
ABSTRACT

Honeypot is a security device the value of which lies main-

ly in discovering and inspecting, being attacked and be-

ing at risk. Most of the present honeypots are configured

and installed on the network statically. In some cases, con-

siderations have been made on dynamic configuration of

honeypots at the time of installation. However, no study

has been carried out on how to instantaneously change the

configuration of honeypots based upon the analysis of the

collected events from various network elements including

routers, firewalls, spam identifiers and honeypots. In this

paper, we propose a method that the honeynet is auto-

matically configured so that the conditions are prepared for

trapping the threats based on the reports sent from sev-

eral elements of the network and also the defined rules of

the system. Unlike the other methods which wait until the

threat reaches the honeypot, the main idea in the proposed

method is to configure it to move to attract the attacks. The

present scheme has been evaluated in a real environment.

The results of the evaluation, illustrated the efficiency of

the suggested method.

Keywords

Honeypot, Dynamic Management, Network Security

Alireza Saeedi
Master›s student, Department of Computer,

Hamedan Branch, Islamic Azad University,

Science and Research Campus, Hamedan, Iran

+98 912 4451704

saeedi.mail@gmail.com

1. INTRODUCTION

Honeypot is a security element in computer networks

which is used to identify the system’s weaknesses and to

collect the necessary information for following and track-

ing intruders. In other words, a honeypot is security re-

source whose value lies in being probed, attacked, or com-

promised [1].

Today, because of their unique advantages, honeypots are

of special interest to many security teams and companies

and they have installed several versions of them. Based on

the extent to which they interact with users, honeypots can

be categorized into two groups of high-interaction and

low-interaction. Low-interaction honeypots imitate the

real services by installing fake services and save all types

of activities on themselves. High-interaction honeypots are

real or virtual systems on which real services have been in-

stalled. Since honeypots are plug-ins, no traffic should en-

ter or exit them. Besides, no extra activity should take place

within high-interaction honeypots, making any traffic or

extra activity on them to be detected as suspicious or at-

tack which causes honeypot reports usually brief but useful.

Furthermore, more complete information about the attack

can be obtained from honeypots, because they allow hack-

ers or malware to communicate with a real system. Also,

A Dynamic Approach for Honeypot Management

Mohammad Nassiri
Assistant Prof. in Computer Engineering,

Assistant Professor at Bu-Ali Sina University,

Hamedan, Iran

+98 811 8292505

m.nassiri@basu.ac.ir

Hassan Khotanlou
Assistant Prof. in Computer Engineering,

Assistant Professor at Bu-Ali Sina University,

Hamedan, Iran

+98 811 8292505

hkh@basu.ac.ir

International Journal of Information, Security and Systems Management, 2012, Vol. 1, No. 2, pp. 104-109

Received 7 November 2012, Accepted 1 December 2012

105

unknown attacks can be identified by this means. Since

honeypots are located at the beginning or the end of en-

crypted communications, the content of communications

can be revealed.

Most of the present honeypots are configured and in-

stalled statically (they should be configured by the user

and then be placed on the network). However, some meth-

ods for making honeypots dynamic have been provided.

For example, dynamic honeypots have been introduced in

[2] and their installation methods and difficulties in each

method have been discussed as well. According to [2], the

major problem of dynamic honeypots is lack of informa-

tion about the network. To resolve this problem, an ac-

tive and a passive solution have been recommended. With

these approaches, it is possible to discover data about the

structure of networks including number of stations, types

of operating systems, provided services, and stations’ com-

munication information through monitoring the network

data. This information can be helpful to adjust and develop

honeypots. Their configuration difficulties can be reduced

and it can be done automatically by means of automatic

collection of such information. This feature not only leads

to maintaining low costs of maintenance, but also makes

honeypots constantly compatible with the environment. In

this case, the honeypot identifies the network and selects

the free (non-dedicated) IP addresses.

A passive tracing system has been used in [3] to collect in-

formation about the network and configure honeypots. The

schema of a dynamic honeypot system has been studied

in [4] in which both low-interaction and high-interaction

honeypots have been used. In addition, both active and

passive tools have been utilized to monitor the network.

The procedure is that at the beginning, the dynamic honey-

pot server starts to collect data about the network including

the number and the types of operating systems, provided

services and communication. The data collection process is

done by sending direct messages which are adjusted for the

very purpose and tracking the network communications.

