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Abstract 

In this paper, we use fuzzy Adams-Bashforth method as well as fuzzy Adams-Moulton 

method both based on gH-differences to solve fuzzy impulsive differential equations with an 

initial value. We discuss the algorithm in details and finally, we solve a fuzzy impulsive 

differential equation with these methods. 

The numerical results are shown in the table.  
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1. Introduction 

Impulsive differential equations appear to represent a natural framework for mathematical 

modeling of several real-world phenomena. Impulsive differential equations are useful tools 

for modeling of evolution processes that are subjected to sudden changes in their state. But 

solving many impulsive differential equations analytically is very complicated or even 

impossible. Furthermore, to solve some practical prob- lems, we do not often need the analytic 

solution of impulsive differential equation, but just the numerical values of the exact solution. 

In addition, whenever a case of real-world phenomena is transformed into the deterministic 

differential equations with an initial value, we cannot usually be sure that this modeling is 

perfect. A wide number of works in this topic is done by Allahviranloo in the past two decades 

(see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) 

Thus, we here consider an impulsive fuzzy differential equation, and then present a new 

numerical algorithm to solve this equation. So, consider the first order fuzzy impulsive 

differential equations 

{

𝑢′(𝑥) = 𝑓(𝑥, 𝑢(𝑥)),           𝑥 ∈ 𝐽 = [0, 𝑇], 𝑥 ≠ 𝑥𝑘 , 𝑘 = 1, . . . , 𝑚,        (1.1)

𝑢(𝑥𝑘
+) = 𝐼𝑘(𝑢(𝑥𝑘

−)),         𝑘 = 1, . . . , 𝑚                                       (1.2)

𝑢(𝑥0) = 𝑦0                                                                          (1.3)

 

 

2. Basic Preliminaries 

The definitions, lemmas, and theorems needed in this paper are given here. 

The set of fuzzy numbers, denoted by Rf, is the family of all normal, fuzzy convex, upper 

semi-continuous and compactly supported fuzzy sets. 

Now we recall some properties of fuzzy numbers. For any 0 1,    set  

[p]α = {x ∈ R|p(x) ≥ α},     [p].0 = cl{x ∈ R|p(x) > 0}. 

We represent [𝑝]𝛼 = [𝑝̱(𝛼), 𝑝̄(𝛼)]. Thus, for 𝑝 ∈ 𝑅𝑓 , the  -level set [𝑝]𝛼is a closed interval 

for all [0,1].  

Definition 2.1. For any 𝑝, 𝑞 ∈ 𝑅𝑓 and 𝜆 ∈ 𝑅, we have [𝑝 ⊕ 𝑞]𝛼 = [𝑝]𝛼 + [𝑞]𝛼 = {𝑥 + 𝑦|𝑥 ∈

[𝑝]𝛼 , 𝑦 ∈ [𝑞]𝛼}, 

[p ⊙ q]α = [min( pq, p̱q̄, p̱q̄, pq),max( pq, p̱q̄, p̱q̄, pq)]. 

Let T = [a,b] and S = [c,d] be two closed intervals of real numbers. Then 

[a, b]/[c, d] = [min(
a

c
,
a

d
,
b

c
,
b

d
),max(

a

c
,
a

d
,
b

c
,
b

d
)] 

provided that 0 ∉ [𝑎, 𝑏]. 

A triangular fuzzy number is defined as a fuzzy set in Rf , that is specified by an ordered triple 

𝑢 = (𝑎, 𝑏, 𝑐) ∈ ℝ3with 𝑎 ≤ 𝑏 ≤ 𝑐 such that 𝑢−(𝛼) = 𝑎 + (𝑏 − 𝑎)𝛼 and 

 𝑢+(𝛼) = 𝑐 − (𝑐 − 𝑏)𝛼 are the endpoints of   -level sets for all 𝛼 ∈ [0,1]. 
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For any 𝑝, 𝑞, 𝑟 ∈ 𝑅𝑓 Hukuhara di_erence is showed by ⊝𝐻 and it means that r⊝𝐻 q = p if and 

only if 𝑝⊕ 𝑞 = 𝑟. The Hausdor_ distance of the set of fuzzy numbers is defined by  

𝐷: 𝑅𝑓 × 𝑅𝑓 → 𝑅+ ∪ {0} as in [12], 

𝐷(𝑝, 𝑞) = 𝑠𝑢𝑝0≤𝛼≤1𝑚𝑎𝑥{ |𝑝̱(𝛼) − 𝑞̱(𝛼)|, |𝑝̄(𝛼) − 𝑞̄(𝛼)|}[6,12,13]. 

Consider p,q,r,s ∈ 𝑅𝑓and 𝜆 ∈ 𝑅, then the following properties are well-known for metric D. 

See [14] 

1) 𝐷(𝑝 ⊕ 𝑟, 𝑞 ⊕ 𝑟) = 𝐷(𝑝, 𝑞). 

2) 𝐷(𝜆𝑝, 𝜆𝑞) = |𝜆|𝐷(𝑝, 𝑞), 

3) 𝐷(𝑝 ⊕ 𝑞, 𝑟 ⊕ 𝑠) ≤ 𝐷(𝑝, 𝑟) + 𝐷(𝑞, 𝑠), 

Definition 2.2 ([15]). The gH-difference of two fuzzy numbers p and q is defined as follows  

p⊝𝑔𝐻  𝑞 = 𝑟 ⇔ {
(1)𝑝 = 𝑞 ⊕ 𝑟,
𝑜𝑟(2)𝑞 = 𝑝⊕ (−1)𝑟

     (2.4) 

and [𝑝𝛩𝑔𝐻 𝑞]𝛼 = [𝑚𝑖𝑛{ 𝑝̱(𝛼) − 𝑞̱(𝛼) − 𝑞̄(𝛼)},𝑚𝑎𝑥{ 𝑝̱(𝛼) − 𝑞̱(𝛼), 𝑝̄(𝛼) − 𝑞̄(𝛼)}]. 

The conditions for the existence of 𝑝𝛩𝑔𝐻 𝑞 ∈ 𝑅𝑓  are given in [15]. 

Definition 2.3 ([15]). Let 𝑝, 𝑞 ∈ 𝑅𝑓, then: 

1. If the gH-difference of p and q exists, it is unique. 

2. 𝑝𝛩𝑔𝐻 𝑞 = 𝑝𝛩𝐻 𝑞 𝑜𝑟 𝑝𝛩𝑔𝐻 𝑞 = −(𝑞𝛩𝐻 𝑝) if all the expressions on the right side exist. 

In particular, 𝑝𝛩𝑔𝐻𝑝 = 𝑝𝛩𝐻 𝑝 = 0, 

3. if 𝑝𝛩𝑔𝐻𝑞exists in the sense of (i), then 𝑞𝛩𝑔𝐻𝑝 exists in the sense if (ii) and vice versa.  

