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Abstract 

Since the first well was drilled to discover underground formations, oil industry professionals have 

explored many methods to increase the length and stability of the well and hence to achieve higher 

efficiency. The development of the drilling industry accelerated in the past decades to increase oil 

production and reduce related costs. The purpose of this study is to describe the existing drilling 

techniques and to deal with the optimization method for drilling a new well in the South Pars gas field. 

The South Pars gas field is a common offshore gas condensate field known as the largest gas field in 

the world, approximately 38% of which is located on the Iranian side. In this research, first a well plan 

was presented to start the optimization, and then, its final three holes (including 16, 12 ¼, and 8 ½-

inch holes) were modeled in Landmark software. During modeling in Landmark, the well profile, 

BHA (Bottom Hole Assembly), drilling fluid properties, drilling hydraulics, effective drag, and 

surface torque were simulated and then optimized based on operational constraints (such as pump 

capacity) and mechanical constraints. Furthermore, the mechanical energy characteristic method was 

used to study the correlations between the actual rate of penetration (ROP) obtained based on field 

data and theory, and the artificial neural network was used to optimize the drilling process. Landmark 

results indicated that the drilling of 16, 12 ¼, and 8 ½-inch holes was limited by the selection of mud 

characteristics, so the optimal values of plastic viscosity (PV), yield point (YP), revolutions per minute 

(RPM), and mud pumping volume per minute (GPM) were calculated. For each hole, the results from 

the modeling and optimization of the artificial neural network showed an excellent correlation 

between drilling parameters and ROP for the 12 ¼ and 8 ½-inch sections (R-Train, R-Test, R-

Validation, and R-All were all larger than 0.99 for these sections), while the correlation was very good 

for the 16-inch section (the above parameters were all around 0.92 for this section). The results of this 

study can be applied to a real drilling process to maximize drilling efficiency. 

Keywords: Rate of penetration (ROP), Optimal design, Mechanical and hydraulic parameters, Energy 

characteristic method, South Pars gas field. 
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1- Introduction 

So far, many studies have been carried out 

on maximizing the drilling speed using 

optimization of mechanical parameters, 

drilling hydraulics, analysis of the well 

path, and drilling leg. By considering the 

high complexity of drilling different 

intervals that are placed in series, Wilson 

and Bentsen proposed three steps for 

optimization: First, minimizing the cost of 

drilling per meter (foot) in a "bit-run". The 

second step is to minimize the drilling cost 

of a specific interval, and the final step is 

to minimize the drilling cost of all intervals 

by considering a general drilling program 

for all intervals [1]. Burgoyne and Young 

presented one of the most important 

optimization studies, in which a linear 

drilling model with eight functions was 

proposed to predict the drilling speed, 

which can be called the most complete 

drilling model [2]. Operating companies 

developed specific techniques in which 

operating personnel could perform on-site 

optimization by referring to pre-determined 

diagrams and relationships [3]. Tammy and 

Warren put forward a drilling model in 

which the drilling speed was expressed as a 

function of bit size, rock strength, weight 

on the drill bit, and rotational speed [4]. By 

examining the factors affecting the "cutting 

removal" from the bottom of the well, 

Bizanti and Blick proposed some curves to 

optimize the "bottom hole cleaning" [5]. 

Warren achieved the proof of a drilling 

equation by assuming that while drilling, 

the bottom of the well is completely 

cleaned and the cuttings are completely 

transported. Warren's equation, which 

became known as the two-term equation, 

becomes a three-term equation in the case 

that the well is not completely cleaned [6]. 

Using the drilling information of the 

previous wells, Maidla and Ohara initially 

obtained the necessary coefficients of 

Burgoyne and Young’s model, and then 

predicted the drilling speed in that field 

using this model and presented graphs to 

optimize the costs in that field [7]. Taking 

into account the influence of factors such 

as the "abrasion effect of the bit tooth", 

Hareland and Hoberock presented Warren's 

modified drilling model [8]. The results of 

their study demonstrated that the prediction 

accuracy of the drilling penetration rate 

increases significantly by considering the 

aforementioned parameter. Samuel and 

Miska investigated the optimization of 

drilling with a positive displacement motor 

[9]. According to their study, the 

optimization of the drilling operation with 

the motor inside the well is highly 

dependent on the initial angle of drilling 

with the motor. Pereira determined the 

optimization parameters in horizontal wells 

and showed their effect on reducing costs 

[10]. This study revealed that despite a 

more than two-time increase in the cost of 

horizontal drilling compared to drilling 

vertical wells in some fields, the cost of 

drilling horizontal wells can be greatly 

reduced by optimizing the drilling 

parameters. 

