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Abstract. Although optimization of weighted objectives is ubiquitous in production scheduling, the literature
concerning the determination of weights used in these objectives is scarce. Authors usually suppose that weights
are given in advance, and focus on the solution methods for the specific problem at hand. However, weights directly
settle the class of optimal solutions, and are of utmost importance in any practical scheduling problem. In this
study, we propose a new weighting approach for single machine scheduling problems. First, factor weights to be
used in customer evaluation are found by solving a nonlinear optimization problem using the covariance matrix
adaptation evolutionary strategy (CMAES) under fuzzy environment that takes a pairwise comparison matrix
as input. Next, customers are sorted using the technique for order of preference by similarity to ideal solution
(TOPSIS) by means of which job weights are obtained. Finally, taking these weights as an input, a total weighted
tardiness minimization problem is solved by using mixed-integer linear programming to find the best job sequence.
This combined methodology may help companies make robust schedules not based purely on subjective judgment,
find the best compromise between customer satisfaction and business needs, and thereby ensure profitability in the
long run.

AMS Subject Classification 2020: 90B50; 90B35
Keywords and Phrases: Covariance matrix adaptation evolutionary strategy, Technique for order of preference
by similarity to ideal solution, Weighted single machine scheduling, Mixed-integer linear programming.

1 Introduction

Companies should develop customer-focused strategies for being one step ahead in today’s competitive market.
The primary rule, which is an overwhelming and daunting task, is getting to know and identifying customers
better. This not only helps companies fulfill their expectations, but also facilitates prioritization. Actually,
some customers are more valuable than others. In production scheduling, this is reflected in the practice of
assigning weights to orders or jobs. Each jobs contribution to the objective function thereby depends on its
weight.

Although optimization of weighted objectives is ubiquitous in production scheduling, the literature con-
cerning the determination of weights used in these objectives is scarce. Authors usually suppose that weights
are given in advance, and focus on the solution methods for the specific problem at hand. However, weights
directly settle the class of optimal solutions, and are of utmost importance in any practical scheduling prob-
lem.

Lin et al. [1] consider a hybrid flow shop scheduling problem with dynamic reentrant characteristics sub-
stantiated by the complexities in a repairing company. A genetic algorithm is applied to obtain near-optimal
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schedules, while the analytic hierarchy process (AHP) is used both to fulfill multiple criteria concerning the
problem and to speed up the genetic algorithm’s convergence. Deliktas et al. [2] propose an integrated ap-
proach for single machine scheduling with sequence-dependent setup times. In the first stage, job weights
are determined by using AHP. In the second stage, a mixed-integer nonlinear programming model is built by
considering three objective functions, namely the weighted number of tardy jobs, total weighted completion
time, and makespan with sequence-dependent setup times. nemli [3] aims to create an algorithm to support
the decision maker in the scheduling of customer orders for a box packaging production company in a make-
to-order environment. In the first stage, the weighted tardiness of the orders is minimized, where the weights
are determined by AHP, based on the knowledge and experience of experts. Ortiz-Barrios et al. [4] propose an
integrated and enhanced method of a dispatching algorithm for scheduling flexible job shops based on fuzzy
AHP and the technique for order of preference by similarity to ideal solution (TOPSIS). Fuzzy AHP is used to
calculate the criteria weights under uncertainty, and TOPSIS is later applied to rank the eligible operations.
Utku et al. [5] develop a mixed-integer programming model to minimize total lateness and total completion
time of jobs in an automotive company. AHP is used to determine the weights of the two objectives.

