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1 INTRODUCTION 

Many engineering structures are displaced under 

loading with overload. This can lead to the formation of 

plastic areas at the crack tip. The interference of these 

plastic areas under different loads will increase or 

decrease the crack growth rate in the part, which will 

lead to more accurate fatigue life prediction analyses.  

Many experimental tests have been carried out to 

determine the overload on fatigue crack propagation. 

Kumar et al. [1] investigated the increase in fatigue life 

after applying overload and expressed a relationship for 

the increase in fatigue life in terms of overload ratio. 

Similar research was done by Borresgo et al. [2] on 

aluminum alloys. Shuter and Geary [3] showed that the 

reduction rate of fatigue crack growth depends on the 

stress intensity factor and stress ratio. Moarrefzadeh et 

al. [4] modified Walker's Equation to predict the 

fatigue crack propagation in the presence of overload. 

The effective stress intensity factor and the effective 

cycle ratio were defined because of the overload effect. 

Based on this research, various models have been 

presented, the most important of which is the Wheeler 

model [4]. The basis of this model is the change in the 

size of the plastic area of the crack tip after applying an 

overload. Another widely used method, which was 

formed based on Elber's theory [5], is the use of the 

effective stress intensity factor. In his research, Elber 

noticed unusual changes in elastic softness in samples 

under fatigue loading. After Elber, much research was 

done on crack closure factors; for example, Suresh and 

Ritchie [6] stated five mechanisms to explain the crack 

closure phenomenon. Based on their research, when the 

specimen is loaded, large tensile plastic regions 

develop near the crack tip, which are often not 

completely removed with time. As the crack grows into 

these areas, the plastic area is moved to the crack front, 

which will reduce the crack driving force. Also, 

Newman [7] addressed the validation of the crack 

closure method in predicting fatigue life and methods 

of measuring this parameter. Harmain [8] presented a 

model to determine the effect of overload on crack 

growth and fatigue life. The two main features of 

Harmain's model are considering the concept of crack 

closure as a measure of crack growth and relating the 

effective stress intensity factor after overloading to the 

effective stress intensity factor in constant amplitude 

loading. 

The finite element method is also used for numerical 

analysis. In recent decades, the finite element method 

has shown its ability in various computational fields, 

and for this reason, it has become one of the most 

common methods for solving partial differential 

Equations used by various researchers and specialists. 

Currently, this method is considered the most common 

method among the known numerical methods in the 

analysis, where the scope of the problem is in the small 

areas called divided elements, the governing 

differential Equations of the system are approximated 

by a set of algebraic Equations for each element. The 

finite element approach is widely used to determine the 

stress intensity factor of cracks under complex 

loadings. Despite the high accuracy and generality of 

the finite element method, in cases such as elastic-

plastic analysis and the study of crack fatigue 

propagation, which require a large number of stress 

intensity factor calculations under different loading 

conditions, these analyses are very time-consuming. 

Problems related to cracks in arbitrary and complex 

paths are difficult to solve using the finite element 

method. Because in this method, the border between 

the elements is given a default path for crack 

development, and in order for the border between the 

elements to match the real path of the crack, the 

problem must be solved step by step, and at each step, 

the mesh of elements must be produced again. This 

increases the amount of calculation error caused by 

transferring the field solution from the previous 

elementalization to the new elementalization [9-17]. In 

recent years, to solve these problems, a new set of 

computational methods has been presented, which, 

unlike the finite element method, does not need to mesh 

the problem area to solve the problem. These methods 

are called Meshless Local Petrov-Galerkin (MLPG). In 

this method, only a set of nodes distributed arbitrarily 

in the problem area is used to construct approximation 

functions, discretization, and solve partial differential 

Equations. In general, in this method, there is no need 

for any predefined elements to approximate the 

function field [18-19]. Moarrefzadeh et al [19] used 

MLPG method based on linear elastic fracture 

mechanics for the prediction of the fatigue crack 

propagation in the welding residual stress field. They 

used the MLPG formulation based on the Moving Least 

Square (MLS) method to interpolate the displacement 

field due to residual stress and cyclic loading. The 

results of the prediction based on their research were 

very close to the experimental results. Singh et al. [20] 

modified and enriched the MLPG method for solving 

fracture mechanics problems and introduced this 

method for modeling fatigue crack propagation. Rao 

and Rahman [21] introduced the extended meshless 

method for the construction of linear elastic cracks 

under single or combined loading conditions. This 

method includes the new formulation of the MLPG 

method based on the exact implementation of the 

boundary and necessary conditions related to the new 

weight function. 