Yibing and Ergun at the University of 

Alberta used foam to optimize the cleaning 

of vertical wells in a laboratory model [11]. 

According to the results of their 

investigation, cleaning the bottom of the 

well from drilling debris increases the life 

of the drill bit and substantially increases 

the drilling speed. Ogunrinde and 

Dosunmu investigated the critical 

parameters for cleaning the bottom of the 

well and presented a model by which the 

appropriate parameters of drilling and 

specifications of drilling fluid for obtaining 

optimal hydraulics were specified. This 

study investigated horizontal and deviated 



7 

M.R. Nouri et al./ Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 16 (2024) 0005~0017 
 

 

wells with an angle of more than 45 

degrees [12]. Through an artificial neural 

network and with the assumption of having 

optimal hydraulics and cleaning the bottom 

of the well, Wang and Salehi presented an 

intelligent system to predict drilling fluid 

rheology, flow rate, pump pressure, and 

other drilling parameters [13]. 

Alsubaih and his colleagues conducted 

investigations to optimize the penetration 

rate of drilling in the wells of the Mishrif 

Formation in one of Iraq's fields using the 

energy characteristic method. By collecting 

information from 25 wells from the studied 

field, they optimized parameters such as 

drilling fluid pumping flow rate, weight on 

the drill bit, drill torque, rotary table 

circumference, and drilling fluid weight 

and increased the drilling speed in this 

field. [14] Robinson and his colleagues 

modeled a function to optimize the drilling 

speed in different holes using artificial 

intelligence and energy characteristic 

methods as well as information collected 

from drilling operations in land and sea 

wells. Despite the generality of the used 

database, the function provided by them 

predicted the penetration rate of drilling in 

different fields with acceptable accuracy 

[15]. Through the experience obtained 

from drilling operations in 12 wells in the 

Middle East, using the information 

collected from them, and with the help of 

the energy characteristic method, Abdelaal 

and his colleagues optimized the drilling 

penetration rate in the future wells of the 

studied field. The selection of optimal 

drilling parameters led to an increase in the 

penetration rate of drilling by an average of 

10.5% [16]. 

Hashemizadeh et al. used five artificial 

intelligence models, including Bayesian 

ridge regression (BRR), K-nearest 

neighbor (KNN), support vector machine 

(SVM), decision tree (DT), and adaptive 

boosting regression with decision tree 

(ABR-DT), for mud weight estimation 

based on a data bank in five southern gas 

points. In these points, the variables 

affecting mud weight were as follows: true 

vertical depth (TVD), hole size, slope, 

viscosity, yield point (YP), plastic 

viscosity (PV), gel strength (measured at 

10 min, 10 min, and 30 min), and API fluid 

loss. Finally, it was observed that the 

accuracy of the models was ranked as: 

ABR-DT > DT > SVM > KNN > BRR. 

Moreover, sensitivity analysis showed that 

the predicted mud density is strongly 

influenced by the values of plastic 

viscosity and real vertical depth [17]. 

In summary, many studies have been 

conducted on maximizing drilling speed by 

optimizing mechanical parameters, drilling 

hydraulics, well path analysis, and drilling 

leg. However, none of them investigated 

all the issues raised at the same time and 

studied their effects on each other. The 

most important difference between the 

present study and the previous works is 

that the above-mentioned cases are 

investigated for the first time in the South 

Pars gas field in a detailed and 

comprehensive manner which will 

eliminate the weakness of the previous 

models. In other words, this study does not 

have similar precedents in Iran. Because, in 

addition to being poorly adapted to Iran's 

fields, the previous models did not 

examine all the effective parameters of the 

drilling penetration rate, thus, they are 

incomplete models. In our proposed model, 

all the important and effective parameters 

in the drilling penetration rate are 

examined. Therefore, while observing the 

appropriate accuracy for the presented 

model, the model is considered both 

comprehensive and complete. 
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2- Methods 

2-1- Energy characteristic relation 

The characteristic relation of the energy 

regarding the drilling penetration rate 

(equation 1) is the basis of the present 

study: 

 

(1) 

where ROP is the drilling speed (ft/h), µ is 

the specific coefficient of sliding friction of 

the bit, N is the number of bit cutters, CCS 

is the compressive strength of the 

formation (psi), WOB is the weight on the 

bit (lbs), EFFM is the mechanical 

efficiency (percent), DB is the diameter of 

the drill (inches), A is the cross-sectional 

area of the hole being drilled (square 

inches). It should be noted that among the 

above variables, only the compressive 

strength of the formation is independent of 

the well design, and the rest of the 

parameters are dependent on the type of 

well design and other mechanical and 

hydraulic parameters and well conditions. 