Having collected the data and identified the structure of

the network, the dynamic honeypot server initiates to in-

stall and configure to suite the network (the network ad-

ministrator may optimize the structure).

Other suggestions have been introduced in [5], especially

substituting the honeypots with the main server (with the

same IP address), when the main server stops working or

is interrupted. The main difference of this method with the

previous ones is caused by the identification and changing

the honeypots based on the data received from the chang-

es in the network and also the added or removed systems

which occurs instantly.

Ways to make patterns automatically to identify unknown

worms have been discussed in [6]. These suggest installed

versions in which low-interaction and high-interaction

honeypots have been used to monitor suspicious traffic.

After putting packages similar to white list patterns aside,

malicious patterns are generated automatically. In order to

reduce the reaction time, obtained patterns are distributed

in a network which has the identification and prevention of

intruders as duty. Consequently – and within certain dura-

tion of time, – these patterns are refined to decrease the rate

of false identifications. Another advantage of this scheme is

that the growing or declining regime of the worms’ hostility

is analyzed and they are sorted based on their significance.

In [7], dynamic honeypots mechanism has been used to

reduce the load on servers. In this method, the healthy flow

is distinguished from the attack flow. This is done by ana-

lyzing the traffic using characterisation and entropy dis-

coverers. Consequently, honeypots and servers are installed

on the network with proportion to the attacks. Besides, the

time and location of the activity on the network is identi-

fied. Attack flows are divided among the honeypots and

the healthy flow is divided between the servers. In [8] a

schema of honeypots has been created based on neural

systems with prediction of the vulnerable probability and

intrusive behaviours in advance as objective. The output of

this system is a black list.

Further in this paper, we introduce a theme for a dynamic

management of honeypots in an intranet in section 2. In

Section 3, we propose a scenario to evaluate the efficiency

of the suggested method and discuss the results for each

evaluation criterion. Finally, we present the conclusion and

further works.

2. OUR PROPOSAL

In this paper, dynamic administration of honeypots and

changing their configurations is discussed. The configura-

tions are based on reports obtained from other sensors of

the network such as routers, firewalls, intrusion detection

systems and the honeypots themselves. For example, as

soon as the report of a port being scanned is delivered from

the open port of a server, the command of opening that

port is given to one of the high-interaction honeypots to

become bait for the attacker.

The following elements are used in this design:

The overall schema of the system is shown in Figure 1. In

this design, low-interaction honeypots connect directly to

the central administration system via the network. How-

ever, high-interaction honeypots are disconnected from the

rest of the system by a firewall called Honeywall. The rea-

son is that if intruders reach these systems, the way through

the network remains closed. In the next sections, we discuss

IJISSM, 2012, 1(2):104-109

106

each of these elements independently and also explain the

method by which different elements communicate.

Figure 1. The schema of the proposed design

2.1 Low-Interaction Honeypots

Honeyd is the software we used to install low-interaction

honeypots. We chose this software because it is open-

source and its installed versions are available on almost

every operating system including UNIX and Windows.

Also, it has the option of adding new systems by writing

new scripts by languages such as Python, Perl and Bash.

Another feature is that it is possible to use Nmap software

fingerprint database to prevent fake responses of several

simulated operating systems [9].

One of the problems with the present low-interaction

honeypots including Honeyd is out-of-date services for

different service providers. In order to resolve this prob-

lem, a piece of software has been developed in Python for

Honeyd called script maker software. The routine of this

software is that the raw commands which relate to that ser-

vice are defined by identifying all the input to the software.

Then, the false and true values of the inputs are figured

out. After that, the interdependency of commands will be

identified, since some commands should necessarily pre-

cede others. In the next step, we know whether the service

needs identification. If so, a username, a proper password

and also commands relating to entrance will be issued in

the script maker software.

To this stage, the data relating to the service in the software

is defined. Now, we execute the service we intend to simu-

late. For example, it is possible to execute any of the service

providing software for simulating purposes in the FTP ser-

vice. Thereafter, the address and the port of the real service

provider are given to the script maker and the procedure of

making the script is run. This software sends the defined

commands with different combinations to the real service

provider. It starts to send commands with true, false and

nonparametric inputs for the real service provider. It also

submits the commands for each condition – considering

the interdependency every another time. In case the service

needs to be identified, the whole procedure is transmitted

once before and another time after logging. We implement

the responses from the real service into form of a decision

tree in Python.