4. (𝑝 ⊕ 𝑞)𝛩𝑔𝐻𝑞 = 𝑝, 

5. 0𝛩𝑔𝐻(𝑝𝛩𝑔𝐻𝑞) = 𝑞𝛩𝑔𝐻𝑝, 

𝑝𝛩𝑔𝐻𝑞 = 𝑞𝛩𝑔𝐻𝑝 = 𝑟if and only if 𝑟 = −𝑟. Furthermore, r = 0 if and only if p = q. 

Remark 2.1. In this study, we assume that p ⊝𝑔𝐻 𝑞 ∈ 𝑅𝑓.  

In [16], Park and Han formulated the Lipschitz condition as an inequality and as an informal 

definition and proved the existence and uniqueness of a solution for an FIVP in the n-

dimensional space 𝑹𝒇
𝒏. Here, we rewrite the Lipschitz condition in a formal definition and 

present a special case of the existence and uniqueness theorem for n = 1 which are needed in 

this paper. 

Definition 2.4 ([16]). Assume that 𝑓: 𝐼 × 𝑅𝑓 → 𝑅𝑓 is a fuzzy number-valued function. It is 

said that f satisfies the Lipschitz condition if there exists a constant k > 0 such that 

𝐷(𝑓(𝑡, 𝑦), 𝑓(𝑡, 𝑧)) ≤ 𝑘𝐷(𝑦, 𝑧) 

for all t I  and all 𝑦, 𝑧 ∈ 𝑅𝑓 . 

Definition 2.5 ([17]). Let 𝑓: [𝑡, 𝑠] → 𝑅𝑓  be a fuzzy number-valued function. The gH-

derivative of at 𝑎 ∈ (𝑡, 𝑠) is de_ned by  
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𝑓𝑔𝐻
′ (𝑎) = 𝑙𝑖𝑚

ℎ→0

𝑓(𝑎+ℎ)𝛩𝑔𝐻𝑓(𝑎)

ℎ
      (2.5) 

If 𝑓𝑔𝐻
′ (𝑎) ∈ 𝑅𝑓 defined by (2.5) exists, it is called that f is gH-differentiable at a. 

Definition 2.6 ([18]). Let 𝑓: [𝑡, 𝑠] → 𝑅𝑓 and 𝑎 ∈ (𝑡, 𝑠) be such that 𝑓̱(𝑥; 𝛼) and 𝑓(𝑥; 𝑎) are 

both differentiable at a for all [0,1].  Then it is said that f is differentiable of first type and 

denoted by 

(1)-gH-differentiable at a if 

𝑓1−𝑔𝐻
′ (𝑎, 𝛼) = [𝑓′(𝑎; 𝛼), 𝑓′(𝑎; 𝛼)],      (2.6) 

and f is differentiable of second type and denoted by (2)-gH-differentiable at a if   

𝑓2−𝑔𝐻
′ (𝑎, 𝛼) = [𝑓′(𝑎; 𝛼), 𝑓′(𝑎; 𝛼)],     (2.7) 

Definition 2.7 ([19]). A point 𝑎 ∈ (𝑡, 𝑠), is a switching point for differentiability of the fuzzy 

number- valued function f, if for any neighborhood V of a there exist points t1; t2   V with t1 

< a < t2 such that for i = 1; 2, (2.6) holds at ti if and only if (2.7) does not hold at ti. 

Theorem 2.1 ([6]). Let 𝑇 = [𝑎, 𝑏, 𝛽] ⊂ ℝ, with 0   and 𝑓 ∈ 𝐶𝑔𝐻
𝑛 ([𝑎, 𝑏], 𝑅𝑓). For 𝑠 ∈ 𝑇  

1. if 𝑓(𝑖), 𝑖 = 0,1, . . . , 𝑛 − 1 are (1)-gH-differentiable, provided that type of gH-

differentiability has no change, then 

𝑓(𝑠) = 𝑓(𝑎) ⊕ 𝑓1−𝑔𝐻
′ (𝑎)⊙ (𝑠 − 𝑎) ⊕ 𝑓1−𝑔𝐻

″ (𝑎) ⊙
(𝑠 − 𝑎)2

2!
⊕. .. 

⊕𝑓1−𝑔𝐻
(𝑛−1)

(𝑎) ⊙
(𝑠 − 𝑎)𝑛−1

(𝑛 − 1)!
⊕ 𝑅𝑛(𝑎, 𝑠), 

Where  

𝑅𝑛(𝑎, 𝑠) = ∫ (∫ . . .
𝑠1

𝑎

(∫ 𝑓1−𝑔𝐻
(𝑛)

(𝑠𝑛)𝑑𝑠𝑛

𝑠𝑛−1

𝑎

)𝑑𝑠𝑛−1 . . . ) 𝑑𝑠1

𝑠

𝑎

 

2. if 𝑓(𝑖), 𝑖 = 0,1, . . . , 𝑛 − 1 are (2)-gH-differentiable, provided that type of gH-

differentiability has no change, then 

𝑓(𝑠) = 𝑓(𝑎)𝛩(−1)𝑓2−𝑔𝐻
′ (𝑎)⊙ (𝑠 − 𝑎)𝛩(−1)𝑓2−𝑔𝐻

″ (𝑎)⊙
(𝑎 − 𝑠)2

2!
𝛩(−1). .. 

𝛩𝑓2−𝑔𝐻
(𝑛−1)

(𝑎) ⊙
(𝑎 − 𝑠)𝑛−1

(𝑛 − 1)!
𝛩(−1)𝑅𝑛(𝑎, 𝑠), 

Where  

𝑅𝑛(𝑎, 𝑠) = ∫ (∫ . . .
𝑠1

𝑎

(∫ 𝑓2−𝑔𝐻
(𝑛)

(𝑠𝑛)𝑑𝑠𝑛

𝑠𝑛−1

𝑎

)𝑑𝑠𝑛−1 . . . ) 𝑑𝑠1

𝑠

𝑎

 

3. if f(i) is (1)-gH-differentiable for 𝑖 = 2𝑘 − 1, 𝑘 ∈ ℕ, and f(i) are (2)-gH-differentiable for 

𝑖 = 2𝑘, 𝑘 ∈ ℕ ∪ {0}, 𝑡ℎ𝑒𝑛 
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f(s) = f(a)Θ(−1)f2−gH
′ (a) ⊙ (s − a)⊕ f1−gH

″ (a)⊙
(a − s)2

2!
Θ(−1). .. 

Θ(−1)f2−gH
(
i−1

2
)
(a) ⊙

(a − s)
i

2
−1

(
i

2
− 1)!

⊕ f1−gH
(
i

2
)
(a)⊙

(a − s)
i

2

(
i

2
)!

Θ(−1). .. 

