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1. INTRODUCTION 

      Cardiovascular diseases (CVDs) are a significant cause of mortality worldwide, with an estimated 17 million deaths 

globally due to CVDs according to a 2005 report by the World Health Organization (WHO) [1]. CVDs are also 

responsible for an estimated 30% of all deaths worldwide [1]. Within this group, approximately 7.2 million deaths are 

attributed to coronary heart disease (CHD), and 5.7 million deaths are attributed to stroke [1]. By 2030, it is projected 

that approximately 23.6 million people will die from CVDs [2]. 

      Healthcare professionals typically diagnose heart disease manually by interpreting electrocardiogram (ECG) signals, 

but recent technological breakthroughs have led to the development of multiple automated diagnostic tools for 

arrhythmia classification and diagnosis by physicians [3-4]. Some studies in the literature have suggested that heart rate 

could be a suitable criterion for diagnosis. Khan et al. [5, 6] provided a comprehensive introduction to the research 

conducted in this field and proposed deep learning (DL)-based methods for classifying three types of arrhythmias. DL 

has become a practical tool in medical settings, particularly for classifying cardiac arrhythmias, with several studies 

investigating one-dimensional (1D), two-dimensional (2D), and/or merged 1D/2D deep convolutional neural networks 

(CNN) [7, 8]. For example, Xiao et al. [7] proposed a novel arrhythmia classification technique that involves pre-

processing, a 1D deep CNN using a block-stacked style architecture including clique and transition blocks, and an 
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states. Training and testing of the data are performed using the K-fold cross-validation procedure, and a 
novel model is employed to enhance the learning process. Through this innovative diagnostic system, the 
detection of cardiac abnormalities in electrocardiogram (ECG) signals is achieved with an impressive 
accuracy ranging from 96% to 99% across a broad spectrum of cases. By harnessing the power of 
machine learning algorithms and leveraging a comprehensive set of features, this research significantly 
advances the field of cardiac disease diagnosis. The proposed methodology outperforms traditional 
approaches by providing a more accurate and efficient means of identifying heart conditions. The utilization 
of diagnostic labels as the basis for diagnosis ensures enhanced reliability, enabling healthcare 
professionals to make informed decisions regarding patient care. Ultimately, this research contributes to 
the ongoing efforts to improve cardiac healthcare, enabling early detection and intervention, and potentially 
saving numerous lives. 
 
KEYWORDS: Heart Diseases, Machine Learning, Heart Rate Analysis, MIT-BIH Database. 

 

https://doi.org/
mailto:karimi.salman@lu.ac.ir


Majlesi Journal of Telecommunication Devices                           Vol. 13, No. 2, June 2024 
 

70 

 

attention mechanism and majority voting decision strategy for prediction. However, their experiments did not account 

for low-frequency noise recorded in arrhythmic beats, and the 2D representation requires additional computations that 

are not feasible without building and adjusting a large set of hyperparameters. In a similar study, Noman et al. [8] 

proposed a framework based on a 1D-CNN that directly learns features from raw heart-sound signals and a 2D-CNN 

that takes inputs of 2D time-frequency feature maps. Despite the numerous advantages of DL, these networks require 

feeding with an immense volume of input data, and proper decision-making in these networks relies on the adjustment 

of multiple parameters. 

      Automated systems for arrhythmia diagnosis have been developed in recent research [9, 10], but these systems are 

still undergoing strict pre-approval evaluations by healthcare professionals. Other proposed systems suffer from learning 

challenges and uncertainty [11, 12]. The development of arrhythmia detection systems requires overcoming fundamental 

issues, such as manual feature selection, feature extraction techniques, and classification algorithms, particularly when 

using unbalanced data for classification. Extracting features from ECG signals for automatic arrhythmia diagnosis 

requires an immense volume of data and information. Afkhami et al. [13] proposed a novel method for accurately 

classifying cardiac arrhythmias, utilizing two inter-beat (RR) interval features as time-domain information exemplars. 

They also used Gaussian mixture modeling (GMM) with an enhanced expectation maximization (EM) solution to fit the 

probability density function of heartbeats. In addition, GMM parameters and shape parameters (e.g., skewness, kurtosis, 

and 5th moment) were included in the feature vector, which was then used to train an ensemble of decision trees. 

Mathunjwa et al. [9] designed a new DL method for effective arrhythmia classification using 2-second segments of 2D 

recurrence plot images of ECG signals. Marinho et al. [14] proposed a novel approach to detect cardiac arrhythmias in 

ECG signals. In [15], an improved CNN called the modified visual geometry group network (mVGGNet) was introduced 

for automatic heart-abnormality classification using ECG signals. Ref. [16] combined three groups of features for 

arrhythmia classification, including RR distances, signal morphology, and higher-order statistics (HOS), and validated 

the proposed method using the MIT-BIH database based on an inter-patient paradigm. The robustness of each group of 

features against classification faults was also investigated. Despite the promising results of these studies, automated 

arrhythmia diagnosis systems still need to overcome challenges such as learning difficulties and unbalanced data for 

classification. 