Loading the script in Honeyd, the decision tree will be

browsed and the proper response will be returned. There-

fore, any service can be updated and automatically simu-

lated.

2.2 High-Interaction Honeypots

In order to implement high-interaction honeypots, we

used VMware software to build virtual systems. Using vir-

tual systems leads to simplified maintenance of systems. It

is also more economical than the real systems. In addition,

VMware has provided solutions for controlling virtual sys-

tems via other software, a method which has been used for

controlling purposes in central administration systems. In

order to monitor the events inside a system, another piece

of software was installed to control the following tasks in-

side the honeypots continuously:

and changes in all available files on the system.

including adding, removing, and changes in the registry.

The possible changes in all the aforementioned tasks are

reported to the central administration software. As for the

first four tasks, a list of exceptions is defined in the soft-

ware, which can be updated by the central administration

software. This list is prepared to remove false reports in the

exceptional cases; for example, the files that are change con-

tinuously by the operating system and we do not want to

report them. As for the CPU and memory resources usage,

a threshold is defined in the software. As such, if the usage

is more than the defined threshold, a report will be sent.

2.3 Network Sensors

Any sensor with the capability of sending a syslog can be

used as the sensor, since this is the form in which the cen-

tral administration system receives the sent reports by the

sensors. The most important sensors of this type are rout-

ers, firewalls, and intrusion detection systems such as Snort

and Bro.

2.4 Central Administration System

Central Administration System is the main part of the sug-

gested design that decides besides controlling the honey-

pots. This system is consisted of three parts:

IJISSM, 2012, 1(2):104-109

107

The report receiving unit receives two types of reports: re-

ports sent from the honeypots, and reports from other net-

work sensors in the form of syslog.

It is possible to make rules in the legislative part to control

the honeypots. The rules are defined as follows:

If {condition(s)}, then {agent(s)} perform this {function(s)}.

For instance, some conditions used in our suggested mech-

anism are: “If (this) message is (not) included in the text

of the alarm “or “always”. Besides, the agent can be: “the

sender of the alarm”, “all high-interaction honeypots”, “all

low-interaction honeypots”, or “the address to a specific

honeypot”. As for the functions used in this design, “per-

forming a service”, “changing the IP address”, “file execu-

tion”, “VMWare revert to the snapshot where the system

works flawlessly and is not infected”, and “taking a snap-

shot of the VMWare at the current status” can be among

the choices.

The deciding unit in the central administration software

analyzes the reported alarms based on the available rules

and performs the tasks as defined in the rules.

3. EVALUATION

In order to analyze the efficiency of the system, we first dis-

cuss the following four parameters: Deception, False alarm,

Identification, and Vision.

In the section relating to monitoring the false alarm and

identification, a network with 4 high-interaction honey-

pots, 4 low-interaction honeypots, 4 Snort sensors and

router will be used. The high-interaction honeypots were

installed virtually and with 50 gigabytes hard disk and 1

gigabyte RAM per each honeypot. Besides, the virtual ma-

chine was mounted on hardware with a Corei7 Intel pro-

cessor with speed of 2 GHz.

3.1 Deception

One of the main objectives of honeypots is to deceive the

intruders or malware. In order to measure the extent of de-

ception, it is necessary to be able to distinguish between the

honeypots and the real system. Thus, the less the honeypot

is distinguishable, the more it has been able to fake a real

system and consequently deceive the intruder. Among the

main methods of distinguishing a honeypot are the fol-

lowings:

3.1.1 Scanning the Ports

One way to doubt cast whether the system is a honeypot is

that numerous ports are normally open on the static hon-

eypots and many services are provided by them. However,

as honeypots provide services dynamically in the suggested

method, services are never provided all at once. The service

providing command is received by the central administra-

tion system using the events. The defined rules are issued

only in case of necessity.

3.1.2 Fingerprint

Fingerprint is another approach for identifying honeypots.

Service providers and different operating systems possess

their unique fingerprints. On the other hand, some tools

can identify the type of the operating system or the ser-

vice provider in the target station by sending specific com-

mands. Hackers use these tools to ensure the reality of the

systems. However, this approach is not beneficial in the

case of high-interaction honeypots, since they are real sys-

tems and have a normal behavior facing the software. The

tools are useful for some low-interaction honeypots and as

discussed above, Honeyd uses the Nmap fingerprint data-

base to simulate the responses, which is one of the most

important tools in identifying fingerprints. This database

is updated constantly and its latest version can be down-

loaded from the Nmap website directly.