Θ(−1)Rn(a, s), 

Where  

Rn(a, s):= ∫ (∫ . . .
s1

a

(∫ f1−gH
(n)

(sn)dsn

sn−1

a

)dsn−1 . . . ) ds1

s

a

 

Lemma 2.1 ([6]). Let 𝑓: [𝑡, 𝑠] → 𝑅𝑓 be fuzzy continuous. Then ∫ 𝑓(𝑡)𝑑𝑡
𝑠

𝑡
 exists and belongs 

to Rf. Furthermore,  

[∫ 𝑓(𝑥)𝑑𝑥]𝛼
𝑠

𝑡
= [∫ 𝑓̱(𝑠; 𝛼)𝑑𝑥,

𝑠

𝑡 ∫ 𝑓(𝑥; 𝛼)𝑑𝑥]
𝑠

𝑡
    (2.8) 

Lemma 2.2 ([6]). Suppose that 𝑓: [𝑡, 𝑠] → 𝑅𝑓is gH-differentiable and gHf  is continuous on 

[t,s]. Then 

∫ f1−gH
′ (x)dx = (−1)⊙

t

k ∫ f2−gH
′ (x)dx.

k

t
    (2.9) 

Theorem 2.2 ([6, Theorem 3.1]). Suppose that 𝑓: [𝑡, 𝑠] → 𝑅𝑓is gH-differentiable and the type 

of differentiability of f on [t,s] does not change. Then for all t k s  , the following 

statements hold: 

1) If f(x) is (1)-gH-differentiable then 𝑓1−𝑔𝐻
′ (𝑥) is (FR)-integrable on [t,s] and 

∫ f1−gH
′ (x)dx = f(k)ΘHf(t)

k

t
              (2.10) 

2) If f(x) is (2)-gH-differentiable then 2 ( )gHf x−  is (FR)-integrable on [t,s] and 

∫ f2−gH
′ (x)dx = (−1)⊙ f(x)ΘH(−1)⊙ f(k).

k

t
   (2.11) 

Lemma 2.3 ([6]). For all real numbers z, the inequality 1 zz e+  holds.  

 

3. Fuzzy Adams Methods 

The general linear multi-step method can be formulated as 

∑αjyn+j = h

k

i=0

∑βjfn+j,

k

i=0

 

where j ’s and j ’s are constants. We assume that 0k  and also that both 0  and 0  

are not zero. The Adams methods are only a subclass of linear multi-step method with 

αk = 1,   αk−1 = −1,   αj = 0   j = 0,1, . . . , k − 2 
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In this section, we construct fuzzy Adams-Bashforth (A-B) and fuzzy Adams-Moulton (A-M) 

methods based on the generalized Hukuhara (gH)-differentiability. To this end, we first 

introduce finite backward and forward differences based on gH-differences. Using them, we 

go on the Newton's interpolation polynomials and finally, using Newton's forward and 

backward interpolation polynomials, we obtain fuzzy Adams-Bashforth and fuzzy Adams-

Moulton methods. We employ the former as the predictor and the latter as the corrector. 

A fuzzy polynomial interpolation of the data is a fuzzy number-valued function 𝑝: 𝑅 → 𝑅𝑓 

which satisfies  

1) for all 𝑖 = 1,2, . . . , 𝑛,     𝑝(𝑥𝑖) = 𝑓𝑖 

2) p is continuous. 

3) If the data be crisp, then the interpolation p is a crisp polynomial. 

A function p fulfilling these conditions can be constructed following. 

At first, forward gH-difference between fi and fi+1 shown by 𝛥𝑔𝐻is introduced. 

For each [0,1],  - level of fi is shown by [𝑓𝑖]𝛼 and [𝑓𝑖]𝛼 = [𝑓̱𝑖(𝛼), 𝑓𝑖(𝛼)]. 

 

3.1. Forward Finite Differences 

Suppose that 𝑓: [𝑎, 𝑏] → 𝑅𝑓 is continuous over [a,b] and the values of f are known in 𝑥𝑖 =

𝑎 + 𝑖ℎ, 𝑖 = 0,1, . . . , 𝑛, ℎ =
𝑏−𝑎

𝑛
. Define,  

𝛥𝑔𝐻𝑓𝑖(𝛼) = 𝑓𝑖+1(𝛼)𝛩𝑔𝐻𝑓𝑖(𝛼) = {
(𝑖)𝑓𝑖+1(𝛼)𝛩𝐻𝑓𝑖(𝛼),
(𝑖𝑖)(−1)⊙ (𝑓𝑖(𝛼)𝛩𝐻𝑓𝑖+1(𝛼)).

 

The 𝛼 − 𝑐𝑢𝑡of 𝛥𝑔𝐻 fi is defined in following form. 

[𝛥𝑔𝐻𝑓𝑖(𝛼)]𝛼 = [𝑓𝑖+1(𝛼)𝛩𝑔𝐻𝑓𝑖(𝛼)]𝛼 = 

[𝑚𝑖𝑛{𝑓̱𝑖+1(𝛼) − 𝑓̱𝑖(𝛼), 𝑓𝑖+1(𝛼) − 𝑓𝑖(𝛼)} ,𝑚𝑎𝑥{𝑓̱𝑖+1(𝛼) − 𝑓̱𝑖(𝛼), 𝑓𝑖+1(𝛼) − 𝑓𝑖(𝛼)}]𝛼
 

𝛥𝑔𝐻
2 𝑓𝑖(𝛼) = 𝛥𝑔𝐻(𝛥𝑔𝐻𝑓𝑖(𝛼)) = 𝛥𝑔𝐻(𝑓𝑖+1(𝛼)𝛩𝑔𝐻𝑓𝑖(𝛼)) 

= (𝑓𝑖+2(𝛼)𝛩𝑔𝐻𝑓𝑖+1(𝛼))𝛩𝑔𝐻(𝑓𝑖+1(𝛼)𝛩𝑔𝐻𝑓𝑖(𝛼)) 

= {
(𝑖)𝑓𝑖+2(𝛼)𝛩𝑔𝐻2⊙ 𝑓𝑖+1(𝛼) ⊕ 𝑓𝑖(𝛼),

(𝑖𝑖)(−1)⊙ (𝑓𝑖+1(𝛼)𝛩𝐻𝑓𝑖+2(𝛼))𝛩𝑔𝐻𝑓𝑖+1(𝛼) ⊕ 𝑓𝑖(𝛼)
                   (3.12) 

=

{
 

 
(𝑖)𝑓𝑖+2(𝛼)𝛩𝐻2⊙ 𝑓𝑖+1(𝛼) ⊕ 𝑓𝑖(𝛼),
(𝑖𝑖)(−1)⊙ (2⊙ 𝑓𝑖+1(𝛼)𝛩𝐻𝑓𝑖+2(𝛼)) ⊕ 𝑓𝑖(𝛼),
(𝑖𝑖𝑖)(−1)⊙ (𝑓𝑖+1(𝛼)𝛩𝐻𝑓𝑖+2(𝛼))𝛩𝑔𝐻𝑓𝑖+1(𝛼)⊕ 𝑓𝑖(𝛼),

(𝑖𝑣)(−1)⊙ (𝑓𝑖+1(𝛼)𝛩𝐻(−1)⊙ (𝑓𝑖+1(𝛼)𝛩𝐻𝑓𝑖+2(𝛼))) ⊕ 𝑓𝑖(𝛼)

 

The reasoning above leads us to 𝛥𝑔𝐻
3 𝑓𝑖(𝛼) = 𝛥𝑔𝐻(𝛥𝑔𝐻

2 𝑓𝑖(𝛼)) and so on. 𝛥𝑔𝐻
𝑘 𝑓𝑖, 𝑘 = 1,2, . .. 

are the forward finite differences. 