      The proposed jitter-based classification system demonstrated a sensitivity of 93.7%, 89.7%, and 87.9% for N, S, and 

V classes, respectively, according to the experimental results. Kaya et al. [17] used long short-term memory (LSTM) 

neural networks to classify ECG signals by combining LSTM and angle transform (AT) methods. Rahul et al. [18] 

proposed an improved RR interval-based cardiac arrhythmia classification approach that utilized the discrete wavelet 

transform (DWT) and median filters to remove high-frequency noise and baseline wander from the raw ECG. Lee et al. 

[19] proposed a beat–interval–texture convolutional neural network (BIT-CNN) model for arrhythmia classification by 

transforming variable-length 1D ECG signals into fixed-size 2D time-morphology representations. They learned 

comprehensible characteristics of beat shape and inter-beat patterns over time. Zhang et al. [20] proposed a Multi-Lead-

Branch Fusion Network (MLBF-Net) architecture for arrhythmia classification by integrating multi-loss optimization 

to jointly learn the diversity and integrity of multi-lead ECG. The experimental results showed that MLBF-Net achieved 

the highest arrhythmia classification performance, with an average equation F_1 score of 0.855. Rahul et al. [21] 

proposed a technique for classifying lethal CVDs, such as atrial fibrillation (Afib), ventricular fibrillation (Vfib), 

ventricular tachycardia (Vtec), and normal (N) beats. 

      In this study, an automated method for analyzing non-stationary heart sound signals to identify disease-related 

classes is proposed. Unlike other methods that do not consider the non-stationarity of the signal, this study uses signal 

windowing to address this issue. By combining features obtained from analyzing cardiac signals, the diagnosis and 

classification of cardiac arrhythmias can be improved. The proposed feature extraction structure integrates features from 

the time and frequency domains based on statistical and fractal indicators, using only two leads. The structure also 

employs a decision tree for learning. However, the contribution of frequency and time domain features to classification 

accuracy may differ depending on the feature extraction method. Therefore, an appropriate feature extraction process is 

crucial for achieving a comprehensive method for combining and classifying features. Additionally, a multi-core 

overlearning model using group learning methods can address challenges such as overfitting and uncertainty, while also 

reducing computational complexity. The primary goal of this study is to diagnose heart disease and reduce false and 

negative faults, thereby improving evaluation criteria. 

 

2. ELECTROCARDIOGRAPHY 

      Accurate and consistent evaluation of arrhythmias by cardiologists is crucial for effective diagnosis, but it can be 

challenging and time-consuming. Therefore, automated detection systems are necessary for the accurate identification 

of cardiovascular diseases. Sophisticated diagnostic systems can assist cardiologists in precise and rapid diagnosis of 

ECG recordings, reducing the time and cost of clinical interpretation. In recent years, various machine learning-based 
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models have been proposed for the analysis of cardiac signals to detect different types of arrhythmias. An ECG is a 

machine that records the heart's electrical activity as a graph, where electrodes are placed at specific spots on the skin to 

record the electrical impulses generated by the heartbeat. Each recorded ECG graph contains three distinct waves, 

namely the P wave, the T wave, and the QRS complex. Researchers have used cardiac signals and analyzed various data 

to propose a range of techniques for identifying heart diseases and classifying the heart's diverse functional states. The 

developed models are based on feature extraction, feature selection, and classification. Fig. 1 shows segments of a 2s 

1D ECG signal for six classes and their corresponding RPs, including data on AF rhythm, normal beats, PAC beats, 

PVC beats, VF, and noise. As asserted by them, this is the first report of using SCM to extract features with ECG signals. 

 

3. CVDs 

      According to the World Health Organization (WHO), cardiovascular diseases (CVDs) account for 32% of all global 

deaths [22]. Congestive heart failure (CHF) is a severe cardiac disorder and a leading cause of mortality worldwide. In 

CHF, the heart muscle fails to pump enough blood to maintain the bloodstream and meet the needs of body tissues for 

oxygen and metabolism. Globally, over 26 million adults suffer from CHF, and its prevalence is increasing by 3.6 

million annually [23]. However, early diagnosis of CHF can significantly improve treatments and prevent disease 

progression. Arrhythmias are the next leading heart disorder responsible for several cases of sudden cardiac death (SCD). 

An arrhythmia refers to an abnormality of the heart's rhythm caused by irregular heartbeats. 

      Various non-invasive and invasive methods can be used to diagnose CVDs. Invasive methods are available, but they 

are costly and uncomfortable, particularly in remote areas. In contrast, early diagnosis of CVDs using non-invasive 

methods is cheap and painless. ECG and phonocardiograph (PCG) signals are among the non-invasive techniques used 

to diagnose CVDs. However, cardiologists require the necessary equipment and facilities for heart monitoring to perform 

respective analyses, which are not easily accessible, particularly in remote areas [24]. 