3.1.3 Identifying the Virtual Environment

Hackers can identify high-interaction honeypots, if they

figure out whether they are in a virtual system or a real one.

Unfortunately, there are almost some ways for identifica-

tion for every virtualization software. Although, the mere

fact that the system is doesn’t necessarily mean that the

system is a honeypot, because currently many services are

installed on virtual systems in order to reduce the costs.

Nevertheless, to eliminate this method, real systems should

be used that leads to higher costs both from the installation

and maintenance aspects.

3.1.4 Hospitality

Hospitality means reducing the security level considerably

to entrap the hackers in honeypots. Easy passwords, lack of

antivirus, and non-updated software and operating systems

are examples of reducing the security level. This might help

the hacker guess a honeypot exists. However, our approach

is not to reduce the level of security of the honeypots. We

believe that the security level of a honeypot should be equal

to that of real systems on the network. One of the aims of

the script maker software is to install similar services to

the real ones on the network. We are looking for hackers

and malware that can damage our network with the actual

security level, not all hackers or malware on the network.

For instance, the operating system of all our real systems

are Windows XP with service pack 3, being aware of the

fact that the security hole in service pack 2 has been fixed in

service pack 3. We believe that malware which abuses this

IJISSM, 2012, 1(2):104-109

108

security cavity is not of importance, because they can not

harm the real systems on our network. As a result, we use

the main systems in installing honeypots and consequently

we are not worried about hospitality.

3.2 False Alarm

Another parameter is the amount of false alarms that re-

sult from false detection of the system. In this section, the

effect of events received from the network in the form of

syslog on the false alarms created in the system is discussed.

The results have been obtained within a workweek on a

network with 30 active computers, 4 high-interaction hon-

eypots, 4 low-interaction honeypots, 4 Snort sensors and a

router. The results have been illustrated in Figure 2.

Figure 2. Created reports in the test

The results have been obtained while performing several

vulnerability tests: scanning the network, and the normal

traffic on the network. Figure 2 shows that 163 alarms have

been created and only 28 of them have been from honey-

pots. Thus, we concluded that the use of sensors can lead to

having a wider vision and registering more events.

Another important parameter is the number of false alarms.

Figure 3 illustrates the number of false alarms generated in

this test. Syslog reports have different severity levels. Three

false reports in this test are at the alert degree.

Figure 3. False reports in the test

As shown above in the test results, the more reports are

made the more false alarms are generated. The number of

false alarms can be reduced by changing the threshold of

the severity level of reports. A primary parameter in send-

ing alarms from network sensors especially in intrusion

detection systems is their configuration. In addition, the

conditions and the traffic of the network are also influential

on the results of the test. That answers why many differ-

ent conditions can be imagined for this test. It can be con-

cluded from the results is that using other sensors on the

network increases the true alarms and expands the vision,

but meanwhile brings about the occurrence probability of

false alarms. This has to be reduced by properly configuring

and correctly choosing the threshold of reports accuracy.

3.3 Identification

Malware that distribute on a network or hackers who want

to creep into a system perform identification by taking ad-

vantage of the vulnerabilities of the software and services.

Therefore, Metasploit software has been used in this re-

search to test the different vulnerabilities and the intrusion

inside the honeypots. In each case, the time of the first re-

ceived alarm in the central administration system has been

calculated and illustrated in Table 1. It is noteworthy that

in these tests, the period of hard disk monitoring has been

set to 30 seconds, meaning that the hard disk and regis-

try monitoring process takes place every 30 seconds. Since

these algorithms take time, no shorter period was possible

using the actual lab system.

Table 1. Results of the identification test

Initial
Report

Vulnerability Description

2 SecFTP Authentication Scanner1

5 Sec
EasyFTP Server LIST Command

Stack Buffer Overflow
2

4 SecGoldenFTP PASS Stack Buffer Overflow3

5 Sec
HTTPDX h_handlepeer()
Function Buffer Overflow

4

The first test was performed using a dictionary in order to

enter the FTP server. Within the duration of 2 seconds, the

intention to enter was reported from the honeypot and was

registered in the central administrative software.