Now, using our new notations and concepts, we can define fuzzy interpolation polynomial 

with forward gH-difference as follows: 
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Definition 3.1. Let 𝜶 ∈ [𝟎, 𝟏]. Then the fuzzy interpolation polynomial p(x) with forward gH-

differences can be written as 

p(x) = f0(α) ⊕ θ⊙ ΔgHf0(α) ⊕
θ(θ − 1)

2
⊙ ΔgH

2 f0(α) ⊕. . .⊕
θ(θ − 1). . . (θ − n + 1)

n!
⊙ ΔgH

n f0(α) 

Remark 3.1. We know that  is crisp because of 𝜽 =
𝒙−𝒙𝟎

𝒉
and all of 𝒙, 𝒙𝒊, 𝒊 = 𝟏, 𝟐, . . . , 𝒏 and 

h are crisp. 

  

3.2. Backward Finite Differences 

Similarly, the backward finite differences are defined in the following form. 

∇gHfi(α) = fi(α)ΘgHfi−1(α) = {
(i)fi(α)ΘHfi−1(α),
(ii)(−1)⊙ (fi−1(α)ΘHfi(α)).

 

[∇gHfi(α)]α = [fi(α)ΘgHfi−1(α)]α 

= [𝑚𝑖𝑛{𝑓̱𝑖(𝛼) − 𝑓̱𝑖−1(𝛼), 𝑓𝑖(𝛼) − 𝑓𝑖−1(𝛼)} ,𝑚𝑎𝑥{𝑓̱𝑖(𝛼) − 𝑓̱𝑖−1(𝛼), 𝑓𝑖(𝛼) − 𝑓𝑖−1(𝛼)}]𝛼
 

𝛻𝑔𝐻
2 𝑓𝑖(𝛼) = 𝛻𝑔𝐻(𝛻𝑔𝐻𝑓𝑖(𝛼)) = 𝛻𝑔𝐻(𝑓𝑖(𝛼)𝛩𝑔𝐻𝑓𝑖−1(𝛼)) = (𝑓𝑖(𝛼)𝛩𝑔𝐻𝑓𝑖−1(𝛼))𝛩𝑔𝐻(𝑓𝑖 −

1(𝛼))𝛩𝑔𝐻𝑓𝑖−2(𝛼)) = {
(𝑖)𝑓𝑖(𝛼)𝛩𝑔𝐻2⊙ 𝑓𝑖−1(𝛼) ⊕ 𝑓𝑖−2(𝛼),

(𝑖𝑖)(−1)⊙ (𝑓𝑖−1(𝛼)𝑐𝐻𝑓𝑖(𝛼))𝛩𝑔𝐻𝑓𝑖−1(𝛼) ⊕ 𝑓𝑖−2(𝛼)
         (3.13) 

= {

(𝑖)𝑓𝑖(𝛼)𝛩𝐻2⊙ 𝑓𝑖−1(𝛼)⊕ 𝑓𝑖−2(𝛼),
(𝑖𝑖)(−1)⊙ (2⊙ 𝑓𝑖−1(𝛼)𝛩𝐻𝑓𝑖(𝛼)) ⊕ 𝑓𝑖−2(𝛼),
(𝑖𝑖𝑖)(−1)⊙ (𝑓𝑖−1(𝛼)𝛩𝐻𝑓𝑖(𝛼))𝛩𝐻𝑓𝑖−1(𝛼)⊕ 𝑓𝑖−2(𝛼),
(𝑖𝑣)(−1)⊙ (𝑓𝑖−1(𝛼)𝛩𝐻(−1)⊙ (𝑓𝑖−1(𝛼)𝛩𝐻𝑓𝑖(𝛼))) ⊕ 𝑓𝑖−2(𝛼)

 

The reasoning above leads us to 𝛻𝑔𝐻
3 𝑓𝑖(𝛼) = 𝛻𝑔𝐻(𝛻𝑔𝐻

2 𝑓𝑖(𝛼)) and so on.  

Now, using our new notations and concepts, we can define fuzzy interpolation polynomial 

with backward gH-difference as follows: 

Definition 3.2. Let 𝜶 ∈ [𝟎, 𝟏]. Then the fuzzy interpolation polynomial p(x) with forward gH-

differences can be written as 

𝑝(𝑥) = 𝑓𝑛(𝛼)⊕ 𝜃⊙ 𝛻𝑔𝐻𝑓𝑛(𝛼) ⊕
𝜃(𝜃+1)

2
⊙𝛻𝑔𝐻

2 𝑓𝑛(𝛼)⊕. . .⊕
𝜃(𝜃+1)...(𝜃+𝑛−1)

𝑛!
⊙𝛻𝑔𝐻

𝑛 𝑓𝑛(𝛼)  

Remark 3.2. We know that  is crisp because of 𝜃 =
𝑥−𝑥𝑛

ℎ
and all of 𝑥, 𝑥𝑖, 𝑖 = 0,1, . . . , 𝑛 − 1 

and h are crisp.  

 

3.3. A-B Two-Step Method 

To solve FIVP 

{
𝑢𝑔𝐻
′ (𝑥) = 𝑓(𝑥, 𝑢(𝑥)),       𝑥0 ≤ 𝑥 ≤ 𝑇

𝑢(𝑥0) = 𝑢0
    (3.14) 

by A-B two-step method, suppose that the fuzzy initial values are 𝑢(𝑥𝑖−1), 𝑢(𝑥𝑖).  𝑖. 𝑒 

𝑓(𝑥𝑖−1, 𝑢(𝑥𝑖−1), 𝑓(𝑥𝑖 , 𝑢(𝑥𝑖)) are fuzzy numbers.  
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Also let 𝛻𝑔𝐻𝑓𝑖 = 𝑓𝑖𝛩𝑔𝐻𝑓𝑖−1, 𝜃 =
𝑥−𝑥𝑖

ℎ
|. The fuzzy interpolation polynomial for fuzzy numbers 

use of 𝑓(𝑥𝑖−1), 𝑢(𝑥𝑖−1), 𝑓(𝑥𝑖, 𝑢(𝑥𝑖)), can be written as.  

p(x, u(x)) = fi⊕θ⊙ ∇gHfi. 