In this paper, the MLPG method for fatigue crack 

propagation analysis of a plate C(T) is presented. The 

MLPG formulation based on the MLS method has been 

used to analyze the cyclic loading with overload. First, 
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the MLPG method has been used to analyze fatigue 

crack propagation with cyclic loading. Therefore, the 

weight function has been enriched to calculate the 

stress intensity factor. Then, this method to investigate 

the effect of overload on the fatigue crack propagation 

rate has been discussed. In this regard, effective stress 

intensity factor and effective cycle ratio are defined in 

order to consider overload. Walker's Equation has been 

modified to predict the fatigue crack propagation rate in 

the presence of overload. In order to ensure the distance 

between nodes and the density of nodes, the 

relationship between the size of the support domain and 

the squared domain size with the distance between 

nodes has been discussed. The obtained results clearly 

show the effect of overload delay on fatigue crack 

growth caused by compressive residual stress at the 

crack tip. In order to validate the presented method, the 

results have been compared with Wheeler's model and 

experimental test, which shows a good agreement. 

2 MATERIALS AND SAMPLES  

In this research, according to “Fig. 1”, the workpiece 

with C(T) geometry is made of ASTM-A193 carbon 

steel, whose mechanical properties are shown in 

“Table1”.  

 
Table 1 Mechanical properties of 2024-T351 

E Yield Stress Ultimate 

Tensile Stress 

Poisson's 

Ratio 

200 

GPa 

450 MPa 550 MPa 0.3 

 

 
Fig. 1 Compact Tension (CT) specimen geometry 

(thickness =3mm). 

 

Figure 2 shows the loading condition of this paper, 

which is cyclic loading with overload. 

 

 
Fig. 2 Cyclic loading with overload (

I
K :SIF mode 1). 

3 THEORIES OF MLPG METHOD 

The interpolation function according to MLS method is 

defined [22]. 
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Where, 
i

r  is the standardized distance between x and 

node i. In solid mechanics, the governing Equation for 

the two-dimensional problem with residual stress in the 

domain Ω boundary by  is described by:
   

0
,,


jijjij
d                                                      (7) 

 

Where i, j = (1, 2) represent, respectively x,y directions, 

jij
d

,
  is the residual stress, which is defined as “Eq. 

(2)”.  
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Where, ][ epD  
is equal to the sum of ][ eD  

and ][ pD
 

which are respectively the elastic stiffness matrix and 

plastic stiffness matrix. The boundary conditions and 

initial conditions of the problem are written as follows: 
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Where, jn is the component of the unit outward normal 

vector on the boundary and
 iu

 
, it  denote the 

prescribed displacement and tractions, respectively. 

The local weighted residual form defined over a local 

quadrature domain q bounded by q , (shown in “Fig. 

3”) has the following form. 
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Fig. 3 Support domains of points of interest at

ix  [22].
 

                              

 

“Eq. (10)” can be integrated by parts to arrive at: 
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Figure 4 shows that the boundary q  for the local 

quadrature domain, q  has been composed by the 

parts, ie, quqtqiq  , where qi is the internal 

boundary of the quadrature domain, which does not 

intersect with the global boundary  , qt is the part of 

the natural boundary that intersects with the quadrature 

domain and qu is the part of the essential boundary 

that intersects with the quadrature domain [22]. 

Therefore, “Eq. (11)” can be rewritten as: 
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For a local quadrature domain located entirely within 

the global domain, there is no intersection 

between q and global boundary  . Therefore 

qqi  and there is no integral over qu and qt .  

In this case, “Eq. (12)” becomes: 
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Fig. 4 Schematic illustration of MLPG method [22]. 
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Since the cubic spline weight function has a property 

that can be zero along the boundary of the internal 

quadrature domains, the local weak-forms of “Eq. (12)” 

for nodes whose local quadrature domain intersects 

with the global boundaries can be rewritten as: 
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By considering this property of the weight function, 

“Eq. (13)” can be rewritten as:  
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By imposing “Eqs. (8) and (9)” in “Eq. (14)”: 
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The “Eq. (16)” can be written in matrix form: 
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4 STRESS INTENSITY FACTOR (SIF) 

4.1. External Load SIF 

One of the most important methods of linear elastic 

fracture mechanics analysis is the determination of the 

stress intensity factor. Therefore, calculating the stress 

intensity factor is very important. Applied load SIF, 

,
ext

K is calculated by: 

 

)(
w

a
faK

extext
                                             (21) 

 

Where, )(
w

a
f  is a specimen geometry dependent 

function of the crack length, a, and the specimen 

width, W, and 
ext

  is the applied stress.  

4.2. Survey of Overload Effect on SIF 

Cyclic loading with overload is shown in “Fig. 2”. 

Overload leads to the formation of a plastic zone in the 

crack tip. This plastic region is shown in “Fig. 5”.  

 

 
Fig. 5 Plastic zone as a result of overload [24]. 