 

 
Fig. 1. Segments of the signal for a 2s normal state for six classes and relevant RPs. The 2s segments are shown for 

AF (a), normal beats (b), PAC beats (c), PVC beats (d), VF (e), and the likely noise (f). The difference in sample size 

between ECG segments are emanated from various sampling rates for the databases [9]. 

 

      An ECG is a non-invasive test that monitors and records the heart's function by detecting the electrical activity of 

the heart muscles. ECGs provide essential data on heart diseases to cardiologists, making them efficient tools for the 

identification of various CVDs. 

 

4. MIT-BIH DATABASE 

      This study used data from the MIT-BIH database to conduct experiments. This database includes various common 

and life-threatening arrhythmias and comprises 48 ambulatory ECG records, each lasting 30 minutes, obtained from 47 

patients. Each record consists of two distinct scenarios, where for 45 records, the first lead is the MLII (modified limb 
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lead), and for the remaining records, the lead is modified V5. The second lead is pericardial, i.e., V1 (for 40 records) 

and V2, V4, or V5 (for the remaining records). For this study, 23 records were randomly selected from 4000 ambulatory 

ECG records in the database collected from a diverse population of inpatients. The remaining 25 records were selected 

from the same collection, featuring less common but clinically significant arrhythmias that are not well-represented in 

a small random set [14]. Table 1 shows the main labeling of the database, including 16 classes of rhythms.  

 

Table 1. Data from the MIT-BIH arrhythmia database. 

No. Type of heartbeat Abbreviation 
Signal 

annotation 
Total 

1 Normal rhythm NOR N 74607 

2 Left bundle branch block LBBB L 8069 

3 Right bundle branch block RBBB R 7250 

4 Atrial premature contractions APC A 2514 

5 Premature ventricular contraction PVC V 7127 

6 Heartbeat PB / 7020 

7 Premature atrial abnormality AP a 150 

8 Ventricular Fibrillation VF ! 472 

9 Integrated ventricular beat VFN F 802 

10 Non-conductive P wave BAP x 193 

11 Nodal escape NE X 229 

12 Merged fast and normal beat FPN J 982 

13 Ventricular escape VE F 106 

14 Nodal escape beat NP E 83 

15 Atrial escape beat AE J 16 

16 Unclassified UN E 38 

Total - - Q 109655 

 

      The classes were labeled, and the results of cardiac arrhythmia classification algorithms were represented following 

the standards set out by the Association for the Advancement of Medical Instrumentation (AAMI). AAMI defines five 

clinically relevant classes as "N" (sinus node beats), "S" (supraventricular ectopic beat), "V" (ventricular aberrant beats), 

"F" (fusion beats), and "Q" (unclassified hits). Table 2 maps the classes of the MIT-BIH arrhythmia database to AAMI 

heart rate classes. Additionally, this table contains plans to train data division and the test set (DS1 and DS2, 

respectively) [2] for subject-oriented classification. This plan carefully splits the dataset so that the training and test 

samples are equally distributed among the five mentioned classes, and it also creates false-negative (FN) for four speed 

records (i.e., 102, 104, 107, and 217) recommended by the AAMI. All 48 records and 16 MIT-BIH annotation classes 

were used in the class-oriented plan, while the subject-oriented plan employed 44 non-rhythmic records with 5 classes 

in Table 2 recommended by AAMI. 

 

Table 2. AAMI considering the label of five classes for classification. 

No. AAMI class MIT-BIH class Total 

1 N NOR, LBBB, RBBB, AE, NE 89665 

2 S APC, AP, BAP, NP 2940 

3 V PVC, VE, VF 7478 

4 F VFN 802 

5 Q FPN, UN 17 
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5. THE PROPOSED METHOD 

      Generally, this research is comprised of three fundamental sections: signal windowing, feature extraction, and 

classification. 

a) Signal Windowing: The necessity addressed here is overcoming the non-stationarity of cardiac signals. This issue 

holds significant importance in improving the accuracy of the examined system. To extract information from the signal, 

it needs to be divided into short segments in a manner that, according to signal processing sciences, ensures the time 

required to generate a cardiac complex, which is at least 500 seconds. Essentially, the goal is to apply processing to 

segments that are sufficiently short, preventing temporal changes in the properties of cardiac signals within them. 

Considering the overlap between frames, the impact of discontinuities in the signal decreases, and this is a crucial step 

in improving accuracy, which we have addressed in this research. While some researchers do not use signal windowing 

and apply feature extraction directly to the entire signal, this approach leads to a reduction in classification accuracy. 

