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Abstract

In this paper, we use fuzzy Adams-Bashforth method as well as fuzzy Adams-Moulton
method both based on gH-differences to solve fuzzy impulsive differential equations with an
initial value. We discuss the algorithm in details and finally, we solve a fuzzy impulsive
differential equation with these methods.

The numerical results are shown in the table.
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1. Introduction

Impulsive differential equations appear to represent a natural framework for mathematical
modeling of several real-world phenomena. Impulsive differential equations are useful tools
for modeling of evolution processes that are subjected to sudden changes in their state. But
solving many impulsive differential equations analytically is very complicated or even
impossible. Furthermore, to solve some practical prob- lems, we do not often need the analytic
solution of impulsive differential equation, but just the numerical values of the exact solution.
In addition, whenever a case of real-world phenomena is transformed into the deterministic
differential equations with an initial value, we cannot usually be sure that this modeling is
perfect. A wide number of works in this topic is done by Allahviranloo in the past two decades
(see, e.0.,[1,2,3,4,5,6,7,8,9,10, 11])

Thus, we here consider an impulsive fuzzy differential equation, and then present a new
numerical algorithm to solve this equation. So, consider the first order fuzzy impulsive
differential equations

u'(x) = f(x,ux)), x€J]=[0,T],x #x,k=1,...,m, (1.1)
u(xd) = L(u(xg)), k=1,...,m (1.2)
u(xo) = Yo (1.3)

Basic Preliminaries
The definitions, lemmas, and theorems needed in this paper are given here.

The set of fuzzy numbers, denoted by R¢, is the family of all normal, fuzzy convex, upper
semi-continuous and compactly supported fuzzy sets.

Now we recall some properties of fuzzy numbers. Forany 0 <o <1, set

[ple = {X€R[p(x) 2 a},  [p]o = cl{x € R[p(x) > 0}.
We represent [p], = [p(a), p(a)]. Thus, for p € Ry, the O -level set [p],is a closed interval
forall a €[0,1].
Definition 2.1. Forany p,q € Rrand A € R, we have [p @ qlq = [Ple + [qle = {x + y|x €
[Plesy € [qlals
[p © q]a = [min(pq, pg, pg, pq), max( pq, pa, p4, pa)]-
Let T =[a,b] and S = [c,d] be two closed intervals of real numbers. Then
[a,b]/[c,d] = [min(g,i,h,h),max(E,E,E,E)
cdcd cdcd
provided that 0 & [a, b].

A triangular fuzzy number is defined as a fuzzy set in Rf , that is specified by an ordered triple
u=(abc)eR3with a<b<c such that u(a)=a+((b—-a)a and
ut(a) = ¢ — (¢ — b)a are the endpoints of o -level sets for all « € [0,1].
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Forany p, q,r € R Hukuhara di_erence is showed by © and it means that ro, g =p ifand

only if p @ q = r. The Hausdor_ distance of the set of fuzzy numbers is defined by
D:Rs X Ry » RT U {0} asin [12],

D(p,q) = supozas1 max{|p(a) — q(@)|, |p(a) — q()[3[6,12,13].

Consider p,q.,r,s € Rrand A € R, then the following properties are well-known for metric D.
See [14]

1) Dp@r,q®r) =D 9.
2) D(Ap,4q) = |1AID(p, q),
3) Dp®aqr®ds)<D(r)+D(q5s)
Definition 2.2 ([15]). The gH-difference of two fuzzy numbers p and q is defined as follows

_ Mp=qDr,
POgn 4 =1 {or(Z)q —p® (-Dr

and [pOgH q]q = [min{p(a) — q(a) — (o)}, max{p(a) — q(a),p(a) — q(a)}].
The conditions for the existence of p@,, q € Ry are given in [15].
Definition 2.3 ([15]). Let p, g € Ry, then:

(2.4)

1. If the gH-difference of p and g exists, it is unique.

2. pOgy q =pOy q or pOyy q = —(qOy p) if all the expressions on the right side exist.
In particular, pOyyp = pOy p = 0,

3. if pOyyqexists in the sense of (i), then qO4yp exists in the sense if (ii) and vice versa.

4. (»®9Oguq = p,

5. 004, (POguq) = qOgup,

POgnq = qO4yp = rifand only if r = —r. Furthermore, r = 0 if and only if p=q.

Remark 2.1. In this study, we assume that p © 4y q € Ry.