(i) If u(x) is (1)-gH-differentiable and 𝒇(𝒙, 𝒖(𝒙)) is replaced with 𝒑(𝒙, 𝒖)), then,  

∫ u1−gH
′ (x)dx =

xi+1

xi

∫ f(x, u(x))dx
xi+1

xi

 

ui+1 = ui⊕∫ (fi

xi+1

xi

⊕θ⊙∇gHfi)dx = ui⊕h⊙∫ (fi⊕θ⊙ ∇gHfi)dθ
1

0

 

= ui⊕h⊙ [fi⊙θ⊕
θ2

2
⊙ ∇gHfi]0

1 = 

ui⊕h⊙ [fi⊕
1

2
⊙ (fiΘgHfi−1)] = ui⊕

h

2
⊙ (3⊙ fiΘgHfi−1) 

Therefore,  

𝑢𝑖+1 = 𝑢𝑖⊕
ℎ

2
⊙ (3⊙ 𝑓𝑖𝛩𝑔𝐻𝑓𝑖−1).     (3.15) 

Then, using the properties of gH-difference, all different forms of A-B two-step method of 

(I) can be written as follows.  

1) 𝑢𝑖+1 = 𝑢𝑖⊕
ℎ

2
⊙ (3⊙ 𝑓𝑖𝛩𝐻𝑓𝑖−1), 

2) 𝑢𝑖+1 = 𝑢𝑖⊕
−ℎ

2
⊙ (𝑓𝑖−1𝛩𝐻3⊙ 𝑓𝑖). 

(II) If u(x) is (2)-gH-differentiable, we have 

∫ u2−gh
′ (x)dx =

xi+1

xi

∫ f(x, u(x))dx.
xi+1

xi

 

Similarly, replacing 𝑓(𝑥, 𝑢(𝑥)) with 𝑝(𝑥, 𝑢(𝑥))) and at last using the properties of gH-

difference, the following result can be obtained. 

𝑢𝑖+1 = 𝑢𝑖𝛩𝐻(−1)⊙
ℎ

2
⊙ (3⊙ 𝑓𝑖𝛩𝑔𝐻𝑓𝑖−1).                      (3.16) 

Therefore,  

1) 𝑢𝑖+1 = 𝑢𝑖𝛩𝐻(−1)⊙
ℎ

2
⊙ (3⊙ 𝑓𝑖𝛩𝐻𝑓𝑖−1), 

2) 𝑢𝑖+1 = 𝑢𝑖𝛩𝐻(−1)⊙
−ℎ

2
⊙ (𝑓𝑖−1𝛩𝐻3⊙ 𝑓𝑖). 

 

3.4. A-M Three-Step Method  

For A-M three-step method suppose 𝑢(𝑥𝑖), 𝑢(𝑥𝑖+1), 𝑢(𝑥𝑖+2), be the fuzzy initial values, i.e 

𝑓(𝑥𝑖, 𝑢(𝑥𝑖)), 𝑓(𝑥𝑖+1, 𝑢(𝑥𝑖+1)), 𝑓(𝑥𝑖+2, 𝑢(𝑥𝑖+2))𝑓(𝑥𝑖+3, 𝑢(𝑥𝑖+3)) are de_ned. Then, consider 

the following identity, 
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(𝐼)∫ 𝑢1−𝑔𝐻
′ (𝑥)𝑑𝑥 =

𝑥𝑖+3

𝑥𝑖+2

∫ 𝑓(𝑥, 𝑢(𝑥))𝑑𝑥.
𝑥𝑖+3

𝑥𝑖+2

 

when u(x) is (1)-gH-differentiable. Now, replace 𝑓(𝑥, 𝑢(𝑥)) with p(x,u(x)) in 

(𝑥𝑖, 𝑓𝑖), (𝑥𝑖+1, 𝑓𝑖+1), (𝑥𝑖+2, 𝑓𝑖+2), (𝑥𝑖+3, 𝑓𝑖+3). 

𝑢𝑖+3 = 𝑢𝑖+2⊕∫ 𝑓(𝑥, 𝑢(𝑥))𝑑𝑥
𝑥𝑖+3

𝑥𝑖+2

 

𝑢𝑖+2⊕∫ (𝑓𝑖⊕𝜃⊙𝛥𝑔𝐻𝑓𝑖⊕
𝜃(𝜃 − 1)

2
⊙ 𝛥𝑔𝐻

2 𝑓𝑖

𝑥𝑖+3

𝑥𝑖+2

 

⊕
𝜃(𝜃 − 1)(𝜃 − 2)

6
⊙ 𝛥𝑔𝐻

3 𝑓𝑖)𝑑𝑥 

𝑢𝑖+2⊕ℎ⊙∫ (𝑓𝑖⊕𝜃⊙𝛥𝑔𝐻𝑓𝑖⊕
𝜃(𝜃 − 1)

2
⊙ 𝛥𝑔𝐻

2 𝑓𝑖

3

2

 

⊕
𝜃(𝜃 − 1)(𝜃 − 2)

6
⊙ 𝛥𝑔𝐻

3 𝑓𝑖)𝑑𝑥 

𝑢𝑖+2⊕ℎ⊙ [𝑓𝑖⊙𝜃⊕
𝜃2

2
⊙ 𝛥𝑔𝐻𝑓𝑖⊕ (

1

6
𝜃3 −

1

4
𝜃2) ⊙ 𝛥𝑔𝐻

2 𝑓𝑖 

⊕ (
1

24
𝜃4 −

𝜃3

6
+
𝜃2

6
)⊙ 𝛥𝑔𝐻

3 𝑓𝑖]|2
3 

= 𝑢𝑖+2⊕ℎ⊙ (𝑓𝑖⊕
5

2
⊙ 𝛥𝑔𝐻𝑓𝑖⊕

23

12
⊙ 𝛥𝑔𝐻

2 𝑓𝑖⊕
3

8
⊙ 𝛥𝑔𝐻

3 𝑓𝑖) 

= 𝑢𝑖+2⊕ℎ⊙ (𝑓𝑖⊕
5

2
⊙ (𝑓𝑖+1𝛩𝑔𝐻𝑓𝑖) +

23

12
⊙ (𝑓𝑖+2𝛩𝑔𝐻2𝑓𝑖+1⊕𝑓𝑖) 

⊕
3

8
⊙ (𝑓𝑖+3𝛩𝑔𝐻3⊙ 𝑓𝑖+2⊕3⊙ 𝑓𝑖+1𝛩𝑔𝐻𝑓𝑖)) 

= 𝑢𝑖+2⊕ℎ⊙ (
3

8
⊙ 𝑓𝑖+3⊕

19

24
⊙ 𝑓𝑖+2𝛩𝑔𝐻

5

24
⊙ 𝑓𝑖+1⊕

1

24
⊙ 𝑓𝑖) 

= 𝑢𝑖+2⊕
ℎ

24
⊙ (9⊙ 𝑓𝑖+3⊕19⊙ 𝑓𝑖+2𝛩𝑔𝐻5⊙ 𝑓𝑖+1⊕𝑓𝑖). 