That is, the drilling speed depends on the 

mechanical parameters of drilling, such as 

the weight on the bit and around the rotary 

table, and the hydraulic parameters of 

drilling, including the pumping flow rate of 

the drilling fluid, the rheology of the 

drilling fluid, and the design of the drill 

nozzles. Therefore, in this study, by 

applying the energy characteristic method 

and simulating drilling operations in South 

Pars gas field wells in Landmark software, 

the mechanical and hydraulic parameters 

of drilling will be optimized to maximize 

the drilling speed. In other words, after 

simulating the drilling operation in 

different holes of a well in the South Pars 

field by Landmark software, the optimal 

design of drilling hydraulics, drilling leg, 

and mechanical parameters is carried out 

and the optimal parameters obtained from 

the simulation are placed in the energy 

characteristic relationship, which leads to 

optimized drilling speed. 

2-2- South Pars gas field 

The South Pars gas field is the largest in 

the world and is located in the Persian Gulf 

and in the territorial waters of Iran and 

Qatar. This gas field is shared between Iran 

and Qatar and is called the North Dome 

gas field in Qatar. Iran and Qatar have 

always been competing for superiority in 

exploiting the hydrocarbon resources of 

this field since the beginning of production 

from this common field. Fig. 1 shows the 

geographical location of this field [18]. 

 
Fig. 1 Geographical location of the South Pars gas 

field [18] 

The area of this field is 9,700 square 

kilometers, of which 3,700 square 

kilometers are in the territorial waters of 

Iran and 6,000 square kilometers are in the 

territorial waters of Qatar. The reserves of 

the Iranian sector contain 50% of Iran's gas 

reserves and 8% of the world's gas 

reserves. The well drilling route of the 
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South Pars field mainly includes drilling 

the following five holes: 

A) 32-inch hole 

This hole is dug from the bottom of the sea 

(at a depth of about 60 meters) to about 

200 meters. The mud used in drilling this 

hole is seawater and viscose pile. Fars 

group formations are the most important 

formations that are excavated in this hole. 

Due to the large diameter of this hole, it is 

difficult to clean the bottom of the well 

from drilling debris. To solve this problem, 

viscose gel is utilized, which consists of 

PHG and Guar Gum. It is worth 

mentioning that this hole is drilled with 

"26" and "32" Hole Openers. Then the 

guide tube "26" is driven into this hole and 

cemented. 

B) 23 ½-inch hole 

This hole is drilled with a toothed bit 23 ½-

inch and seawater along with a viscous pile 

as drilling fluid to the depth of installation 

of surface wall pipe. This hole, like the 

previous one, has the problem of cleaning 

the bottom of the well from drilling debris, 

for which PHG and Guar Gum are used. 

The formations that are drilled in this hole 

are Asmari, Jahrom, and Ilam. During the 

drilling of each of these formations, certain 

problems appear and necessary predictions 

must be made to solve these problems. For 

example, while drilling the hole, the 

appearance of H2S gas up to 18 ppm has 

been reported in the previous wells. H2S 

Scavenger is used to reduce the corrosive 

effect of H2S gas on the wall pipes and the 

drill string. Among other problems of this 

hole can be complete leakage of the 

drilling fluid, sticking of the wall string, 

and drilling in the Jahrom Formation. 

Finally, after the drilling of this hole, the 

wall pipe 18 5/8" is driven and then it is 

cemented. Of course, due to the complete 

absence of fluid in the Jahrom Formation, 

cement return is not observed on the 

surface.  

C) 16-inch hole 

This hole is drilled with a button bit or 

PDC and polymer mud along with viscose 

pile up to the Hith Formation and a depth 

of about 1700 meters. The formations that 

are excavated in this hole are Lafan, Saruk, 

Kazhdomi, Darian, Gadvan, Fahlian, and 

finally a few meters of Hith Formation. 