Ignorance of weight determination in scheduling literature might be partly attributed to the gap between
the theory and practice of scheduling. Stoop and Wiers [6] give an overview of the problems related to the
complexity of scheduling in practice. Alternative suggestions to improve scheduling are proposed. First a
description of scheduling and how it relates to planning and sequencing is presented. Then a description of
problems that cause the scheduling function in practice to be very complex, and also an overview of shop
floor models and scheduling techniques are given. Next, the problem of measuring schedule performance is
discussed. Then possible solutions to the problems discussed are provided. Wiers [7] gives an overview of
the applicability of techniques and the role of humans in production scheduling. He indicates that most of
the literature reports give little indication of whether the system has been implemented in manufacturing
practice, and for those systems that have been implemented, what types of implementation problems were
encountered. The success of scheduling techniques in practice can only improve when researchers are aware of
the implementation pitfalls through learning from each other’s experiences. McKay and Wiers [8] argue that
the gap between theory and practice in production scheduling has been confounded by the traditional view
of scheduling as sequencing. This definition has focused researchers on the sequencing issue at the expense
of the larger scheduling problem faced by practitioners dealing with the problems of partiality, temporality,
and predictiveness. Namely, a scheduling process generates partial solutions for partial problems; anticipates,
reacts to, and adjusts for disturbances in the process and environment; and is sensitive to and adjusts to the
meaning of time in the production situation. The authors present an extended view of scheduling that unifies
the traditional definition used in operations research and a number of key aspects of real-world scheduling.
Dudek et al. [9] claim in the context of flow shop scheduling that scores of person-years of research time have
been wasted on an intractable problem of little practical consequence. Although Gupta and Stafford [10]
disagree with the viewpoint expressed by Dudek et al. [9], they admit that the mathematical theory of flow
shop scheduling suffers from too much abstraction and too little application.

The purpose of this paper is to propose a new weighting approach with evolutionary computation for single
machine scheduling problems. First, a pairwise comparison matrix that shows the relative importance of the
criteria to be used in assessing customers is formed by having recourse to expert opinion, and criteria weights
are determined by solving a nonlinear optimization problem via covariance matrix adaptation evolutionary
strategy (CMAES) under fuzzy environment. Second, customer orders are ranked according to these criteria
with TOPSIS. Finally, orders are sequenced so as to minimize total weighted tardiness by mixed-integer linear
programming, where TOPSIS performance scores are taken as input.

The remainder of the paper is organized as follows. Section 2 presents the workflow regarding the appli-
cation of the new approach. Section 3 defines the total weighted tardiness minimization problem, presents
its mixed-integer linear program and suggests one possible way of handling the problem of quoting due dates
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for new orders in this context. Section 4 gives the numerical solution for the case study in a Turkish textile
firm. Finally, we summarize our findings in Section 5.

2 TOPSIS-Based Improved Weighting Approach with Evolutionary Al-
gorithm

Workflow of the proposed approach consists in (1) forming a pairwise comparison matrix for the criteria to
be used in assessing customers, (2) determination of the weights of these criteria by solving an optimization
problem via CMAES taking the pairwise comparison matrix as input, and (3) finding customers’ scores with
respect to these weights by using TOPSIS. The steps will be explained in detail below.

2.1 Forming Pairwise Comparison Matrix

We assume that preference of criterion i over j is given by a triple (xlij , x
m
ij , x

u
ij). We call this a “fuzzy

triangular number.” Here the superscripts l,m, u stand for lower, middle, and upper, respectively. The
middle coordinate xmij may take an integer value in between 1 and 9. The equality xmij = 1 implies that the
criteria in question are equally important, whereas the equality xmij = 9 implies that criterion i is extremely

important compared to j. Unless xmij = 1 or xmij = 9, the first coordinate xlij is 1 less than xmij , and the third
coordinate xuij is 1 more than xmij . If xmij = 1, then all three coordinates are 1; if xmij = 9, then all three
coordinates are 9. Formally, pairwise comparison matrix formation using triangular numbers is composed of
the following steps, where n denotes the number of criteria:

1. Form the tentative pairwise comparison matrix for the criteria:
(1, 1, 1) (xl12, x

m
12, x

u
12) · · · (xl1n, x

m
1n, x

u
1n)

(xl21, x
m
21, x

u
21) (1, 1, 1) · · · (xl2n, x

m
2n, x

u
2n)

...
...

. . .
...

(xln1, x
m
n1, x

u
n1) (xln2, x

m
n2, x

u
n2) · · · (1, 1, 1)

 .

2. Perform defuzzification according to the formula

xij :=
xlij + 4xmij + xuij

6
.

3. Calculate the consistency index (CI) of the matrix (xij):

CI :=
λmax − n

n− 1
.

Here λmax denotes the principal eigenvalue.

4. Calculate the consistency ratio (CR) of the matrix (xij):

CR :=
CI

RI
.

Here RI is the random index associated with dimension n.