 

b) Feature Extraction: In the feature extraction section, various features are employed to describe the signal, commonly 

used in vital signals and cardiac signals. The following features are introduced in order, encompassing time and 

frequency domain features. In (1), the signal integral is represented, where x denotes the input signal and N is the length 

of the signal. 


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      In equations (2) to (5), the absolute mean value of the signal, the absolute value of third-order time moments, the 

absolute value of fourth-order time moments, and the absolute value of fifth-order time moments are respectively 

represented. 
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      In the set of equations (6) to (9), the signal variance, root mean square, waveform length, and zero-crossings are 

respectively represented. 
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      In the set of equations (10) to (13), the mean absolute mean deviation, autoregressive coefficients, V order moments, 

and separable and simple square integrals are respectively represented. 
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      Similarly, in equations (14) to (16), the average range of change, the difference in absolute standard deviation, and 

finally, the Wilson amplitude range are respectively presented. 
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      Continuing, frequency domain features are introduced for the analysis of cardiac signals. From (17) to (22), 

frequency domain features, including mean frequency, median frequency, peak frequency, average power, final power, 

and frequency ratio, are respectively presented. 
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      In addition to the aforementioned features, we also utilize fractal dimension features. These features are generally 

considered among the important features that reflect the oscillations and intricacies within the signal, with a high 

calculation speed. Among these features, known as fractal dimension features, are included Katz dimension, Higuchi 

dimension, Petrosian dimension, correlation dimension, and other similar measures. Equations (23) and (24) describe 

the signal's correlation dimension, where we have N points in an M-dimensional space. 
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      Then, the correlation integral C(ε) is calculated according to equation (24).  

     C ε lim g /N²  N  (24) 

      Where g is the total number of pairs of points with distances less than ε. As the number of points tends to infinity 

and the distance between them approaches zero, the correlation integral for small values of ε is expressed as in equation 

(25). 
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      In the fractal method, the estimation of the fractal dimension is carried out for a new series of input data x according 

to the equation (26).  
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      Where m = 1, ..., k represents the starting point of each series, k is the distance between samples, and  [
𝑁−𝑚

𝑘
] is the 

integer part of each number. Therefore, for each m, we have the length Lm(k).  
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      In this equation, N represents the number of required samples, and for each value of K, K lengths will be estimated. 

Then, the average is calculated as the component of the mean length. This process is repeated up to Kmax, and if L(k) is 

obtained for the next k-1, Higuchi is then used to form the best approximation line with the least squares error in 

Log(L(k)) versus Log(k-1). 

 

c) Classification: Classification in the network is performed by considering a suitable classifier, initial training of the 

network, and finally testing it for the detection of cardiac arrhythmias. The classification utilizes an ensemble method 

based on a decision tree. There are various ways to combine predictions of a group, or bagging, but the most common 

method used in the research is majority voting. The main causes of error in learning stem from noise, bias, and variance. 

This ensemble approach helps minimize these factors. The combination of multiple classifiers reduces variance. To use 

bagging and boosting, we choose a base learner algorithm. For instance, if we select a classification algorithm, bagging 

and boosting would involve an ensemble of trees as large as desired. Bagging and boosting methods create N learning 

patterns by generating additional data during the training phase. New training datasets are produced by random sampling 

with replacement from the original dataset. With sampling and replacement, some observations in each new training 

dataset may be repeated. In the case of bagging, each element has an equal probability of being present in the new 

datasets. To enhance the method, observations are assigned weights, so some of them participate more in the new 

datasets. In bagging, for training data with size D and dimension n, the model creates a new training sample set Di with 

size nʹ  by sampling from D uniformly and with replacement. These types of samples are essentially bootstrap samples. 

Next, m models are created using m bootstrapped samples, and their outputs are combined by averaging in regression 

or majority voting in classification. This method can be a combination of numerous classifiers, each utilized in the 

bagging process. However, decision tree-based learning methods are efficient and can be beneficial in ensemble methods 

like bagging, even in semi-supervised settings. Bootstrap aggregation, also known as bagging, leverages the aggregation 
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of inputs in a way that an algorithm is used to create stability and improve accuracy, typically applicable in statistical 

classification and regression processes. This approach not only improves accuracy but also reduces variance and 

dispersion, aiding in preventing overfitting. While decision tree-based methods are commonly used in bagging, this 

technique is applicable with various methods. In the stages of bootstrap aggregation in bagging, with sampling and 

replacement, some observations may be repeated in each Di. In a scenario where it can be assumed that a set of 

observations is independently and equally distributed from an accessible population, bootstrap can be implemented by 

creating multiple subsamples, where each of these subsamples consists of randomly selected observations with 

replacement from the original dataset. The use of the bootstrap method in bagging can significantly contribute to 

improving accuracy and other factors such as variance and dispersion. However, in decision tree-based learning, it 

essentially involves modeling using one of the prediction model methods that utilize a decision tree (as a predictive 

model) to draw conclusions about the target value of a case (as presented in the leaves) from observations related to that 