Therefore, all cases of A-M three-step method can be written as follows. 

1) 𝑢𝑖+3 = 𝑢𝑖+2⊕
ℎ

24
⊙ [9⊙ 𝑓𝑖+3⊕19⊙ 𝑓𝑖+2𝛩𝐻5⊙ 𝑓𝑖+1⊕𝑓𝑖)], 

2) 𝑢𝑖+3 = 𝑢𝑖+2⊕
ℎ

24
⊙ [9⊙ 𝑓𝑖+3⊕ (−1)⊙ (5⊙ 𝑓𝑖+1𝛩𝐻19⊙ 𝑓𝑖+2) ⊕ 𝑓𝑖)]. (3.17) 

(II) when u(x) is (2)-gH-differentiable.  

Similarly, all cases of A-M three-step method in the second case can be written as  

1) 𝑢𝑖+3 = 𝑢𝑖+2𝛩𝐻(−1)⊙
ℎ

24
⊙ [9⊙ 𝑓𝑖+3⊕19⊙ 𝑓𝑖+2𝛩𝐻5⊙ 𝑓𝑖+1⊕𝑓𝑖], 
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2) 𝑢𝑖+3 = 𝑢𝑖+2𝛩𝐻(−1)⊙
ℎ

24
⊙ [9⊙ 𝑓𝑖+3⊕ (−1)⊙ (5⊙ 𝑓𝑖+1𝛩𝐻19⊙ 𝑓𝑖+2) ⊕ 𝑓𝑖)]. 

3.5. Predictor-Corrector Methods 

Suppose that we want to solve FIVP by using an implicit linear K-step method. For example, 

consider one of the cases of three-step A-M method (3.17). 

1) 𝒖𝒊+𝟑 = 𝒖𝒊+𝟐⊕
𝒉

𝟐𝟒
⊙ [𝟗⊙ 𝒇𝒊+𝟑⊕𝟏𝟗⊙ 𝒇𝒊+𝟐𝜣𝑯𝟓⊙ 𝒇𝒊+𝟏⊕𝒇𝒊]. 

At each step, the equation in which only 𝑢𝑗+1, 𝑓𝑗+1, 𝑗 = 0,1,2 are known, are solved. In 

general, this equation is nonlinear. 

Using the theorem of a unique solution existence of the IVP, we find that a unique solution 

exists for ui+3 and it can be approached arbitrarily close by the iteration 

𝑢𝑖+3
[𝑠+1]

= 𝑢𝑖+2⊕
ℎ

24
⊙ [9⊙ 𝑓(𝑥𝑖+3, 𝑢𝑖+3

[𝑠]
) ⊕ 19⊙ 𝑓𝑖+2𝛩𝐻5⊙ 𝑓𝑖+1⊕ 𝑓𝑖]   𝑠 = 0,1,2, .. (3.18) 

Where 𝑢𝑖+3
[0]

is arbitrary. 

Each step of the iteration (3.18) involves an evaluation of 𝑓(𝑥𝑖+3, 𝑢𝑖+3
[𝑠]
). Thus, we are 

concerned to keep the number of times the iteration (3.18) is applied minimum, specially 

whenever the evaluation of f is time-consuming at the given values of its arguments. 

Therefore, we would like to accurate the initial guess 𝑢𝑖+3
[0]

as much as possible. A separate 

explicit method can be used to estimate 𝑢𝑖+3
[0]

which can be used to the initial guess of 𝑢𝑖+3
[0]

. 

The explicit method “A-B" and the implicit method (3.18) “A-M" are the predictor and the 

corrector, respectively.  

Let P, C, and E indicate an application of the predictor, a single application of the corrector, 

and an evaluation of a function f in terms of the known values of its arguments. If we compute 

𝑢𝑖+3
[0]

from the predictor, evaluate ∫ ≡ 𝑓(𝑥𝑖+3, 𝑢𝑖+3
[0]
0,

[0]

𝑖+3
and apply the corrector once to get 

𝑢𝑖+3
[1]
, the series of calculations done so far is denoted by PEC.  

A further evaluation of ∫ ≡ 𝑓(𝑥𝑖+3, 𝑢𝑖+3
[1]
)

[1]

𝑖+3
which is followed by a second application of the 

corrector, yields 
[2]

3,iu + and the calculation is now denoted by PECEC, or P(EC)2. Applying the 

corrector m times is similarly denoted by P(EC)m. Since m is fixed, we accept 𝑢𝑖+3
[𝑚]
, as the 

numerical solution at xi+3. At this stage, the last computed value we have for 𝑓𝑖+3is 𝑓𝑖+3
[𝑚−1]

≡

𝑓(𝑥𝑖+3, 𝑢𝑖+3
[𝑚−1]

), and we have a further decision to make, namely, whether or not to evaluate 

𝑓𝑖+3
[𝑚]

≡ 𝑓(𝑥𝑖+3, 𝑢𝑖+3
[𝑚]
). If this final evaluation is done, we denote the mode by P(EC)m E, and 

if not, by P(EC)m.  

This choice clearly affects the next step of the calculation since both predicted and corrected 

values for ui+4 will depend on whether 𝑓𝑖+3is taken to be 𝑓𝑖+3
[𝑚]

or 𝑓𝑖+3
[𝑚−1]

. Note that for a given 

m, both P(EC)m E and P(EC)m modes apply the corrector the same number of times; but the 

former calls for one more function evaluation per step than the latter. 
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3.6. Local Truncation Error  

Theorem 3.1. Consider that 𝑢𝑔𝐻
‴ (𝑥) exists and f(x,u(x)) satisfies the Lipschitz condition on 

the set (𝑥, 𝑢(𝑥))|𝑥 ∈ [0, 𝑝], 𝑢 ∈ 𝐵̄(𝑢0, 𝑞), 𝑝, 𝑞 > 0. Then, A-B and A-M methods converge to 

the solution of the FIVP (1.1). 

To see the proof of Theorem 3.1, the reader is referred to [11]. 

 

4. Stability 

A method is said to be stable whenever small perturbations in the initial values will only cause 

small changes in the solutions. 

Definition 4.1. Let 𝑢𝑘+1, 𝑘 + 1 ≥ 0be the fuzzy solution of the fuzzy p-c method with initial 

condition 𝑢0 ∈ 𝑅𝑓and let zk+1 be the solution of the same numerical method with a perturbed 

fuzzy initial condition 𝑧0 ∈ 𝑅𝑓 such that 𝑧0 = 𝑢0⊕𝛿0. The fuzzy p-c method is called stable 

if there exist positive constants ℎ̃ and   such that  

𝐷(𝑧𝑘+1, 𝑢𝑘+1) ≤ 𝜅𝛿        ∀(𝑘 + 1)ℎ ≤ 𝑇, 𝑘 ≤ 𝑁 − 1, ℎ ∈ (0, ℎ̃) 

Whenever 𝐷(𝛿0, 0) ≤ 𝛿. 