Due to the angulation rate in this hole and 

its curved shape, many problems appear 

during drilling. Because of the presence of 

Gadvan Formation in this hole, polymer 

mud or oil base mud should be employed 

to prevent the activity and swelling of this 

formation during drilling. Flowing of 

formation fluid (water and oil) from the 

Kazhdomi Formation has been reported in 

previous wells. Partial and total leakages of 

drilling fluid in the Fahlian formation, as 

well as the presence of H2S gas in the two 

Darian and Hith formations, are other 

problems of drilling a 16" hole in the South 

Pars gas field. Finally, the operation of this 

hole is completed by driving and 

cementing the wall string 13 3/8". 

D) 12 ¼-inch hole 

This hole in the South Pars gas field is very 

important because of reaching the final 

angle of the well. The mentioned hole is 

drilled with a PDC bit owing to the drilling 

of hard and anhydride formations. The 

drilling fluid used in this hole is polymer 

mud. Hith, Sormeh, Niriz, Dashtak, and 

Aghar shale formations, and finally a few 

meters of Kangan can be seen in the 

excavation of this hole. Drilling in this hole 

continues to a depth of about 2900 meters 

and up to the Kangan Formation. The 

eruption of salt water in the Dashtak 

Formation and the collapse of the well wall 
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in the Shili Aghar Formation are among 

the most important challenges of drilling in 

this hole. This hole is finished by driving 

and cementing the wall string 9 5/8". 

Besides, due to the placement of the 

underground safety valve (3SV) inside this 

wall line, the wall pipe 10 3/4" is used 

instead of 9 5/8" in the first 160 meters. 

E) 8 ½-inch hole 

Due to the drilling in the reservoir, the 

drilling operation of this hole has a special 

sensitivity. The aforementioned hole is 

drilled with a PDC bit to the head of the 

Nar evaporite formation (about 3400 

meters deep). Polymeric drilling fluid is 

utilized in this hole as in the previous 

holes. Kangan and Dalan field formations 

and several meters of Nar evaporite 

formation are excavated in this hole. 

The pressure difference trap in the Dalan 

Formation, the presence of drilling mud, 

and the presence of H2S gas in the Kangan 

Formation are among the problems of 

drilling in this hole. At the end of the 

operation of this hole, the lining string 7" is 

driven and cemented. Note that the well 

completion operation in the South Pars 

field is in the form of a Mono Bore. In this 

way, the core pipes 7" are connected to the 

hanger of the lining pipe 7", and they 

continue as a completion string up to the 

surface [18]. 

3- Artificial neural network 

An artificial neural network is a data 

processing system that takes ideas from the 

human brain and entrusts data processing 

to many small processors that act in a 

parallel network to solve a problem. In 

these networks, with the help of 

programming knowledge, a data structure 

is designed that can act like a neuron. This 

data structure is called a neuron. Then by 

creating a network between these neurons 

and applying a training algorithm to it, they 

train the network [19]. 

In this memory or neural network, neurons 

have two active states (on or 1) and 

inactive (off or 0) and each edge (synapse 

or connection between nodes) has a 

weight. Positively weighted edges are 

stimulated or activated in the next inactive 

node, and edges with negative weight 

make the next connected node inactive or 

inhibited (if it was active) [20-22]. 

After training the neural network, applying 

a specific input to it leads to a specific 

response. The network adapts based on 

matching and symmetry between the input 

and the target until the output of the 

network and the target match (Fig. 2). 

Generally, a large number of these input 

and output pairs are used to train the 

network in this process, which is referred 

to as supervised learning. Input and 

training data in petroleum engineering can 

be laboratory data, data obtained in the 

field, data obtained from field simulation, 

or a combination of these [23-25]. 

Input
NN including 

connections (weights) 

between neurons

Output Compare Target

Adjust Weights

Fig. 2 The training process of a neural network [26] 

4- Simulation of the path of the studied well 

First, a real well drilled in the South Pars 

gas field was selected as a case study. Fig. 

3 exhibits the route designed in the drilling 

program of the studied well. It should be 

noted that all the limitations mentioned 

above have been observed in this design. 