case (discussed in the subsections). This model, where the target variable can have a set of discrete values, is referred to 

as decision trees in classification. In these tree structures, the leaves represent class labels, and branches represent 

combinations of features that lead to the assignment of class labels. Decision trees in which the target variable can have 

continuous values, typically real numbers, are called regression trees. The predictions of decision tree models are 

aggregated to create a final combined prediction. This aggregation can be based on the predictions made by individual 

bootstrapped models or the probability of the predictions made by the individual models. The main drawback of the 

bagging method is that it does not allow for fine-tuning the aggregation of learner models. If not modeled properly, it 

may lead to overfitting and become a challenging decision-making problem. Another weakness is that while bagging 

provides higher accuracy, it can be computationally time-consuming and resource-intensive, making it less desirable for 

large datasets depending on the use case. The main advantage of the bagging or bootstrap aggregation method used in 

this study has been its ability to improve the accuracy of a model without risking an increase in its variance. This makes 

it a suitable choice for situations where we want to reduce the variance of predictions without sacrificing a significant 

amount of accuracy. The precise and automated identification of the presence or absence of a disease based on cardiac 

signal analysis in the algorithm set forth in this study can contribute to establishing an effective connection between 

individuals and healthcare professionals. It can also help prevent a reduction in the error rate in the design of assistive 

systems and assess changes in error rates. Through proper differentiation of binary or multi-class states, the system could 

estimate the severity of the disease based on cardiac signals among samples or individuals, fostering more accurate 

diagnoses. 

      Overall, for cardiac signals, the accuracy of the proposed method is more than 98% using 30 segment division and 

40% overlap. Also, the overlapping situations less than 20% and more than 30% are well analyzed. 

In other studies, the issue of uncertainty has not been addressed, but in this study, by plotting the ROC curve, it is 

possible to make a statement about this issue to a large extent. Therefore, in other experiments, the criterion of the area 

under the curve was calculated and estimated, which was done for the experimental data and also for the credit data, 

respectively. 

      Previous research did not address the non-stationary nature of the ECG signal, but we have addressed it in this 

research, and to overcome this problem, we have used windowing, which is very effective in improving accuracy. Also, 

by considering the overlap between frames, the effect of discontinuous points on the signal is reduced, which is an 

important step in improving accuracy. 

      In previous studies, techniques such as variance analysis, mean comparison, or standard deviation were used to 

diagnose the disease, but this study is based on diagnostic labels. 

Furthermore, in other studies, the issue of uncertainty has not been addressed. However, in this research, we have 

addressed this matter by utilizing ROC curves and calculating the area under the curve to overcome uncertainty. 

In general, the use of signal windowing involves creating input structures from signals, reducing the length of windowed 

signals, diminishing the dimensions of extracted features, improving processing time, and enhancing accuracy. This is 

considered an innovative aspect of the research. 

      The proposed method in this study consists of three main parts, as illustrated in Fig. 2: 1) windowing of various 

types of cardiac signals, including different cardiac arrhythmias, 2) feature extraction, and 3) final classification. The 

algorithm used in this study was simulated in MATLAB (version 2022) on a computer with a Windows 10 operating 

system for both the learning section and the splitting of the signal into equal frames. The hardware used was conFig.d 

with an Intel® Core™ i7-7500U Processor (Processor Base Frequency 2.70 GHz; 4GB RAM). All processes were 

performed offline. The data were split into several stages, where the first stage involved dividing the data into 80% 

(operational) and 20% (unseen) data groups. 
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Fig. 2. Schematic representation of the proposed method in recognizing cardiac arrhythmias from the ECG signals. 

 

      The 20% of data mentioned in the final stage was used to estimate the performance of the final model obtained. The 

data were split using the K-fold validation method with K=5, where two groups of data (training and testing) were used 

for the evaluation process. The training data were included in the model, and then re-split into new training data and 

validation data using the K-fold method to adjust the fusion classification appropriately. The classification errors were 

estimated based on the obtained features and the application of validation data. Fault calculation was also performed 

based on the validation data. After that, the parameters were transferred to the model and evaluated based on the testing 

data 2. The built model and the unseen data were eventually applied to the model. To determine the best window length, 

the length of the windows was varied from 800 ms to 2500 ms, considering the properties of the cardiac signal to cover 

at least one cardiac cycle. The rate of overlap between two consecutive frames was measured by balancing accuracy and 

time. 