 

But after the overload is lost, due to the lack of 

coordination between the plastic area of the crack tip 

and the surrounding elastic environment, a compressive 

residual stress field according to “Fig. 6” is created 

around the crack tip. Based on [23], the expression of 

residual stress 
residual

 considering elastoplastic 

hardening in the plastic zone is correspondingly 

presented: 
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Where )(
a

x
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is the weight function depending on the 

loading, boundary, and geometric condition of the 

workpiece. 

Residual stress SIF
reidual

K
 
based on 

reidual


 
is given 

by the following: 
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Equivalent residual stress SIF eq

residual
K  is mainly 

dependent on load amplitude, which can reflect the 
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difference between constant and overloaded loading 

events.  
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Where, 
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res
K tan and

overload
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K are residual stress 

SIF under constant and overloaded loading, 

respectively. Also, 
goverlappin
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K  is the overlapping part 

of 
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K tan and
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In this case, an effective SIF resulting from overload 

can be defined by:  
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Fig. 6 Residual compressive stresses at crack tip as a 

result of overload [24]. 

5 FATIGUE CRACK PROPAGATION (FCP) 

The stress intensity coefficient and the cycle ratio are 

very effective for describing the stress field at the crack 

tip. The fatigue crack propagation rate,
dN

da , is defined 

by the stress intensity factor range and cycle ratio. 

Therefore, the FCP Equation is expressed as a function 

based on these two parameters. .)),(( RKf
dN

da


 

5.1. Survey of Overload Effect on FCP by Wheeler 

Model 

Wheeler introduces a retardation parameter . It is 

based on the ratio of the current plastic zone size and 

the size of the plastic enclave formed at an overload 

(“Fig. 7”).  

 
Fig. 7 The model of Wheeler (Situation after overload) 

[24]. 

 

This plastic zone is still embedded in the plastic 

enclave of the overload; the latter proceeds over a 

distance in front of the current crack ia . Wheeler 

assumes that the retardation factor will be a power 

function of


pir
. 

Since
ipo ara  0  the assumption amounts to: 
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5.2. Survey of Overload Effect on FCP by Paris 

Equation 

In order to consider the effect of overload on fatigue 

crack propagation rate, the Paris Equation is modified 

as follows: 
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5.3. Survey of Overload Effect on FCP by Walker 

Equation 

In this case, variation of SIF is defined by Eq. (28). So, 

considering overload effects, FCP can be obtained by 

“Eq. (29)”. In fact, this Equation is a modification of 

walker Equation that estimates the rate of FCP 

considering effects of external loads, overload. 
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Where effective cycle ratio ( *
effR )is defined by: 
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Walker Equation has an appealing advantage for 

predicting FCP rates in compressive residual stress 

fields due to overload.  

5.4. Fatigue Life Estimate Model 

In “Eq. (24)”, the effective SIF is introduced. 

Considering the effect of overload on crack closure, 

using effective SIF is a suitable method to consider 

crack growth after overload. For this purpose, “Eqs. 

(32) and (33)” are expressed for crack growth in this 

case.  
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Equations (32) and (33) are used before and after 

overloading, respectively. 

11
nandc are the coefficients related to material 

properties determined by fatigue testing without 

overload. Coefficients 22
nandc  are obtained by 

studying “Eq. (33)” on crack growth test data and 

considering the effect of crack closure. The fatigue life 

of the workpiece from the initial crack length to the 

final crack length can be determined by integration in 

“Eq. (34)”. Since the crack grows discontinuously, this 

integral turns into a sum and is written: 
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6 CALCULATION OF SIF AND FCP 

In the Linear Elastic Fracture Mechanics (LEFM), the 

stress field and displacement around the crack mode I 

are obtained by “Eqs. (35, 36)”: 
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Where, r is the distance from the crack tip ,  is the 

measured angle relative to the cracks in the counter-

clockwise direction, 
IK  is Stress Intensity Factor and 

)(),(  iij gf
 
are the standard trigonometric functions 

of mode I.  

The stress intensity factor for external loading,
extK can 

be calculated from stresses and displacements: 
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The distribution of stress and displacement are 

achieved from the MLPG method according to “Eq. 

(17)”. 

The studied sample is considered according to section 

2. According to “Fig. 8”, the stress intensity factor 

variation is calculated based on the MLPG method with 

crack propagation for different loading cases. Crack 

lengths up to 15.3 mm are shown separately in “Fig. 9”. 

These figures show how the stress intensity factor 

changes according to the crack propagation. 

 

 
Fig. 8 Stress intensity factor variation (crack length: 15 to 

17 mm). 
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Fig. 9 Stress intensity factor variation (crack length: 15 to 

15.3 mm). 