5. If CR is less than 0.1, then proceed to obtain criteria weights; otherwise, revise the pairwise comparison
matrix.
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2.2 Determination of Criteria Weights

Many methods exist for deriving preference values from judgment matrices [11]. Basically, the idea is to
obtain weights wi such that

wi

wj
≈ xij

for all i, j where (xij) denotes the pairwise comparison matrix [12]. Let µij be a piecewise linear function of
weights defined as

µij(w1, . . . , wn) =


(wi/wj)−xl

ij

xm
ij−xl

ij
, wi/wj ≤ xmij ;

xu
ij−(wi/wj)

xu
ij−xm

ij
, wi/wj > xmij .

Note that µij is an indicator of how well the weights wj , wj comply with the pairwise comparison value xij .
We have

• µij = 1 if and only if wi/wj = xmij ,

• µij ∈ (0, 1) for wi/wj ∈ (xlij , x
u
ij) \ {xmij }, and

• µij ≤ 0 whenever wi/wj ≤ xlij or wi/wj ≥ xuij .

Therefore, all µij shall be as large as possible. One possible way towards this end is to maximize the minimum
of the µij . So we define

G(w1, . . . , wn) := min
i<j

µij(w1, . . . , wn).

Hence, weights can be determined by solving the following nonlinear optimization problem:

maximize G(w1, . . . , wn)

such that w1 + · · ·+ wn = 1.

Note that, rewriting wn in terms of w1, . . . , wn−1, the problem can be converted into an unconstrained
maximization problem. As in Zeydan et al. [13], we solve this by CMAES under fuzzy environment, which is
a derivative-free stochastic global search algorithm developed recently [14]. It works iteratively by adapting
the resulting search distribution to the contours of the objective function by updating the covariance matrix
deterministically using information from evaluated points [14]. We refer the reader to Hansen [15] for details
of the CMAES algorithm.

2.3 Ranking Customers with TOPSIS

Let there be m alternatives and n criteria indexed respectively by i and j. Criteria weights wj are assumed
to be given. Steps for ranking customers with the TOPSIS method can be stated as follows [16]:

1. Form the decision matrix (xij). (This is not to be confused with the matrix obtained in §2.1 after
defuzzification.)

2. Construct the normalized decision matrix (rij):

rij :=
xij√∑m
k=1 x

2
kj

.
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3. Construct the weighted normalized decision matrix (vij):

vij := wj × rij .

4. Determine the positive and negative ideal rows (v+1 , . . . , v
+
n ) and (v−1 , . . . , v

−
n ).

5. Measure the distance of each alternative from the ideal rows:

d+i :=

√√√√ n∑
j=1

(vij − v+j )
2, d−i :=

√√√√ n∑
j=1

(vij − v−j )
2.

6. Calculate the closeness of the alternatives to the ideal solution, namely the TOPSIS scores:

Scorei :=
d−i

d+i + d−i
.

3 Total Weighted Tardiness Minimization Problem on a Single Machine

Let there be n jobs to be processed on a single machine. We index jobs by j. Each job has a processing
time pj , due date dj , and weight wj . Preemptions are not allowed; in other words, processing of a job cannot
be interrupted until it is completed. Let Cj denote the completion time of job j. Tardiness is defined as

Tj := max{Cj − dj , 0}.

Thus, tardiness equals lateness if the job is late, and it is zero otherwise. The question is to find a schedule
that minimizes total weighted tardiness. In the common three-field notation, the problem is 1 ||

∑
wjTj

[17, 18]. The objective function is nondecreasing in completion times; i.e., it is regular. So there exists an
optimal schedule in which the machine is never kept idle. Therefore, the problem amounts to finding the best
job sequence with respect to total weighted tardiness. Table 1 shows the indices, parameters, and decision
variables for 1 ||

∑
wjTj .

Table 1: Indices, parameters, and decision variables for 1 ||
∑

wjTj .

Symbol Explanation

j job index
n number of jobs
pj processing time of job j
dj due date of job j
wj weight of job j
Cj completion time of job j
Tj tardiness of job j

3.1 Mixed-Integer Linear Programming Formulation

Minimization of total weighted tardiness on a single machine, which is strongly NP-hard in terms of com-
putational complexity [19], has received much attention in the literature [20, 21, 22]. Branch-and-bound
and dynamic programming approaches have been proposed to obtain optimal solutions. The problem can
also be modeled as a mixed-integer linear program (MILP). One can build a model based on precedence or
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time-indexed decisions [23]. We shall focus on the former in this section. Let xjk be a binary variable defined
as follows:

xjk =

{
1, if job j precedes job k;

0, otherwise.