The final angle of the well is 45.11 

degrees, the final depth of the well is 

15204 drilling feet, and the actual vertical 
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depth is 11480.5 feet. This route has been 

obtained after trial and error and designing 

different routes and comparing the results. 

In the designed path, the amount of drilling 

and the length of the driven wall string are 

optimal. Attention has also been paid to the 

operational limitations of the region. 

 
Fig. 3 The route designed for the studied well 

5- Results and analysis 

To drill a 16-inch hole, the BHA in Table 1 

was used, which was optimized through 

the input data to the software. 

Table 1: BHA required for drilling the 16-inch hole 

Section 

Type 

Length 

(m) 
MD (m) 

OD 

(in) 

ID 

(in) 

Bit 0.500 1,970.00 16.000 
 

Mud 

Motor 
9.327 1,969.50 9.625 3.000 

MWD 6.492 1,955.55 8.250 2.250 

NMDC 9.460 1,949.06 9.500 2.500 

Drill 

Collar 
68.000 1,939.60 9.500 2.500 

Jar 10.241 1,871.60 9.500 2.500 

Drill 

Collar 
9.600 1,861.36 9.500 2.500 

Heavy 

Weight 
203.000 1,851.76 5.000 3.000 

Drill 

Pipe 
1,648.760 1,648.76 5.000 4.276 

For drilling in the 12 ¼-inch hole, the BHA 

in Table 2 was used, which was optimized 

according to the data entered into the 

software. 

Table 2: BHA required for drilling the 12 ¼-inch 

hole 

Section 

Type 

Length 

(m) 

MD (m)  OD 

(in) 

ID 

(in) 

Drill 

Pipe 

2,920.345 2,920.34  5.000 4.276 

Heavy 

Weight 

203.000 3,123.34  5.000 3.000 

Drill 

Collar 

9.600 3,132.94  8.500 2.250 

Jar 10.241 3,143.19  8.000 2.500 

Drill 

Collar 

68.000 3,211.19  8.500 2.250 

NMDC 9.460 3,220.65  8.500 2.250 

MWD 6.492 3,227.14  8.250 2.250 

Mud 

Motor 

7.742 3,239.50  8.000 3.000 

Bit 0.500 3,240.00  12.250  

To drill in the 8 ½-inch hole, the BHA in 

Table 3 was utilized, which was optimized 

according to the data entered into the 

software. 

The specifications of mud required for 

drilling the 16-inch, 12 ¼-inch, and 8 ½-

inch holes are given in Table 4, and the 

assumptions used to calculate the carrying 

capacity of drilling fragments are presented 

in Table 5. 

Table 3: BHA required for drilling the 8 ½-inch 

hole 

Section 

Type 

Length 

(m) 
MD (m) 

OD 

(in) 

ID 

(in) 

Drill 

Pipe 
4,649.849 4,649.85 5.000 4.276 

Heavy 

Weight 
27.000 4,676.85 5.000 3.000 

Jar 10.058 4,686.91 6.500 2.750 

Heavy 

Weight 
218.000 4,904.91 5.000 3.000 

M/LWD 8.500 4,922.55 6.750 1.920 

Mud 

Motor 
9.144 4,931.70 6.750 3.000 

Bit 0.305 4,932.00 8.500 
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Table 4: Specifications of the mud used for drilling 

the 16-inch, 12 ¼-inch, and 8 ½-inch holes 

YP (Tau0) 

(lbf/100ft²) 

PV 

(Mulnf) 

(cp) 

Base 

Density 

(lbm/ft³) 

 

24 18 69 16-inch 

Hole 

22 2 93 12 ¼-

inch 

Hole 

22 20 81 8 ½-

inch 

Hole 

 

Table 5: Excavation assumptions in the 16-inch, 12 

¼-inch, and 8 ½-inch holes 

Bed 

Porosity 

(%) 

Cuttings 

Diameter 

(in) 

Rate of 

Penetration 

(m/hr) 

 

36 0.240 10 16-inch 

hole 

36 0.24 8 12 ¼-

inch 

hole 

36 0.24 6 8 ½-

inch 

hole 

 

According to the selected parameters, 

Tables 6-8 present the optimal hydraulic 

specifications of the drilling bit for these 

three holes. Therefore, the optimal drilling 

conditions were selected according to 

Table 9. 