In [16], Park and Han formulated the Lipschitz condition as an inequality and as an informal
definition and proved the existence and uniqueness of a solution for an FIVP in the n-
dimensional space R?. Here, we rewrite the Lipschitz condition in a formal definition and

present a special case of the existence and uniqueness theorem for n = 1 which are needed in
this paper.

Definition 2.4 ([16]). Assume that f:1 X Ry — Ry is a fuzzy number-valued function. It is
said that f satisfies the Lipschitz condition if there exists a constant k > 0 such that
D(f(t,y), f(t,2)) < kD(y,2)
forall tel andall y,z € Ry.
Definition 2.5 ([17]). Let f:[t,s] » R be a fuzzy number-valued function. The gH-
derivative of at a € (t, s) is de_ned by
17
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1 _ 7i,., F@ath)oguf(a)
fon(a) = lim HERAED (25)

If fyu(a) € Ry defined by (2.5) exists, it is called that f is gH-differentiable at a.

Definition 2.6 ([18]). Let f:[¢t,s] » Ry and a € (¢, s) be such that f(x; @) and f(x; a) are
both differentiable at a for all o €[0,1]. Then it is said that f is differentiable of first type and
denoted by

(1)-gH-differentiable at a if

fign(a,@) = [f' (@ @), f' (& @), (2.6)
and f is differentiable of second type and denoted by (2)-gH-differentiable at a if
fr-gn(a,@) = [f'(@ ), f' (& @), (2.7)

Definition 2.7 ([19]). A point a € (t, s), is a switching point for differentiability of the fuzzy
number- valued function f, if for any neighborhood V of a there exist points t1; t; € V with t;
<a<tysuch that fori=1; 2, (2.6) holds at t; if and only if (2.7) does not hold at t;.

Theorem 2.1 ([6]). Let T = [a, b, ] € R, with B>0 and f € CJy([a,b],Rf). Fors € T

1. if f®i=01,..,n—1 are (1)-gH-differentiable, provided that type of gH-
differentiability has no change, then

(s —a)2

f&=f@® fiogun(@ O (s—a) @ filgu(@) O

(s — )"
(n—1)!

R,(a,s) = J: (J:l. .. <_LS fl(n;H(sn)dsn> dsn_l--->d51

2. if f®i=01,..,n—1 are (2)-gH-differentiable, provided that type of gH-
differentiability has no change, then

@O ® Rn(a,9),

Where

(a —S)2

f(8) = f(@O(=Dfz-gu(@) O (s =)0 (=1 f_gu(a) O

(a =)'
(n—1)!

R,(as) = fa ) ( fa Sl...( L fz(”;H(sn)dsn> dsn_l...>dsl

3. if O is (1)-gH-differentiable for i = 2k — 1,k € N, and f© are (2)-gH-differentiable for
i =2k, k € NU{0},then

0(-1)...

of," (@) O O(-1)R,(a,5s),

Where
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! " (a - S)Z
f(s) = f(@O(-Dfz_gu(@) O (s —a) B fi_gu(@) O o 0(-1)..
) (a S)l ( ) (a s)%
e(— 1)f2 gH( )O——ll fZn@ O —5 - 0(-1)..
2 2

0(—1R,(a,5),

R,(a,s):= js(f51(f f(ngH(Sn)dsn> . 1-..)(151

Lemma 2.1 ([6]). Let f:[t,s] — Ry be fuzzy continuous. Then f:f(t)dt exists and belongs
to Rf. Furthermore,

[ f)dx]q = [J] f(s; @)dx, [ f(x; @)dx] (2.8)
Lemma 2.2 ([6]). Suppose that f:[t,s] — Ris gH-differentiable and ng is continuous on
[t,s]. Then

i H-gn(0dx = (=1) O [ f3_gu(x)dx. (2.9)

Theorem 2.2 ([6, Theorem 3.1]). Suppose that f: [, s] — Rris gH-differentiable and the type
of differentiability of f on [t,s] does not change. Then for all t<k<s, the following
statements hold:

1) If f(x) is (1)-gH-differentiable then fi_; (x) is (FR)-integrable on [t,s] and

Ly
S —gu()dx = f(k)Oyf(t) (2.10)
2) If f(x) is (2)-gH-differentiable then féng (X) is (FR)-integrable on [t,s] and

Where

[ _gn()dx = (=1) © f(x)0x(~1) O f(K). (2.11)

LLemma 2.3 ([6]). For all real numbers z, the inequality 1+ z < € holds.