If xjk = 1, then Cj ≤ Ck − pk; if xjk = 0, then Ck ≤ Cj − pj . These conditional statements can be expressed
respectively as

Cj ≤ Ck − pk +M(1− xjk),

Ck ≤ Cj − pj +Mxjk,

where M is a sufficiently large number. Note that the first inequality becomes redundant when xjk = 0, and
the second becomes redundant when xjk = 1. It is enough to define xjk for each pair of jobs, so there are(
n
2

)
= n(n− 1)/2 such variables. Below is the MILP formulation of 1 ||

∑
wjTj using precedence constraints:

minimize
∑
j

wjTj (1a)

subject to Cj ≤ Ck − pk +M(1− xjk) for all j < k (1b)

Ck ≤ Cj − pj +Mxjk for all j < k (1c)

Tj ≥ Cj − dj for all j (1d)

Cj ≥ pj for all j (1e)

Cj , Tj ≥ 0 for all j (1f)

xjk ∈ {0, 1} for all j < k. (1g)

The objective (1a) is to minimize the sum of weighted tardiness. Constraints (1b) and (1c) relate the
precedence decisions to jobs’ completion times as explained above. Inequality (1d) must hold as an equality
in view of the objective whenever job j is late. The next constraint (1e) guarantees that the completion time
of the first job in the sequence is nonzero. Note that in the formulation there are 2n continuous variables,
namely Cj and Tj , in addition to the n(n− 1)/2 binary variables xjk. There are n2 + n constraints in total
(except binary and nonnegativity restrictions). The big M can be taken as the sum of all processing times.

3.2 Due Date Quotation Problem

Although the number of tardy jobs is a common performance criterion in practice, its minimization may be
an unrealistic objective as it may lead to schedules with unacceptably late jobs. The same is true of weighted
tardiness minimization: if a job has a small weight relative to others, it may be overly late in an optimal
schedule. Therefore, it makes sense to assume deadlines dj for real-life applications. Deadlines represent
hard constraints: in any feasible schedule, all deadlines must be met. Mathematically, the inequality Cj ≤ dj
must be satisfied for all j. We assume that deadlines are defined as translations of due dates by a specified
constant δ:

dj = dj + δ.

Then inequalities Cj ≤ dj can be stated equivalently as

Tj ≤ δ.

Thus, a job is ideally to be completed by its due date, but if it somehow happens to be late, the lateness
cannot exceed δ. In the three-field notation, we express this problem by 1 | dj = dj + δ |

∑
wjTj .
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In scheduling literature it is often assumed that due dates are given beforehand. However, in many
circumstances, determination of due dates itself is a problem: what due date should be assigned to a new
customer order? This is called the due date quotation or management problem. A comprehensive literature
survey thereon is given by Kaminsky and Hochbaum [24].

We consider due date quotation in the setting 1 | dj = dj + δ |
∑

wjTj . More precisely, let there be n
jobs, already sequenced to minimize

∑
wjTj respecting the deadlines. Suppose a new customer order, namely

the (n + 1)st job, has arrived. Its processing time pn+1 and weight wn+1 are known. What due date dn+1

should be assigned to this job? There is an intrinsic trade-off to be faced here: if dn+1 is large, the existing
schedule will not be affected much and the objective value

∑n+1
j=1 wjTj will be small, but the new customer’s

satisfaction will be less; if dn+1 is small, the situation is the other way around.
Let dmin and dmax be the minimum and maximum possible due dates for the (n+1)st job. If it is sequenced

first, it will be completed by pn+1; if it is sequenced last, it will be completed by
∑n+1

j=1 pj . So we naturally

have dmin := pn+1 and dmax :=
∑n+1

j=1 pj . For each possible due date d ∈ [dmin, dmax] for the (n + 1)st job,

let z∗(d) be the objective value
∑n+1

j=1 wjT
∗
j (d) associated with the optimal sequencing of all n + 1 jobs (we

assume δ is large enough to guarantee that there always exists a feasible solution). As mentioned above, z∗

is a nonincreasing function of d; that is, for all d, d′,

d ≤ d′ ⇒ z∗(d) ≥ z∗(d′).