Table 6: Hydraulic parameters of the drill bit for 

drilling in the 16-inch hole 

Pump Rate 

(GPM) 

850 800 780 

Stand Pipe 

Pressure (Psi) 

2950 2870 2950 

HSI (hhp/in2) 0.5 0.8 1.2 

JIF (Jet Impact 

Force)-lb 

630 798 938 

Bit Nozzle 

(in/32) 

9x16 3x14 + 

6x13 

9x12 

 

 

 

 

Table 7: Hydraulic parameters of the drill bit for 

drilling in the 12 ¼-inch hole 

Pump Rate 

(GPM) 
530 510 510 510 

Stand Pipe 

Pressure 

(Psi) 

2970 2960 3176 3361 

HSI 

(hhp/in2) 
0.4 0.7 1.2 1.7 

JIF (Jet 

Impact 

Force) (lb) 

389 516 691 811 

Bit Nozzle 

(in/32) 
6x16 

3x16 

+ 

3x14 

6x13 6x12 

 

Table 8: Hydraulic parameters of the drill bit for 

drilling in the 8 ½-inch hole 

Pump Rate (GPM) 400 380 380 

Stand Pipe Pressure 

(Psi) 
2880 2807 2958 

HSI (hhp/in2) 0.5 0.7 1.3 

JIF (Jet Impact 

Force) (lb) 
244 288 392 

Bit Nozzle (in/32) 6x16 6x14 6x12 

 

Table 9: Optimal drilling conditions for the 16-

inch, 12 ¼-inch, and 8 ½-inch holes 

 GPM RPM PV YP 

16-inch 

hole 
780 70 5 

20 

12 ¼-inch 

hole 
510 70 10 

22 

8 ½-inch 

hole 
250 70 10 

25 

 

6- ROP optimization using neural network 

By using the refined data in the Landmark 

software as well as the energy 

characteristic method, logical connections 

between inputs (µ, CCS, EFFM, WOB, 

DB, and A) and ROP as output can be 

understood. In this case, for each hole, it is 

possible to check the drilling speed and 

optimize it easily at any time using the 

trained neural network. In this part, for 

each hole, 400 data were extracted from 

wells drilled in the studied field, and the 

results are reported below. Note that in all 
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parts, the diagram in Fig. 4 is used as a 

neural network. For this purpose, the first 

70% of the data was allocated for training, 

15% of the data for testing, and 15% of the 

data for validating the artificial neural 

network. In addition to the test, the 

validation of the artificial neural network is 

performed to measure the sensitivity of the 

artificial neural network to the change 

process of individual data. To find the best 

neural network architecture for this 

problem, a trial and error method was used. 

First, starting with a hidden layer that 

included one neuron, and adding the 

number of hidden layers and neurons to the 

layers, the network error was checked. The 

optimal number of neurons in the hidden 

layer must be found because if the number 

of neurons in the hidden layer is more than 

the limit, the generality of the artificial 

neural network will decrease. Furthermore, 

if they are less than the optimal limit, the 

network error will increase. After software 

analysis and trial and error, the best 

network with the least possible error was 

selected. The best neural network model 

was obtained with a hidden layer with 10 

neurons. Therefore, the artificial neural 

network that was finally designed 

contained 10 neurons (flow rate, µ, CCS, 

EFFM, WOB, DB, A, RPM, torque, and 

area of rotary table) in the first/input layer, 

10 neurons in the hidden layer, and 1 

neuron (ROP) in the output layer. 

Moreover, the transfer functions for the 

hidden layer were selected as tangent 

sigmoid and for the output layer as linear. 

Choosing a combination of the sigmoid 

tangent transfer function and linear transfer 

function for the designed artificial neural 

network causes the network to have an 

acceptable efficiency for estimating any 

type of linear and non-linear functions. 

 
Fig. 4 Neural network employed to optimize and 

simulate penetration rate 

A) 16-inch hole 

The results of optimization and adaptation 

of the neural network model to the field 

data are shown in Figs. 5-6. 

 
Fig. 5 Histogram of neural network error in ROP 

prediction for the 16-inch hole 
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Fig. 6 Regression of neural network error in ROP 

prediction for the 16-inch hole 

As it is clear from Figs. 5-6, the designed 

neural network predicts the drilling 

penetration rate in the 16-inch hole with a 

negligible error. 

B) 12 ¼-inch hole 

The results of optimization and matching 

of the neural network model to the real 

data are given in Figs. 7-8. 