A-B two-step and A-M three-step methods are stable. To see this in details, the reader is 

referred to [11].  

 

5. Numerical Algorithm for Solving FIIVP 

The numerical algorithm for solving impulsive fuzzy initial value problems is different from 

the numerical algorithm for solving fuzzy initial value problems only at the pulse point, 

where we have to apply the operators concern with the particular point. For this reason, at 

first, we consider fuzzy initial value problem in the form 

{
𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)),
𝑦(𝑡0) = 𝑦0,

      (5.19) 

where y is a fuzzy function of t, f(t,y) is a fuzzy function of the crisp variable t and the fuzzy 

variable y, 𝑦′ is the fuzzy derivative of y and 𝑦(𝑡0) = 𝑦0is a triangular fuzzy number. 

Therefore, we have a fuzzy Cauchy problem [20]. 

In this section, we present an algorithm for solving the first order impulsive fuzzy differential 

equations with initial value. If the function y(t) is a solution of the impulsive fuzzy differential 

Equation (5.19), then by the numerical algorithm for solving impulsive fuzzy differential 

equations, it is possible to obtain values 𝑦(𝑡𝑧) for a fixed value of tz of parameter t0, where 

𝑡𝑧 > 𝑡0, at the moment t = tz. The algorithm includes following steps:  

Step One: At t = t0, apply the Adams-Bashforth method for y by considering y = y0 from 

initial 

condition (5.19). The algorithm applies until the first pulse point. 

Step Two: At the pulse point t = tk, the impulsive fuzzy operator Ik brings rapidly changes to 

the function y that moment is J(tk); Where  
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J(tk) = Ik(y(tk) + ∑ J(ts)).

t0<ta<tk

 

Step Three: We solve the function y of argument t by taking it from the half-segment 

(tk, tk+1] by the Adams-Bashforth method.  

Step Four: We repeat Steps Two and Three until we encounter with the desired y(tz) that has 

to be found. 

Step Five: Add the summation of all pulses to the function y. 

𝑌(𝑡𝑧):= 𝑦(𝑡𝑧) + ∑ 𝐽(𝑡𝑘)

𝑡0<𝑡𝑘<𝑡𝑧

 

[𝑦(𝑡𝑧)𝑟 = [𝑦1(𝑡𝑧, 𝑟), 𝑦2(𝑡𝑧, 𝑟)] is the approximated solution and  

[𝐽((𝑡𝑘)]𝑟 = [𝐽1(𝑡𝑘 , 𝑟), 𝐽2(𝑡𝑘, 𝑟)] is the pulse in point tk. We have  

𝑌[𝑦 + ∑ 𝐽(𝑡𝑘)𝑡0<𝑡𝑘<𝑡𝑧 ]𝑟 = [𝑦1(𝑡𝑘, 𝑟) + ∑ 𝐽1(𝑡𝑘, 𝑟), 𝑦2(𝑡𝑧, 𝑟 + ∑ 𝐽2(𝑡𝑘, 𝑟))]𝑡0<𝑡𝑘<𝑡𝑧𝑡0<𝑡𝑘<𝑡𝑧 . 

We apply Adams method on each half-segment (𝑡𝑘 , 𝑡𝑘+1]. 

 

6. Error of Fuzzy Numerical Algorithm 

By assumption first order impulsive fuzzy differential equations (1.1), (1.2), (1.3)| 

{

𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)),       𝑡 ∈ 𝐽 = [0, 𝑇], 𝑡 ≠ 𝑡𝑘 , 𝑘 = 1, . . . , 𝑚,

𝑦(𝑡𝑘
+) = 𝐼𝑘(𝑦(𝑡𝑘

−)),         𝑘 = 1, . . . , 𝑚

𝑦(𝑡0) = 𝑦0,

   (6.20) 

we get the analysis error of numerical algorithm in section 3 based on fuzzy predictor- 

corrector method. We import small perturbations 3  on the right-hand side of expression 

(1.3), then it creates perturbations 1 2,  , on the right-hand side of expressions (1.1), (1.2), 

and we will have the solution as following form  

𝑌 = 𝑦⊕ 𝛿 ⊙ 𝑦.                      (6.21) 

We got analysis this perturbation, whether we will have a stable numerical algorithm, and we 

will have converged? By perturbation, we achieve to first order perturbation impulsive fuzzy 

differential equation as following form 

{
𝑌𝑔𝐻
′ (𝑡) = 𝑓(𝑡, 𝑦(𝑡)) ⊕ [𝛿1⊙𝑓(𝑡, 𝑦(𝑡))],

𝑡 ∈ 𝐽 = [0, 𝑇], 𝑡 ≠ 𝑡𝑘 , 𝑘 = 1, . . . , 𝑚.
    (6.22) 

{
𝛥𝑌|𝑡=𝑡𝑘 = 𝑌(𝑡𝑘

+)𝛩𝑔𝐻𝑌(𝑡𝑘
−)

= 𝐼𝑘(𝑦(𝑡𝑘
−)) ⊕ [𝛿2⊙ 𝐼𝑘(𝑦(𝑡𝑘

−))], (𝑡 = 𝑡𝑘),         𝑘 = 1, . . . , 𝑚
 (2.24) 

𝑌(𝑡0) = 𝑦(𝑡0) ⊕ 𝛿3⊙𝑦(𝑡0).                  (6.24) 

By assumption expression (6.23) and using expression (6.21) we conclude 

𝑌(𝑡𝑘
+)𝛩𝑔𝐻𝑌(𝑡𝑘

−) = [𝑦(𝑡𝑘
+)𝛩𝑔𝐻𝑦(𝑡𝑘

−)] ⊕ 𝛿2⊙ 𝐼𝑘(𝑦(𝑡𝑘
−)), 

([𝑦(𝑡𝑘
+) ⊕ 𝛿 ⊙ 𝑦(𝑡𝑘

+)𝛩𝑔𝐻(𝑦(𝑡𝑘
−) ⊕ 𝛿 ⊙ 𝑦(𝑡𝑘

−)])𝛩𝑔𝐻[𝑦(𝑡𝑘
+)𝛩𝑔𝐻𝑦(𝑡𝑘

−)] = 𝛿2⊙ 𝐼𝑘(𝑦(𝑡𝑘)) 
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𝛿 ⊙ [𝑦(𝑡𝑘
+)𝛩𝑔𝐻𝑦(𝑡𝑘

−)] = 𝛿2⊙ 𝐼𝑘(𝑦(𝑡𝑘)). 

By using Property 3 of the Hausdorff distance 

𝛿 ⊙ [𝑦(𝑡𝑘
+)𝛩𝑔𝐻𝑦(𝑡𝑘

−)] ≤ 𝛿2⊙ 𝐼𝑘(𝑦(𝑡𝑘)). 