3. Fuzzy Adams Methods
The general linear multi-step method can be formulated as

k k
Z Q¥n+j = hz Bifn+j
i=0 i=0

where o;’s and [3;’s are constants. We assume that o # 0 and also that both o,y and By

i
are not zero. The Adams methods are only a subclass of linear multi-step method with

O(k=1, O(k_1=—1, O(j=0 j=0,1,...,k—2
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In this section, we construct fuzzy Adams-Bashforth (A-B) and fuzzy Adams-Moulton (A-M)
methods based on the generalized Hukuhara (gH)-differentiability. To this end, we first
introduce finite backward and forward differences based on gH-differences. Using them, we
go on the Newton's interpolation polynomials and finally, using Newton's forward and
backward interpolation polynomials, we obtain fuzzy Adams-Bashforth and fuzzy Adams-
Moulton methods. We employ the former as the predictor and the latter as the corrector.

A fuzzy polynomial interpolation of the data is a fuzzy number-valued function p: R — Ry
which satisfies

Dforalli=1,2,...,n, p(x)=f;

2) p is continuous.

3) If the data be crisp, then the interpolation p is a crisp polynomial.
A function p fulfilling these conditions can be constructed following.

At first, forward gH-difference between fi and fi.1 shown by 4,is introduced.

For each o €[0,1], - level of i is shown by [f;], and [f;]o = [f;(@), f(@)].

3.1. Forward Finite Differences
Suppose that f:[a, b] = Ry is continuous over [a,b] and the values of f are known in x; =
a+ihi=01,..nh="" Define,

) _(Ofinn@Oufi(@),
Agufi(a) = fir1(@)Ogufi(a) = {(ii)(—ll) Qféfi(a)@HfiH(a)).

The a — cutof 4,y fi is defined in following form.

[4gnfi(@]a = [fir1(@)Ognfi(@)]a =

[min{fis1 (@) = £:(@), fiar (@) = fi(@)}, max{fiss (@) = fi(@), fiar (@) = f(@)}]
Agufi(a) = Agu(Agnfi(@)) = Agy (fir1(a)Ogufi(a))

= (fi+2(0) g1 fi41(2)) Ogp (fis1 (@) Og fi(@))

_ {(i)fm (@052 O fir1(a) @ fi(a),

| EED O (fir1(@Ou fir2(@)) g firr (@) @ fi(a)
(Dfis2(@)042 O fiy1(a) @ fi(a),

_J@ED O QO fir1(@0Byfivz(a) @ fi(a),

) G O (firr (@ Ok fir2 (@) Ogh fivi (@) @ fi(@),

(()(—1) © (fi+1(@)OL(—1) © (fi+1(@) Oy fir2(@))) B fi(a)
The reasoning above leads us to A7, fi(a) = Agy (424 fi(a)) and so on. Ak, fi, k = 1,2,...
are the forward finite differences.

(3.12)

Now, using our new notations and concepts, we can define fuzzy interpolation polynomial
with forward gH-difference as follows:
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Definition 3.1. Let ¢ € [0, 1]. Then the fuzzy interpolation polynomial p(x) with forward gH-
differences can be written as

(9)

, 8@—1)...(0—n+1)
p(x) = fo(@) @ 6 O Agufo(a) & ——5—— O Agufo (@) D...D

n!

x;,i=1,2,...,nand

© Arng fo(a)

Remark 3.1. We know that 0 is crisp because of 8 = Z==°
h are crisp.

3.2. Backward Finite Differences
Similarly, the backward finite differences are defined in the following form.

Tnh(e) = (@00gufe-a (@) = [NV o .
[Venfi (@] = [f(0)0gufi-1 ()]
= [min{fi(a) — i1 (@), fi(@) — fir (@}, max{£i(@) = fi-1 (@), fi(@) — fia @}]
24 £ (@) = Von Tgrafi@)) = Von (i(@) O fi-1(@)) = (i(c)Ogifi-1 (@) Oy (f; —
1@))Bgnfi-2(®) = {83;((—0(1))03 ?fff;)lc(:])”ii)f)zi?’q(a) ®fio@ OB
(Dfi(@042 O fi_1(@) B fia(@)
(i)(~1) O 2 O fi-1(0)0uf () B fi2(a),

({t)(=1) O (fi-1(@) 0y fi(@)) Oy fi—1 (@) © fi-2(a),
() (=) O (fi-1 (@O (=1) O (fi-1(@) 0y fi(@))) @ fi—2(@)

The reasoning above leads us to V3, fi(a) = Vyu(Vguf;(2)) and so on.