 

6. RESULTS 

      To evaluate the effectiveness and success of the proposed model, the confusion matrix and the ROC curve (receiver 

operating characteristic curve) were used. The confusion matrix was used to analyze the classification and identification 

of the target class and other classes, and it was estimated by examining various states when diagnosing the disease or an 

abnormal heart condition in the cardiac signal. The confusion matrix consists of four moods, including true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN), each having a specific meaning. TP is the number 

of signals or segments of the signals that indicate the presence of a cardiac abnormality, while TN is the number of 

signals or segments of the signals that do not indicate the presence of a cardiac abnormality. FP refers to the number of 

signals or segments of the signals that indicate the presence of a cardiac abnormality, but the simulation software has 

wrongly determined the presence of that class of cardiac abnormality. FN refers to the number of signals or segments of 

the signals that indicate the presence of a cardiac abnormality, but the simulation software has wrongly determined the 

absence of that class of cardiac abnormality. Based on these definitions, the accuracy, sensitivity, and specificity values 

were estimated using equations (29) to (31). 

 

   TP TN TP TN FP FN: N N / N N N NAccuracy      (29) 

   TP TP FN: N / N NSensitivity   (30) 

   TP TP FN: N / N NSpecificity   (31) 

 

      NTP represents the number of true positives, NTN represents the number of true negatives, NFP represents the 

number of false positives, and NFN represents the number of false negatives in the diagnosis of a specific class of cardiac 

abnormality. In the first step, it is necessary to evaluate the performance of the heart recognition model for signals 

selected from the database. The average recognition accuracy should be acceptable, and the average false rate should be 

less than 5% (with a small number of features). These values are ideal when the model is applied to the database. 



Majlesi Journal of Telecommunication Devices                           Vol. 13, No. 2, June 2024 
 

78 

 

 

Table 3. An estimation of criteria such as accuracy by estimating the maximum (Max), minimum (Min), and average 

(Ave) values using the proposed method and considering the change in frame length. 

Results of test folds while altering the 

frame length 
A model without 

feature fusion 

and classification 

fusion 

A model with 

feature fusion 

and 

classification 

fusion 

K-fold 1 Long frame length 0.89 ± (0.07) 0.95 ± (0.03) 

Average frame 

length 

0.88 ± (0.07) 0.97 ± (0.03) 

Short frame length 0.89 ± (0.07) 0.95 ± (0.04) 

K-fold 2 Long frame length 0.90 ± (0.07) 0.95 ± (0.03) 

Average frame 

length 

0.91 ± (0.05) 0.97 ± (0.03) 

Short frame length 0.90 ± (0.07) 0.95 ± (0.04) 

K-fold 3 Long frame length 0.90 ± (0.06) 0.95 ± (0.03) 

Average frame 

length 

0.89 ± (0.07) 0.98 ± (0.04) 

Short frame length 0.90 ± (0.07) 0.95 ± (0.03) 

K-fold 4 Long frame length 0.89 ± (0.07) 0.95 ± (0.03) 

Average frame 

length 

0.89 ± (0.06) 0.96 ± (0.03) 

Short frame length 0.89 ± (0.07) 0.95 ± (0.04) 

K-fold 5 Long frame length 0.89 ± (0.07) 0.95 ± (0.03) 

Average frame 

length 

0.89 ± (0.06) 0.98 ± (0.03) 

Short frame length 0.89 ± (0.07) 0.96 ± (0.04) 

 

      The irregular heart signals were analyzed separately to compare cardiac functioning. Table 3 presents the differences 

in the results obtained from the proposed techniques. The cardiac dataset was analyzed independently using the proposed 

algorithm with the K-fold method, where K is 5. The short frame length varied from 800 ms to 1300 ms, the average 

frame length ranged from 1300 ms to 1800 ms, and the long frame length varied from 1800 ms to 2300 ms. 

      The representation of the confusion matrix can significantly contribute to the algorithm analysis process in terms of 

classification results. Thus, Fig. 3 illustrates the confusion matrix for 5 folds of a single run of the algorithm for 

classification in the set. The estimation is performed separately for each of the five classes, and investigating the 

dispersion among the algorithm outputs contributes to the estimation and investigation of challenges like repeatability 

and uncertainty. The final accuracies were estimated to investigate the dispersion among the responses in the next 

experiment, as shown in Fig. 4. Nearly 80% of the features could result in an acceptable accuracy when included in the 

classification process, indicating that the steadiness in selecting the number of features largely depends on the initial 

volume of the features. In other words, an efficient feature-selection strategy will select fewer features, and the selected 

features will function appropriately. 
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Fig. 3. The representation of multiple folds of a single running of the algorithm: a) accuracy98/18%, b) 

accuracy98/02%,c) accuracy 98/13%,d) accuracy98/20%. the average accuracy is estimated at 98.2%. The purpose of 

displaying multiple folds of a single running of the algorithm is to indicate the quantitative dispersion of the proposed 

algorithm. 

 

      The following experiment examined the changes in results when the performance of the proposed method was 

evaluated without reflecting the effect of the "fusion step of feature selection." It was observed that the feature selection 

step improves the response by up to about 2%. This observation is also reflected in the confusion matrix, where four out 

of five folds are displayed without the feature selection conditions. The dispersion among the responses is significant, 

and on average, a 1.5 to 2% reduction in accuracy occurs. This classification is illustrated in Fig. 4. 