 

According to “Fig. 10”, fatigue crack propagation rates 

are calculated based on “Eq. (31)” for different loading 

cases. Crack lengths up to 15.3 mm are shown 

separately in “Fig .11”.  
 

 
Fig. 10 Fatigue crack propagation rate (crack length: 15 to 

17 mm). 

 

 
Fig. 11 Fatigue crack propagation rate (crack length: 15 to 

15.3 mm). 

Variations of external SIF and overload SIF with 

respect to crack length are shown in “Fig. 12”. The 

results are obtained based on the MLPG method. In this 

figure, the effect of overload on the stress intensity 

factor is shown. 
 

 
Fig. 12 Effective Stress Intensity Factor (External SIF and 

overload SIF).  

7 PREDICTING THE CRACK GROWTH (LOADING 

WITH VARIABLE AMPLITUDE) 

In many structures, the amplitude of cyclic loading is 

not constant, and the amplitude of the load changes 

with time. In this research, the expansion of fatigue 

cracks under load with variable amplitude has been 

investigated. In this regard, in the case of fatigue crack 

propagation despite the overload, the mutual effect of 

loads with different amplitudes has been shown. 

In this paper, a large plate made of material according 

to “Table. 1” and having a geometry according to “Fig. 

1” is considered. This plate is under variable tensile 

stress ( MPa60 ). According to MLPG method, 

fatigue crack propagation rate based on stress intensity 

factor variation is shown in “Table. 2”.  

 
Table 2 FCP rate based on SIF variation ( MPa60 ) 

da/dN (mm/cyc) ΔK (MPa√m)  

0.679 14.587 

0.699 14.708 

0.725 14.829 

0.744 14.924 

0.772 15.066 

0.797 15.185 

0.821 15.299 

0.846 15.412 

0.872 15.529 
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When the crack length is 15 mm, the applied load 

suddenly doubles. The way of changes in fatigue crack 

propagation rate in two cases with and without 

overload is shown in “Fig. 13” based on MLPG 

method. 

 

 
Fig. 13 FCP rate with and without overload. 

 

Figure 14 illustrates this retardation effect of overloads 

on crack propagation. The overload has introduced a 

large plastic zone, as shown in “Fig. 5”. The material in 

this zone is stretched to a permanent deformation, but 

after unloading, it still has to fit in the surrounding 

elastic material. The elastic material resumes its 

original size, but the material in the plastic zone does 

not. The plastic zone is too large for the surrounding 

elastic environment. 

 

 
Fig. 14 Delay due to overloading.  

 

Consequently, the surrounding elastic material will 

exert compressive stresses on the plastically deformed 

material at the crack tip. The resulting residual stress 

system is depicted diagrammatically in “Fig. 6”. As 

soon as the crack has grown through the area of 

residual stresses, the original crack propagation curve 

will resume again.  

8 DISCUSSIONS 

8.1. Comparison of the MLPG Method with 

Experimental Test 

Predicted Fatigue crack propagation rates were 

compared with experimental results for a specimen 

made of ASTM-A193 carbon steel. The Walker 

Equation was used to calculate the fatigue crack 

propagation rates. Material constants used in the walker 

Equation are 8105.1 C , n=4 and m=0.5.  

Figure 15 shows the predicted FCP rates by Walker 

Equation for MPa60 . The walker Equation gives a 

good prediction for this case when mma 16 . The 

reason for the difference in results for mma 16  is due 

to the use of LEFM. Fatigue crack propagation test was 

studied according to ASTM E647 [25]. 

 

 
Fig. 15 Comparison of the Walker Equation by 

experimental test. 

 

8.2. Comparison of the MLPG Method with 

Wheeler's Model 

The results of the MLPG method have been compared 

with the Wheeler model. This comparison is shown in 

Fig.16. The results show a good agreement. The results 

obtained based on the two methods are shown up to the 

crack length of 15.3 mm. Because after this length, the 

crack comes out of the compressive residual stress area. 
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Fig. 16 Comparison of the MLPG method with Wheeler's 

model. 

9 CONCLUSIONS 

In this paper, the effects of overload on Fatigue crack 

propagation were studied. The MLPG method is used 

to calculate the stress intensity factor due to external 

load and overload. The following results were obtained: 

1. By enriching the weight functions to solve crack 

problems, the stress intensity factor is determined with 

the desired accuracy, and the number of required nodes 

is minimized. 

2. According to the agreement of the obtained results 

with the experimental results, it can be said that an 

efficient method for SIF calculation has been presented. 

3. The effects of external load and overload on SIF are 

considered. Using effective SIF or effective cycle ratio, 

Walker's Equation is modified to account for the effect 

of overload on FCP.  

4. The agreement of the results of the modified Walker 

Equation with experimental test and Wheeler model 

shows that the calculations of overload effects, 

accomplished according to the MLPG method, are 

suitable. 
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