Now, using our new notations and concepts, we can define fuzzy interpolation polynomial
with backward gH-difference as follows:

Definition 3.2. Let ¢ € [0, 1]. Then the fuzzy interpolation polynomial p(x) with forward gH-
differences can be written as

P(x) = fa(a) © 6 O Vgpfn(a) © O ngan(a) ®..0

Remark 3.2. We know that 0 is crisp because of 8 =
and h are crisp.

0(6+1).. (9+n 1) ov

i fn (@)
i=01...,n—1

0(6+1)
2

3.3. A-B Two-Step Method

To solve FIVP
{u},H () =fxu®)  xsx<T (3.14)
u(xo) = uo

by A-B two-step method, suppose that the fuzzy initial values are u(x;_1), u(x;). i.e
flxi—,ulxi_q), f (x;, u(x;)) are fuzzy numbers.
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X—Xi

AlsoletVyyfi = fiOgnfi-1,0 = - |. The fuzzy interpolation polynomial for fuzzy numbers
use of f(x;_1), u(x;_1), f (x;, u(x;)), can be written as.

p(x,u(x)) =f; @ 0 © Vgufi.
(i) If u(x) is (1)-gH-differentiable and f(x, u(x)) is replaced with p(x, w)), then,

Xi+1 Xi+1
f Uj_gu(x)dx = f f(x, u(x))dx
Xj Xj

Xit+1 1
Uj+1 = U4 @ f (fl @ 0 O Vngi)dX = Uj @ h Q f (fl @ 0 Q Vngi)dG
Xi 0

92
zui@h@[fi©9@7@Vngi](l) =
1 h
uydhOI[f;D > O (fiOgufi-1)] = u; @ 3 O B O fiOgufi-1)
Therefore,
Ui =14 D5 O B O [i0gufio1). (3.15)

Then, using the properties of gH-difference, all different forms of A-B two-step method of
(1) can be written as follows.

D = D50 3O fi0ufim),
2) Uis1 = 4 @5 O (fi-1043 O ).
(1) If u(x) is (2)-gH-differentiable, we have

Xj+1 Xj+1
f Up_gn (X)dx =f f(x, u(x))dx.
Xj X

Similarly, replacing f(x,u(x)) with p(x,u(x))) and at last using the properties of gH-
difference, the following result can be obtained.

Uisr = 404(-1) O 5 O (3 O fi0ufi-1). (3.16)
Therefore,
1) Upsr = 104(-1) O3 O (3 O £i0ufio1),
2) i1 = w0y (-1 O T O (fi-1043 O f).

3.4. A-M Three-Step Method

For A-M three-step method suppose u(x;), u(x;4+1), u(xi;2), be the fuzzy initial values, i.e

f e u(x), f (Xivr, u(Xi1)), f (K2, u(xia2)) f (Xia3, u(xi4.3)) are de_ned. Then, consider
the following identity,
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[ uigntodx = [ e uGodx

Xit+2 Xi+2
when u(x) is (1)-gH-differentiable. Now, replace f(x,u(x)) with p(x,u(x)) in
(X0, f1)) (i1 fivn)r (Kiazs fivz)s (i, firs)-

Ups = ® [ fGLuC)dx
Xirs 9(6 —1
umeaf G @004 e Do,y
660 —1)(06 -2
O=DCZ2 6 g3 fax
3 (6 —1) 5
Uiss RO [ (1 ® 0O Aufy @ O 2B,
2
660 —1)06 -2
O-DCZ2 6 g3 fax

0? 1. 1, 5
ui+2®h®[ﬁ-09®7OAngi69(ge _Zg)QAngi

1, 6% 6? 5 5
® ;9 _?+?)®A9Hfi]|2
5 23 3
=ui+2eah@(fieaEOAgHﬁ@E@AgHﬁ@g@Angi)

23

5
= U2 @R O (i 5O (ir1Ogufi) + 15 O (i+205u2fis1 D fi)

3
D 50O (1439913 O fir2 B 3 O fi+10gufi))

3 19 5 1
=ui+2$h®(§®ﬁ+3$ﬁ®fi+2@gHﬁOfi+l @ﬁin)

h
=Uj, D ﬁO 90O firzs® 19 @fi+2@gH5 O fis1 D f)-
Therefore, all cases of A-M three-step method can be written as follows.
h
D tiss = Uiy @ ;O [9O fi13 D19 O fi42045 O fis1 @ i),

2) Uiz = Uiy D % OO firzs @D OGO fi+10419 0O fir2) @ fi)]. (3B.17)
(1) when u(x) is (2)-gH-differentiable.