 

 
Fig. 4. A representation of the classification accuracy versus the number of features, indicating the maximum accuracy 

that is obtained when selecting 80% of the features. 
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Fig. 5. The representation of four folds of a single running of the algorithm: a) accuracy96/70%, b) accuracy96/75%,c) 

accuracy 97/19%,d) accuracy97/14%.  the effect of “the fusion step of feature selection” has been ignored. Under this 

condition, the classification accuracy will be reduced by 1.5 to 2% and the dispersity among the responses will be 

significant. 

 

      The impact of fusion in classification was examined in the subsequent experiment, and the results are presented 

through the confusion matrix. This state takes into account the feature selection step, but the classification is based on 

decision-making using the decision-making tree. The accuracy drop is more significant in this state, where the results 

are 2 to 3% less than the ideal state. Fig. 6 illustrates four random folds of a single run of the algorithm. Under some 

conditions similar to classification (such as classification while excluding the effect of fusion in feature selection and/or 

excluding the effect of fusion in classification), the diagnostic accuracy of some classes is notably low. However, when 

using the proposed method, the reduction in accuracy (even with fewer samples) is much lower than in similar states. 
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Fig. 6. The representation of several folds of a single running of the algorithm: a) accuracy94/99%, b) 

accuracy94/95%,c) accuracy 95/46%,d) accuracy95/17%. the effect of “the fusion step of feature selection” has been 

ignored. Under this condition, the classification accuracy will drop by 2 to 3% and the dispersity among the responses 

will be significant. 

 

      Some other conditions can be considered to demonstrate the capability of the proposed algorithm. For instance, 

fusion has improved classification in both the feature selection step and the classification step compared to the typical 

state (i.e., feature selection and classification using a simple strategy), where the average accuracy reaches 95%. 

However, other factors, such as the type of features, the length of the selected frames, the number of selected features, 

and the initial parameters of the adjustment process, contribute to classification. When evaluating the algorithm's ability 

to process both testing and validation data, the issue of uncertainty needs to be addressed. Plotting the ROC can help 

assess this problem to a great extent. Therefore, in the other experiments, the area under the ROC was investigated, and 

estimations were made for both testing and validation data (Fig. 6). 

      Fig. 7 displays the ROC, which shows the area under the curve for both testing and validation data. Fig. 8 examines 

sensitivity and specificity, where the estimation of these factors indicates the performance of the proposed method in 

terms of unseen cardiac signals. In this experiment, these factors were estimated separately for each class of the two sets 

of unseen cardiac signals. 

      The proposed method has shown greater efficiency in detecting N, V, and F states in classifying various cardiac 

disorders in the ECG signal. However, it has been more prone to errors in detecting S and Q states. The main reason for 

this issue is the lack of data on S and Q states, which has resulted in insufficient training of the algorithm. If more data 

on S and Q classes were available, the learning model would be more effective in distinguishing the various classes 

optimally. 

 

 
Fig. 7. The representation of the ROC matrix for validation data (left inset) and testing data (right inset). 
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Fig. 8. An estimation of the sensitivity, accuracy, and specificity for cardiac unseen signals. 

 

      Overall, the performance of the proposed method is satisfactory. Although it has created some errors in relation to 

two classes, previous algorithms have either ignored these classes or considered the estimation criteria for all the 

concerned classes. The proposed model can respond to various sets of cardiac signals. In previous methods, the 

classification error has been even higher than that in the method proposed in this study. For instance, in previous studies 

such as Llamedo et al. [25], Ye et al. [26], De Chazal et al. [27], Afkhami et al. [13], both the number of classes and 

samples are lower than those in this study. Furthermore, these studies offer moderate accuracy, and when considering 

the excluded classes and samples, the accuracy of their proposed methods will significantly decrease. Some methods 

have high computational complexity, while others suffer from prolonged response times in both training and testing 

steps. Table 5 compares the proposed method with methods proposed in other studies. 

 

7. CONCLUSION 

      The proposed integrated system in this study is a procedure that identifies various states of cardiac functioning by 

analyzing heartbeats through exploring the MIT-BIH database. Unlike other methods proposed thus far, which simply 

use techniques such as ANOVA, comparison of the mean or SD of signals, and/or estimation of the accuracy in 

diagnosing cardiac diseases, the method proposed in this study diagnoses CVDs based on diagnosis labels.  

 

Table 5. The drawbacks and advantages of the proposed method compared to the methods proposed in recent years in 

relation to the diagnosis of various cardiac functioning states based on heartbeats. 

Ref. Features  Classifier Classif

ication 

Accur

acy 

(%) 

Advantages Drawbacks 

Afkhami et 

al. (2016) 

[13] 

Modeling of 

statistical 

features and 

RR intervals 

GMM 96.15 Creating low-level, appropriate 

features; the possibility of 

decision-making for 4 classes 

Excluding some 

classes and samples; 

sensitivity to the 

number of samples; 

the possibility of 

overfitting 

Ye et al. 