It follows that in this context the due date quotation, in essence, is a multi-objective optimization problem.
Namely, we are to find the best compromise between the due date dn+1 to be assigned and the objective
value z∗(dn+1) associated with it.

Now we discuss one way to do this. Let
∑n

j=1wjT
∗
j be the optimal total weighted tardiness for the existing

n jobs, let
∑n

j=1wjT
∗
j (d) be the updated value of this sum after the arrival of the (n+1)st job given that its

quoted due date is d, and let

∆z(d) :=

n∑
j=1

wjT
∗
j (d)−

n∑
j=1

wjT
∗
j

denote the difference of these two sums. Clearly, as d gets smaller, ∆z(d) gets larger. Suppose, without loss
of generality, that

∑n
j=1wj = 1. Then an increase of ∆z(d) by 1 means that the tardiness of each one of the

existing n jobs has increased on average by 1 time unit. What is the utility of this in terms of assigning a
better due date to the (n+ 1)st job? In other words, if the pairs of solutions (d,∆z(d)) and (d′,∆z(d) + 1)
are equivalent, what is d− d′? Ultimately, this depends on the decision-maker, but a possible answer would
be wn+1. Then the due date quotation problem can be written concisely as

min
d

wn+1d+∆z(d).

4 Application in a Textile Company

In this section, we present a numerical demonstration of the weighting approach introduced above with
data obtained from a textile firm in Turkey. The problem is to find an optimal sequence of 11 customer
orders that minimizes total weighted tardiness. Customers are to be assessed with respect to five criteria:
profitability (%), average order quantity (meters), unit selling price (dollars per meter), payment performance
(lateness per order), risk limit (dollars). First of all, managers from three distinct departments—production,
marketing, and finance—are consulted in order to construct pairwise comparison matrices. Then an aggregate
matrix has been built as shown in Table 2.

Consistency ratio for the matrix in Table 2 turns out to be 0.089, so it is convenient to use this matrix as
an input to CMAES to find criteria weights. We coded the 29 April 2014 version of CMAES algorithm using
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Table 2: Aggregate pairwise comparison matrix for the five criteria.

C1 C2 C3 C4 C5

C1 1.000 2.000 3.000 3.000 6.000
C2 0.556 1.000 2.000 2.000 7.000
C3 0.347 0.556 1.000 1.000 8.000
C4 0.347 0.556 1.000 1.000 8.000
C5 0.168 0.144 0.126 0.126 1.000

MATLAB 2018. Convergence of the method with respect to the objective function value and the weights are
given in Figure 1. The resulting weights are

w1 = 0.284, w2 = 0.335, w3 = 0.171 w4 = 0.164 w5 = 0.040.

Table 3 shows the decision matrix for the first step of the TOPSIS algorithm, namely numerical values
associated with the 11 customers for the five aforementioned criteria. Tables 4 and 5 show the normalized
and the weighted normalized versions thereof, respectively. Table 6 shows positive and negative ideal rows
obtained from the weighted normalized decision matrix. Finally, Table 7 shows the distance of the alternatives
(customers) to the ideal rows, their TOPSIS scores, and the relevant ranking.

Table 8 shows the data and the optimal solution of the single machine weighted tardiness minimization
problem. The processing times and due dates are randomly generated following the weighted tardiness
instance generation routine in the OR-Library maintained by John Beasley. We took the range of due dates
(RDD) and the average tardiness factor (TF) parameters in this routine as 0.6. Weights are assumed to
be the TOPSIS scores computed in Table 7. Solving the mixed-integer linear program (1), the optimal job
sequence turns out to be (11, 8, 7, 2, 10, 5, 4, 1, 3, 6, 9) with an objective value of 204.19.

Figure 1: Convergence of CMAES with respect to the objective function value (on the left) and the weights
(on the right).
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Table 3: Decision matrix for TOPSIS.

Customer Profitability
Average order

quantity
Unit selling

price
Payment

performance
Risk limit

1 1 17976 2.67 2 200000
2 1 35766 2.29 29 100000
3 7 1966 1.95 10 50000
4 4 9306 1.63 9 15000
5 1 43721 1.55 18 50000
6 1 25030 2.20 20 200000
7 5 72609 2.19 2 50000
8 3 19444 2.52 34 30000
9 1 9515 1.81 7 200000
10 1 12961 5.81 7 150000
11 5 13921 3.76 2 200000

Table 4: Normalized decision matrix.