Similarly, all cases of A-M three-step method in the second case can be written as

1) Upsz = Ui4201(—=1) O 5= O [9 O fisz B 19 O f142045 O firs D fil,
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2) Uiss = Uis205(—1) O 3: O [9 O fiz B (—1) © (5 O fi10419 O fir2) ® f)].
3.5. Predictor-Corrector Methods

Suppose that we want to solve FIVP by using an implicit linear K-step method. For example,
consider one of the cases of three-step A-M method (3.17).

1) us :ui+z@%@[9©fi+36919in+29r15@fi+1@fi]-

At each step, the equation in which only ;. 4, fj+4,j = 0,1,2 are known, are solved. In
general, this equation is nonlinear.

Using the theorem of a unique solution existence of the IVP, we find that a unique solution
exists for ui+3 and it can be approached arbitrarily close by the iteration

w5 =, @2 O 190 f(Xia ulty) 19O f12045 O fisr @ fil s =012, (3.18)
Where u£0+]3 is arbitrary.

Each step of the iteration (3.18) involves an evaluation of f(xi+3,ul[i]3). Thus, we are
concerned to keep the number of times the iteration (3.18) is applied minimum, specially
whenever the evaluation of f is time-consuming at the given values of its arguments.

Therefore, we would like to accurate the |n|t|al guess ul[ +]3as much as possible. A separate

explicit method can be used to estimate u WhICh can be used to the initial guess of u
The explicit method “A-B" and the 1mp1101t method (3.18) “A-M" are the predictor and the
corrector, respectively.

Let P, C, and E indicate an application of the predictor, a single application of the corrector,
and an evaluation of a function f in terms of the known values of its arguments. If we compute

[ ] ;from the predictor, evaluate f 10 = = f(xiz3,u E +]30 and apply the corrector once to get

l+3, the series of calculations done so far is denoted by PEC.

A further evaluation of f[ = = f(Xit3, l+3)wh|ch is followed by a second application of the

corrector, yields u,[+]3, and the calculation is now denoted by PECEC, or P(EC)% Applying the
[m]

corrector m times is similarly denoted by P(EC)™. Since m is fixed, we accept ul+3,

numerlcal solutlon at xi+s. At this stage, the last computed value we have for f;,sis f; 5 m=11 =
f(xl-+3, L+3 ]) and we have a further decision to make, namely, whether or not to evaluate
flzg] = f(xi43, l+3) If this final evaluation is done, we denote the mode by P(EC)™E, and

if not, by P(EC)™.

This choice clearly affects the next step of the calculation since both predicted and corrected

values for ui+4 will depend on whether f;, 5is taken to be f[m]or fl[m U Note that for a given
m, both P(EC)™ E and P(EC)™ modes apply the corrector the same number of times; but the
former calls for one more function evaluation per step than the latter.

as the
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3.6. Local Truncation Error

m

Theorem 3.1. Consider that ugy (x) exists and f(x,u(x)) satisfies the Lipschitz condition on
the set (x, u(x))|x € [0,p], u € B(uy, q),p,q > 0. Then, A-B and A-M methods converge to
the solution of the FIVP (1.1).

To see the proof of Theorem 3.1, the reader is referred to [11].

4. Stability

A method is said to be stable whenever small perturbations in the initial values will only cause
small changes in the solutions.

Definition 4.1. Let uy,4,k + 1 = Obe the fuzzy solution of the fuzzy p-c method with initial
condition u, € Rrand let z«1 be the solution of the same numerical method with a perturbed
fuzzy initial condition z, € Ry such that zo = u, @ 6. The fuzzy p-c method is called stable
if there exist positive constants 4 and x such that

D(Zjs1)Ups1) < KO V(k+1)h< T,k <N-—1,h€ (0,h)
Whenever D(§,,0) < 4.

