for i
th

 plane and n is number of 

sampling planes. The permeability matrix Ki
D
 for the 

i
th

 plane is a 3×3 matrix in the Cartesian coordinate of the 

i
th

 plane, including the effects of strain tensor variations of 

the corresponding plane. The transformation matrix is 

defined for three perpendicular planes at the global 

Cartesian coordinate of each Gauss point; therefore, Ti for 

each set of three planes corresponding to the i
th

 plane is as 

follows: 
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Based on the description of local axes and the relations 

for transforming stress tensor to a sampling plane, it is 

enough to multiply the transformation matrix by a rotation 

matrix to be presented in i
th

 plane local axis. 

Therefore, L is the rotation matrix, and x'i, y'i, and z'i are 

the local axes of i
th

 plane as follows: 
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Summing up the permeability matrices tensors of all 

sampling planes, a numerical integration rule and 

corresponding transformed weighted matrix of all planes 

must be employed as follows: 

i
D
i

T
i

n

1i
i

D
Gauss TKT.w8K 



  (15) 

8. Cracks in Sefid-Rood Buttressed Dam by 

Earthquake 

This dam's height is 106 m. with 417 m. of crest length. It 

was built between 1956 and 1963 in Gilan state, north of 

Iran. Due to earthquake magnitude 7.3, Richter 1990 rib 

base no.18 of this dam cracked, and some seepage started, 

as shown in Figure 7, which was later amended by resin 

injection. This rib base was modeled through a developed 

computer program, and the internal damages and 

permeability changes were predicted, as well as pore 

water pressure, and compared with what was observed 

after damage by the earthquake. 
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(a) 

 
(b) 

Fig.7. a) Location of Sefid-Rood dam in Iran b) Sefid-Rood dam 

downstream view 

Figure 8 presents Rudbar's (1990) earthquake acceleration 

three components. Figures 9 and 10 show the dam plan 

and rib number 18 details. 

 

 

 
Fig.8. Normalized earthquake components 

 
Fig.9. Sefid-Rood dam plan and its location 

 

 
Fig.10. Rib No.18 details in Sefid-Rood dam 

The downstream crack view due to the earthquake is 

shown in Figure 11. The crack location and components 

are shown in Figure 12. The mechanical properties of 

concrete are shown in Table 2. Figure 13 shows tensile 

strength and compares compressive test results of 

concrete. 
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Fig.11. Downstream cracks view of rib number 18 

 

 
Fig.12. Cracks details 

 
Table 2 Concrete properties 

Dynamic Young 

Modulus 

Ed(MPa) 

Elastic Young 

Modulus 

E(MPa) 

Poisson’ ratio 



Mass per unit 

volume 

(kg/m3) 

Compressive 

strength 

f'c(MPa) 

29000 20000 0.17 2250 16.9 

 

 

 
Fig.13. Tensile and compressive test results on concrete 

 

The FE-mapped mesh of rib number 18, including the 

first cracked locations, is shown in Figure 14. The first 

failed plane number 8 at node 85, as combined stress and 

normal strain time histories are presented in Figures 15 

and 16. Plane no. 8 of node 85 normal stress vs. strain, its 

time history, its stress path, and the orientation of this 

failed plane are presented in Figures 17 and 18. 

 

 
Fig.14. Maped elements and damaged locations 

 
Fig.15. Predicted combined stress variation at Node 85, Plate 

No. 8 (The first failed plane) 
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Fig.17. Normal stress vs. strain and time history of Normal 

stress on plane no. 8 of Node 85 

Figure 19 shows pore water pressure contours and the 

comparison of measured hydrostatic p.w.p. at the 

piezometer locations after 4 seconds since the start of the 

earthquake with model results. The pore water pressure 

contours at the end of an earthquake are predicted in 

Figure 20. To show the capability of the proposed model, 

the two measured pore water pressure histories at 

piezometer no. 139 and 435 during earthquakes are 

compared with model results in Figure 21. This 

comparison reveals that the proposed model can predict 

such dynamic results during and after the earthquake. 

 

 

Fig.18. Stress path on plane no. 8 and its direction on the sphere 

 

 

Fig.19. Pore water pressure contours and hydrostatic–developed 

p.w.p. after 4 seconds 
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Fig.20. Final Pore water pressure contours through the dam body 

 

 
Fig.21. Pore water pressure at piezometer No. 139 and 435 

during an earthquake 

9. Conclusions 

A damage permeability tensor of multi-laminate model 

concept containing crack effect and fracture generation 

upon multi-laminate frame word and numerical 

integration techniques has been developed and employed 

to examine the influence of fracture–matrix–interaction 

on flow and transport processes and the corresponding 

effective parameters in fractured systems concerning 

different scales. The results of the fractured concrete dam 

presented in this research have shown that, depending on 

the mechanical properties, the presence of a fractured 

matrix in a fractured system leads to a considerable 

conductivity matrix change affecting pore water pressure 

and the flow and transport conditions through a cracked 

concrete medium. A simple multi-laminate technique has 

been employed to evaluate crack opening displacement. 

This led to the minimum energy level failure mechanism 

analyses and permeability tensor change based on the 

orientation damage model. Suppose the on-plane strain 

distributions are close as the regularized effective strain 

derived from a nonlocal (integral or gradient) model and 

the regularized effective strain derived from a strong 

discontinuity. In that case, the permeability variation 

controlled by cracks has reached a distribution close to 

that of real crack effects. The corresponding distribution 

of the continuous nature of flow is expected to be close to 

that resulting from a predicted discontinuity (crack) in a 

regularized, nonlocal analysis. 

An alternative averaging technique – the same as the 

integral model – has been devised to compare effective 

strain distributions leading to permeability tensor changes. 

The quality of the crack opening estimate depends on the 

weight function that enters the nonlocal expression, 

affecting flow transfer through cracked porous media. The 

flow gradient approach is equivalent to a nonlocal average 

with a sharper distribution, lending less weight to 

neighboring points than the non-uniform Gaussian 

distribution in the classical integral approach. 

Consequently, the gradient approach provides better limit 

values of the quality for a formed crack than with the 

integral model. 
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