Customer Profitability
Average order

quantity
Unit selling

price
Payment

performance
Risk limit

1 0.0877 0.1768 0.2839 0.0364 0.4459
2 0.0877 0.3518 0.2435 0.5284 0.2229
3 0.6134 0.0193 0.2074 0.1822 0.1114
4 0.3508 0.0915 0.1733 0.1639 0.0334
5 0.0877 0.4301 0.1648 0.3279 0.1114
6 0.0877 0.2462 0.2340 0.3644 0.4459
7 0.4385 0.7142 0.2329 0.0364 0.1114
8 0.2631 0.1912 0.2680 0.6195 0.0668
9 0.0877 0.0936 0.1925 0.1275 0.4459
10 0.0877 0.1275 0.6179 0.1275 0.3344
11 0.4385 0.1369 0.3999 0.0364 0.4459
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Table 5: Weighted normalized decision matrix.

Customer Profitability
Average order

quantity
Unit selling

price
Payment

performance
Risk limit

1 0.0250 0.0595 0.0488 0.0060 0.0175
2 0.0250 0.1185 0.0418 0.0878 0.0087
3 0.1752 0.0065 0.0356 0.0302 0.0043
4 0.1001 0.0308 0.0298 0.0272 0.0013
5 0.0250 0.1449 0.0283 0.0545 0.0043
6 0.0250 0.0829 0.0402 0.0605 0.0175
7 0.1251 0.2406 0.0400 0.0060 0.0043
8 0.0750 0.0644 0.0460 0.1029 0.0026
9 0.0250 0.0315 0.0330 0.0211 0.0175
10 0.0250 0.0429 0.1062 0.0211 0.0131
11 0.1251 0.0461 0.0687 0.0060 0.0175

Table 6: Positive and negative ideal rows.

Profitability
Average order

quantity
Unit selling
priceprice

Payment
performance

Risk limit

v+ 0.1752 0.2406 0.1062 0.0060 0.0175
v− 0.0250 0.0065 0.0283 0.1029 0.0013

Table 7: Distance to ideal rows and composite indices of the customers.

Customer d+i d−i Score Ranking

1 0.2421 0.1135 0.3192 7
2 0.2199 0.1140 0.3414 5
3 0.2460 0.1670 0.4044 4
4 0.2370 0.1093 0.3156 8
5 0.2007 0.1466 0.4221 3
6 0.2339 0.0896 0.2770 9
7 0.0840 0.2727 0.7645 1
8 0.2330 0.0785 0.2520 10
9 0.2680 0.0871 0.2453 11
10 0.2487 0.1192 0.3240 6
11 0.2043 0.1512 0.4253 2
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Table 8: Data and optimal solution of the single machine weighted tardiness minimization problem.

Customer pj dj wj C∗
j T ∗

j

1 50 393 0.3192 378 0
2 90 215 0.3414 224 9
3 58 416 0.4044 436 20
4 50 332 0.3156 328 0
5 41 330 0.4221 278 0
6 79 214 0.2770 515 301
7 74 151 0.7645 134 0
8 44 179 0.2520 60 0
9 82 150 0.2453 597 447
10 13 386 0.3240 237 0
11 16 68 0.4253 16 0

5 Conclusion

In this paper, we proposed a novel bottom-up approach for solving weighted single machine scheduling prob-
lems. First, a pairwise comparison matrix that shows the relative importance of the criteria to be used in
evaluating customers is formed through expert opinion, and criteria weights are calculated by optimizing a
nonlinear function via the covariance matrix adaptation evolutionary strategy (CMAES) under fuzzy envi-
ronment. Second, customer orders are sorted with respect to these criteria with the technique for order of
preference by similarity to ideal solution (TOPSIS). Finally, orders are sequenced by mixed-integer linear
programming with the objective of minimizing total weighted tardiness, where TOPSIS scores are taken as
weights. This combined methodology may help companies make robust schedules not based purely on sub-
jective judgment, find the best compromise between customer satisfaction and business needs, and thereby
ensure profitability in the long run. As a topic of future study, it is worthwhile to investigate how the proposed
methodology works in practice for due date quotation as discussed in Section 3.2.
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