Finally, by considering Definition 2.1 we have  

𝛿 ≤
𝐼𝑘(𝑦(𝑡𝑘))

[𝑦(𝑡𝑘
+)𝛩𝑔𝐻𝑦(𝑡𝑘

−)]
⊙ 𝛿2. 

Without reduce of generality, we only consider fuzzy Adamz Bashforth method (3.15), for 

expression (6.21) and (6.23) we obtain 

{
𝑦0 = 𝛿3⊙𝑦(𝑡0).

𝑦𝑘+1 = 𝑦𝑘⊕
ℎ

2
⊙ [𝛿1(3 ⊙ 𝑓(𝑡𝑘 , 𝑦(𝑡𝑘))𝛩𝑔𝐻𝑓(𝑡𝑘−1, 𝑦(𝑡𝑘−1)))]

   (6.25) 

By setting k = 1, in (6.25), we obtain  

Y2 = δ3y1⊕
h

2
[δ1(3⊙ f(t1, y1)ΘgHf(t0, y0))]. 

According to the expression (6.21), we obtain 

y2⊕δ⊙ y2 = δ3y1⊕
h

2
⊙ [δ1(3⊙ f(t1, y1)ΘgHf(t0, y0))]. 

By using property 3 of the Hausdorff distance once more  

𝛿 ≤
𝑦1𝛿3⊕

ℎ

2
⊙𝛿1(3⊙ 𝑓(𝑡1, 𝑦1)𝛩𝑔𝐻𝑓(𝑡0, 𝑦0))

𝑦2
 

By letting 𝛿3 → 0 and 1 0, → we obtain 𝛿 → 0,  which means that the numerical algorithm 

is stable and converges to the exact solution. 

Without reducing of generality, since the case for k = 3, …, z is the same as for k = 2, we only 

consider the case k = 2 and according to the expression (6.21), we obtain 

𝑦3⊕𝛿⊙ 𝑦3 = (𝑦2(𝑡𝑘
+) ⊕ 𝛿 ⊙ 𝑦2(𝑡𝑘

+)) ⊕
ℎ

2
[𝛿1(3⊙ 𝑓(𝑡2, 𝑦2)𝛩𝑔𝐻𝑓(𝑡1, 𝑦1))]. 

By using Definition 2.1  

𝑦3⊕𝛿 ⊙𝑦3 ≤ 𝑦2(𝑡𝑘
+) ⊕ 𝛿 ⊙ 𝑦2(𝑡𝑘

+) ⊕ [
ℎ

2
⊙ (𝛿1(3⊙ 𝑓(𝑡2, 𝑦2)𝛩𝑔𝐻𝑓(𝑡1, 𝑦1)))]. 

Finally, we obtain 

𝛿 ≤
𝑦2(𝑡𝑘

+)⊕ 𝛿 ⊙ 𝑦2(𝑡𝑘
+)

𝑦3
+

ℎ

2
⊙ (𝛿1(3⊙ 𝑓(𝑡2, 𝑦2)𝛩𝑔𝐻𝑓(𝑡1, 𝑦1)))]

𝑦3
 

Hence  

𝛿 ≤
𝛿3𝑦1+

ℎ

2
⊙𝛿1(3⊙𝑓(𝑡1,𝑦1)𝛩𝑔𝐻𝑓(𝑡0,𝑦0))

𝑦3
⊙

𝐼𝑘(𝑦(𝑡𝑘))⊙𝛿2

(𝑦(𝑡𝑘
+)𝛩𝑔𝐻𝑦(𝑡𝑘

−))
. (6.26) 
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The upper bound in (6.26) shows that to have the stable numerical algorithm that converges 

to the exact solution, we need imported perturbations in right side of the expressions (6.22), 

(6.23), (6.24) near to zero, too, i.e.,𝛿1 → 0, 𝛿2 → 0 and 𝛿3 → 0. Under this condition, we can 

say that for 𝑘 = 2, . . . , 𝑧, the numerical algorithm introduced is stable and converges to the 

exact solution.  

 

7. Numerical Results 

In this section we present a numerical example, in order to see the accuracy of our numerical 

solution. The numerical results show convergence of these methods. 

Example 7.1. Consider the first order impulsive fuzzy initial value problem, 

𝑢𝑔𝐻
′ (𝑥) = 𝑢(𝑥),0 ≤ 𝑥 ≤ 1 

𝑢(𝑥𝑘
+) = 0.01𝑢(𝑥𝑘

−), 

𝑢(0) = (0.75 + 0.25𝑟, 1.125 − 0.125𝑟) 

Where 0 1r  , and by the considering 1zx = . This example was solved by using the 

Adams-Bashforth two step method with N = 10, N = 100 and N = 200 in the cases that u(x) 

was [(𝑖) − 𝑔ℎ] - differentiable. 

These results in x = 1 has been showed in table 1 and plot of u(x) in 0 ≤ 𝑥 ≤ 1 has been 

showed in figure 1.  

 

8. Conclusion  

In this paper, a new method was introduced in the fuzzy numerical analysis based on gH- 

differentiabil- ity namely the fuzzy Adams-Bashforth and the fuzzy Adams-Moulton methods 

for solving (1.1), (1.2), (1.3). In final one FIIVP was solved, according to the type of gH-

differentiability with their's related methods. Obtained results demonstrate the efficiency of 

these methods. The obtained result indicates that by decreasing step size, the approximated 

solution tends to the exact solution. 

 

  
0.1h =  0.01h =  0.05h =  

u  u  u  u  u  u  
0 0.018300215395 0.027450323093 0.020182431 0.03027364799 0.0202849706 0.03042745597 

0.1 0.01891022257 0.02714531950 0.0208551797 0.029937274 0.020961136 0.030089373 

0.2 0.019520229 0.02684031591 0.0215279274659 0.029600900265 0.0216373020 0.029751290 

0.3 0.02013023693 0.0265353123 0.022200675199 0.0292645263990 0.02231346 0.0294132074 

0.4 0.02074024411 0.02623030873 0.02287342293256 0.028928152532 0.022989633 0.0290751246 

0.5 0.02135025129 0.02592530514 0.023546170665 0.0285917786657 0.023665799 0.02873704175 

0.6 0.021960258474 0.025620301553 0.02421891839918 0.02825540479 0.0243419647 0.0283989589 

0.7 0.0225702656542 0.02531529796 0.024891666132 0.027919030932 0.02501813047 0.0280608760 

0.8 0.023180272834 0.0250102943 0.0255644138658 0.027582657065 0.025694296159 0.0277227932 

0:9 0.0237902800139 0.024705290783 0.026237161599 0.027246283199 0.02637046184 0.02738471038 

1 0.02440028719 0.02440028719 0.0269099093324 0.0269099093324 0.0270466275 0.0270466275 
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