In the second test, a vulnerability test on the EasyFTP

software was used that is an FTP service provider. In this

test, sending a false value to the LIST command leads

to the stack overflow and eventually the destructive code

can be executed on the target computer. Executing the

EasyFTP software on the high-interaction honeypot and

using this vulnerability, we transferred a file to the hon-

eypot and executed it. This is a method by which hack-

ers and malware copy and run their destructive program

on the target computer using vulnerability. The first alarm

to announce the addition of a new process to the list was

reported in 5 seconds to the central administrative system

IJISSM, 2012, 1(2):104-109

109

and the alarm to alert the addition of a file to the hard

disk was reported within 18 seconds. The reason for this

delay in the file addition alarm is the 30 second cycle of the

hard disk monitoring procedure. In this example, the time

has been calculated while sampling. This is the reason why

it has been detected less than 30 seconds. Both reported

alarms are considered dangerous, because as no specific ac-

tion is usually taken on a honeypot, the appearance of a

new process or addition of a file on the disk is suspicious.

In the third test, vulnerability on the GoldenFTP software

(an FTP service provider) was used. Sending a false value

to the PASS command leads to the stack overflow and the

destructive code can be run on the target computer. Also in

this test, a file was copied and run in this way on the hon-

eypot. The first alarm to announce the addition of a new

process was reported in 4 seconds and the first file addition

to hard disk was reported in 15 seconds.

In the fourth test, vulnerability on the HTTPDX (a web

service provider) was used. A large http request was sent to

the h_handlepeer() function and this lead to overflow in the

stack and therefore the destructive code can be run in the

target computer. Again, the previous test was performed.

The first alarm due to addition of a process was reported

within 5 seconds and the first file addition to the disk alarm

was reported after 12 seconds.

3.4 Vision

One of the greatest innate disadvantages of honeypots is

their narrow field of view. Honeypots are only aware of the

events they directly encounter. In this research, we resolved

it collecting data from other sensors. As mentioned in the

previous tests, adding to the number of sensors leads to an

increase in the number of collected events from inside the

network that helps putting the honeypots on a proper route

by defining appropriate rules; in other words, this approach

can widen the vision of honeypots indirectly by means of

the central administration system.

4. CONCLUSION AND FURTHER WORKS

In this approach, the property of honeypots deception level

was optimized for 3 methods out of 4, the explanation of

which was given in section 3.1. Besides, other network sen-

sors have been used to broaden the honeypots vision. The

test results illustrate that we have accelerated the process of

identifying malicious behaviors. Further, the idea of script

maker software was considered to resolve the problem in

low-interaction honeypots, i.e. lack of simulation of differ-

ent versions of service providers and not being up-to-date.

However, the number of false alarms was augmented along

with the increase in the reports. To solve this problem, we

showed that choosing a proper level of severity and preci-

sion of events is a way to reduce the number of false alarms.

Besides, correct adjustment of the sensors also reduces the

number of false alarms. The aim of this research was to look

at the dynamic administration of honeypots, instead of in-

telligence. Therefore, research on providing a method for

automatically producing rules can be the subject of further

research in the field, based on the presumptions discussed

in the paper in order to achieve the optimum smart ap-

proach.

REFERENCES

[1] Bologna Declaration. (1999). Joint Declaration of the

European Ministers of Education. Bologna, 19 June.

[2] Piasecka, A. & Iskra, G. (2006). The Concept of the

Quality in Reference to High Schools. Proceedings of

the Conference: The Quality of Education in the Society of

Knowledge, UMCS, Lublin.

[3] Doroszewicz, S. & Kobyliska, A. (2006). The Model of

the Quality of Education in the Main Trade School in

the View of Students. Proceedings of the Conference: The

Quality of Education in the Society of Knowledge, UMCS,

Lublin.

[4] Roszak, M. (2008). Management of the Quality of

Education. Proceedings of the Conference: The Influence of

Process Management on the Quality and Innovation of the

Enterprise. The Publishing House, UMCS Lublin.

[5] Hernas, A. & Szkliniarz, W. (2007). Experiences in

the Sphere of Introduction of the Quality Assurance

Systems of Education. Proceedings of the 12th Seminar of

Polish Material Association, Augustów.

[6] Macukow, B. (2007). The Quality Assurance System

of Education in the Warsaw Technical University.

Comments. The Publishing House The Warsaw Technical

University, Warsaw.

IJISSM, 2012, 1(2):104-109