A-B two-step and A-M three-step methods are stable. To see this in details, the reader is
referred to [11].

5. Numerical Algorithm for Solving FIIVVP

The numerical algorithm for solving impulsive fuzzy initial value problems is different from
the numerical algorithm for solving fuzzy initial value problems only at the pulse point,
where we have to apply the operators concern with the particular point. For this reason, at
first, we consider fuzzy initial value problem in the form

y'(®) = fty®)

5.19
{y (to) = Yo, (5.19)

where y is a fuzzy function of t, f(t,y) is a fuzzy function of the crisp variable t and the fuzzy

variable y, y' is the fuzzy derivative of y and y(ty) = y,is a triangular fuzzy number.

Therefore, we have a fuzzy Cauchy problem [20].

In this section, we present an algorithm for solving the first order impulsive fuzzy differential
equations with initial value. If the function y(t) is a solution of the impulsive fuzzy differential
Equation (5.19), then by the numerical algorithm for solving impulsive fuzzy differential
equations, it is possible to obtain values y(t,) for a fixed value of t, of parameter to, where
t, > to, at the moment t = tz. The algorithm includes following steps:

Step One: At t = to, apply the Adams-Bashforth method for y by considering y = yo from
initial
condition (5.19). The algorithm applies until the first pulse point.

Step Two: At the pulse point t = ti, the impulsive fuzzy operator I« brings rapidly changes to
the function y that moment is J(ts); Where
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00 =hOm + ) ),

to<ta<ty

Step Three: We solve the function y of argument t by taking it from the half-segment
(tk tks1] by the Adams-Bashforth method.

Step Four: We repeat Steps Two and Three until we encounter with the desired y(t;) that has
to be found.

Step Five: Add the summation of all pulses to the functiony.
Y=y + ) J@)
to<tp<ty
[y(t), = [yi(ts 1), v2(t, 1)] is the approximated solution and
U((t)]r = [J1(te, 1), J2(tk, 7)] is the pulse in point t.. We have

Y[y + Xeo<ti<t,] E)lr = V1t T) + Xeg<t<t,J1 G 1), Y2 (b0 T+ Xeg<ty<t, J2 (G T
We apply Adams method on each half-segment (¢, tr11]-

6. Error of Fuzzy Numerical Algorithm

By assumption first order impulsive fuzzy differential equations (1.1), (1.2), (1.3)|
y'(t) = f(t,y(t)), te]J=[0,T],t#ty,k=1,...,m,
y(&H) = Ly (t)), k=1,....m (6.20)
y(to) = Yo,
we get the analysis error of numerical algorithm in section 3 based on fuzzy predictor-
corrector method. We import small perturbations 65 on the right-hand side of expression
(1.3), then it creates perturbations d;,9d,, on the right-hand side of expressions (1.1), (1.2),
and we will have the solution as following form

Y=yD5Oy. (6.21)

We got analysis this perturbation, whether we will have a stable numerical algorithm, and we
will have converged? By perturbation, we achieve to first order perturbation impulsive fuzzy
differential equation as following form

{Yg,H(t) =fty) @ [6: O f(t,y()]. (6.22)

te]=[0T],t#tp,k=1,...,m. '

{Ayltztk =Y (t§)OgnY (ti) (2.24)
= I (y(tx)) @ [62 O L ()], (t = ty), k=1,..,m '

Y(to) = y(to) D 63 © y(to)- (6.24)
By assumption expression (6.23) and using expression (6.21) we conclude
Y(t0)04nY (tr) = [y () Oguy(ti)] @ 82 O L (v(ti)),
() B8 Oyt (t) ® 8 O y(ti)DOguly (i) Oguy(ti)] = 82 O L (¥(ti))
26
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6 O [y(t)Oguy(ti)] = 82 O L ((ti)-
By using Property 3 of the Hausdorff distance
6 O [y (td)Oguy(ti)] < 8, O L (¥ (i)
Finally, by considering Definition 2.1 we have
< L (y(t))
~ () Oguy (tr)]

Without reduce of generality, we only consider fuzzy Adamz Bashforth method (3.15), for
expression (6.21) and (6.23) we obtain

{YO = 83 O y(to)-
Yi+1 = Vi D@ % O [6:B O [tk y(t,))Ogu f (tk—1, ¥ (tk-1)))]
By setting k = 1, in (6.25), we obtain

O 6,

(6.25)

h
Y, = 83y1 @ > [81(3 © f(t1,y1)Oguf(to, yo))l-

According to the expression (6.21), we obtain

h
V2D 8Oy, =83y, D > O [6:(3 O f(t1,¥1)Oguf(to, y0))]-
By using property 3 of the Hausdorff distance once more

5 < Y165 D % O 6B O f(t1,¥1)04uf (to,Yo))
B Y2

By letting 53 — 0 and &; — 0, we obtain § — 0, which means that the numerical algorithm
is stable and converges to the exact solution.