(2012) [26] 

Wavelet; 

analysis of 

independent 

components; 

RR pick 

Support 

vector 

machine 

(SVM) 

99.71 Proper accuracy in the two-class 

state; utilizing low-level 

features; satisfactory outcomes 

Investigation of only 

two classes; high 

volume of features; 

sensitivity to noise 



Majlesi Journal of Telecommunication Devices                           Vol. 13, No. 2, June 2024 

 

83 

 

Rodriguez et 

al. (2005) 

[27] 

Waveform and 

signal 

morphology 

Classificatio

n based on 

the “strict 

voting 

method” 

96.13 Proper accuracy in the two-class 

state; instant classification 

Investigation of only 

two classes; high 

volume of features; 

sensitivity to noise 

de Oliveira 

et al. (2011) 

[28] 

Waveform and 

signal 

morphology; 

RR features 

Dynamic 

Bayesian 

Network 

(DBN) 

98 High number of classes for 

analyzing heartbeat in the signal 

Sensitivity to noise 

in the input signal; 

high computational 

complexity 

Zubair et al. 

(2016) [29] 

Deep CNN Softmax 

function 

97 Creating high-level features; the 

capability of decision-making 

for four classes 

The need for a high 

volume of data; high 

dimension of the 

extracted features; 

high computational 

complexity 

Chandra et 

al. (2018) 

A 8-layer 

CNN and 

learning 

Softmax 

function 

92.7 Creating high-level features; the 

capability of decision-making 

for five classes 

The need for a high 

volume of data; high 

dimension of the 

extracted features; 

relatively high 

computational 

complexity 

Acharya et 

al. (2017) 

[31] 

A 11-layer 

CNN and 

auto-learning 

Softmax 

function 

94.9 Creating high-level features; the 

capability of decision-making 

for five classes 

No interpretability 

of features; 

dependence on the 

length of the 

window in the signal 

Chu et al. 

[32] 

A 12-layer 

CNN with the 

LSTM 

structure; 

SVM; particle 

swarm 

optimization 

(PSO) 

algorithm 

Optimized 

SVM 

97.8 Creating high-level features; the 

capability of decision-making 

for five classes 

No interpretability 

of features; 

dependence on the 

length of the 

window in the non-

stationary signal 

Avanzato et 

al. (2020) 

[33] 

CNN with the 

normalizing 

step 

LSTM and 

Softmax 

function 

98.3 Creating high-level features; the 

capability of decision-making 

for three classes 

No interpretability 

of features; 

dependence on the 

length of the 

window in the non-

stationary signal 

Zhang et al. 

(2023) [34] 

Deep CNN; 

features of the 

time and 

frequency 

domain 

Softmax 

function 

99.1 Creating high-level and low-

level features; the capability of 

decision-making for eight 

classes 

The need for a high 

volume of data; high 

dimension of the 

extracted features; 

relatively high 

computational 

complexity; 

dependence on the 

length of the 

window in the non-

stationary signal 

The 

proposed 

method 

Feature 

extraction 

using the 

Feature 

selection 

using the 

98.28 Investigation of five classes; 

investigation of non-stationary 

signals and the problem of 

Inappropriate output 

in cases where the 

signal is affected 
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features of the 

time, 

frequency, and 

fractal 

domains 

fusion 

method; 

classification 

based on the 

fusion 

among the 

decision-

making trees 

uncertainty; acceptable accuracy 

of classification; low sensitivity 

to noise 

with too noises 

and/or when there 

are artifacts in the 

recorder. 

There is no 

functional 

mechanism for when 

the signal and 

classification are 

lost. 

 

      This is achieved by training and testing data through the data splitting procedure, the K-fold validation method, and 

using a classic and efficient model in the learning process. The classification accuracy in this study was 98.28%. The 

diagnosis system in this study is inspired by soft computing algorithms and serves as a tool to identify the presence of 

abnormalities in ECG signals and heartbeat signals in the dataset of samples. 

The proposed method uses manual feature extraction and appropriate model adjustment, which presents some 

challenges. Using other feature extraction methods, such as nonlinear features based on efficient descriptors of the ECG 

signal, and combining manual and automated features will likely enhance the diagnosis accuracy. Therefore, it is 

recommended to extract features based on various methods to obtain more optimal features. The integration of features 

increases the likelihood of choosing the best feature and enhances the rate of diagnosing abnormalities through analyzing 

ECG signals. 

      In this study, the classes were classified using a classic learning algorithm. However, it is suggested to enhance the 

function of the classifier. There are various classifiers used to distinguish output labels, but clustering would be more 

efficient if it can produce low errors and classify new data based on the correct separation. Furthermore, deep learning 

methods could be useful in these settings. 
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