 

 
Fig. 7 Histogram of neural network error in ROP 

prediction for the 12 ¼-inch hole 

 
Fig. 8 Regression of neural network error in ROP 

prediction for the 12 ¼-inch hole 

As it is evident from Figs. 7-8, the 

designed neural network predicts the 

drilling penetration rate in the 12 ¼-inch 

hole with a negligible error. 

C) 8 ½- inch hole 

The results of optimization and adaptation 

of the neural network model to the field 

data are shown in Figs. 9-10. 

 
Fig. 9 Histogram of neural network error in ROP 

prediction for the 8 ½-inch hole 
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Fig. 10 Regression of neural network error in ROP 

prediction for the 8 ½-inch hole 

As it is clear from Figs. 9-10, the designed 

neural network predicts the drilling 

penetration rate in the 8 ½-inch hole with a 

negligible error. 

7- Examining the results and comparing 

neural networks 

Examining the results and comparing them 

with the neural networks reflect the 

performance of the artificial neural 

network in predicting the penetration rate. 

They are compiled in Table 10. 

 

Table 10: Checking the results and comparing the 

neural networks 

R-All 
R-

Validation 
R-Test R-Train 

 

0.924 0.919 0.926 0.924 
16-inch 

hole 

0.996 0.993 0.994 0.997 
12 ¼-

inch 

hole 

0.996 0.995 0.993 0.997 
8 ½-

inch 

hole 

Therefore, by examining the data obtained 

from the curve fitting on the drilling speed, 

it is clear that the use of the neural network 

method can lead to the correct prediction 

of the data with an R-value of more than 

0.92. The power of neural network analysis 

and the accuracy of the resulting data in the 

16-inch hole are less in the holes with 

smaller sizes (i.e., 12 ¼- and 8 ½ holes). 

The reason for this phenomenon can be 

found in the characteristics of the neural 

network, and it can be expected that better 

results will be obtained by changing its 

characteristics. The high power of the 

neural network in predicting data for holes 

smaller than 16 inches can lead to the 

improvement of drilling operations in the 

South Pars field. 

8- Conclusion 

Based on the recorded data from the 

previous wells drilled in a field and with 

the help of appropriate models, the drilling 

penetration rate can be predicted. In this 

regard, the use of a suitable model to 

estimate the penetration rate allows 

accurate and usable results to be obtained. 

One of the ways to reduce the drilling cost 

is to optimize the drilling parameters to 

obtain the highest penetration rate. Many 

parameters affect the penetration rate of the 

drill, which can generally be divided into 

four categories of operating parameters, 

parameters related to construction 

characteristics, parameters related to the 

type and design of the drill, and parameters 

describing the amount of drill wear. 

In this study, with a case study of the 

process of drilling wells in the South Pars 

gas field, first, the different steps of 

drilling were discussed. Then the design of 

a well in the strategic field of South Pars 

was carried out with the help of Landmark 

software and was reviewed according to 
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operational limitations. Finally, the 

penetration rate in the formation was 

checked using the energy characteristic 

method. The output data from the drilling 

operations in the South Pars gas field were 

reused and an attempt was made to 

determine the relationship between 

operational data and theoretical data using 

an artificial neural network. Final results 

were also presented. In summary, the main 

outputs of this study are as follows: 

1. The drilling program of three basic holes 

in the South Pars gas field was studied and 

the drilling line was designed and reviewed 

in terms of mechanical characteristics. 

2. Drilling hydraulics were designed for 

the final three holes of the well and then 

were optimized according to the field 

conditions. 

3. Histogram and regression of neural 

network error in ROP prediction for the 

three holes were investigated which all 

demonstrated that the designed neural 

network predicts the drilling penetration 

rate in all three holes with a negligible 

error. 

4. Operational data were utilized along 

with energy characteristic theory and were 

optimized using artificial intelligence.  

5. For each hole, the results from the 

modeling and optimization of the artificial 

neural network indicated an excellent 

correlation between drilling parameters and 

ROP for the 12 ¼ and 8 ½-inch sections 

(R-Train, R-Test, R-Validation, and R-All 

were all greater than 0.99 for these 

sections), while the correlation was very 

good for the 16-inch section (the above 

parameters were all around 0.92 for this 

section). Hence, the results of this study 

can be applied to a real drilling process to 

maximize drilling efficiency. 
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