Without reducing of generality, since the case for k=3, ..., z is the same as for k=2, we only
consider the case k = 2 and according to the expression (6.21), we obtain

h
V3@ 6Oy = (ty) ®S Oy (t7)) @ > [6:(3 O f(t2,y2)Oguf (t1, y1))]-
By using Definition 2.1
h
V3@ Oy3 <y (t8) B Oy (tf) @ [5 O (6:B O f(t2,¥2)04uf (t1,¥1)))]-
Finally, we obtain

ACLCLICPACHI 20 (6:3 O f(t2,¥2)0guf (t1, y)))]
B V3 V3

6

Hence

h
83y1+5061BOf(t1,¥1)0gn S (to.Y0)) I (Y(t) D8,
< 2 . (6.26
- Y3 © O (t9)0guY (t;)) (6.26)
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The upper bound in (6.26) shows that to have the stable numerical algorithm that converges
to the exact solution, we need imported perturbations in right side of the expressions (6.22),
(6.23), (6.24) near to zero, too, i.e.,6; —» 0,6, — 0 and §; — 0. Under this condition, we can
say that for k = 2,..., z, the numerical algorithm introduced is stable and converges to the
exact solution.

7. Numerical Results

In this section we present a numerical example, in order to see the accuracy of our numerical
solution. The numerical results show convergence of these methods.

Example 7.1. Consider the first order impulsive fuzzy initial value problem,
ugp(x) =u(x),0<x<1
u(x) = 0.01u(xy),
u(0) = (0.75 + 0.257, 1.125 — 0.1257)

Where 0<r<1, and by the considering X, =1. This example was solved by using the

Adams-Bashforth two step method with N = 10, N = 100 and N = 200 in the cases that u(x)
was [(i) — gh] - differentiable.

These results in x = 1 has been showed in table 1 and plot of u(x) in 0 < x < 1 has been
showed in figure 1.

8. Conclusion

In this paper, a new method was introduced in the fuzzy numerical analysis based on gH-
differentiabil- ity namely the fuzzy Adams-Bashforth and the fuzzy Adams-Moulton methods
for solving (1.1), (1.2), (1.3). In final one FIIVP was solved, according to the type of gH-
differentiability with their's related methods. Obtained results demonstrate the efficiency of
these methods. The obtained result indicates that by decreasing step size, the approximated
solution tends to the exact solution.

h=0.1 h=0.01 h=0.05
U U U U U v
0.018300215395 | 0.027450323093 0.020182431 0.03027364799 0.0202849706 0.03042745597
0.1 0.01891022257 0.02714531950 0.0208551797 0.029937274 0.020961136 0.030089373
0.2 0.019520229 0.02684031591 0.0215279274659 0.029600900265 0.0216373020 0.029751290
0.3 0.02013023693 0.0265353123 0.022200675199 0.0292645263990 0.02231346 0.0294132074
0.4 0.02074024411 0.02623030873 | 0.02287342293256 | 0.028928152532 0.022989633 0.0290751246
0.5 0.02135025129 0.02592530514 0.023546170665 0.0285917786657 0.023665799 0.02873704175
0.6 | 0.021960258474 | 0.025620301553 | 0.02421891839918 0.02825540479 0.0243419647 0.0283989589
0.7 | 0.0225702656542 | 0.02531529796 0.024891666132 0.027919030932 0.02501813047 0.0280608760
0.8 | 0.023180272834 0.0250102943 0.0255644138658 0.027582657065 | 0.025694296159 | 0.0277227932
0:9 | 0.0237902800139 | 0.024705290783 0.026237161599 0.027246283199 0.02637046184 | 0.02738471038
1 0.02440028719 0.02440028719 0.0269099093324 | 0.0269099093324 0.0270466275 0.0270466275
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