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Abstract 

In this paper, the numerical and exact analytical calculation of elastic strains and stresses in gas 

turbine engine rotating disk with variable thickness, subjected to temperature gradient are presented. 

Galerkin method is applied to solve any kind of profiles with arbitrary thickness, temperature and 

density functions while the other numerical and analytical methods used in previous works, are 

applied to profiles with certain thickness functions. Therefore, a comprehensive approach that takes all 

the circumstances into account was used in an attempt to fill this gap. To verify the numerical method, 

a few examples of rotating disks with non-linear variable thicknesses were solved using the analytical 

method as a reference method and their results were compared with numerical solution. A good 

agreement between numerical and analytical solutions was observed. In the analytical part, a new 

method to convert equilibrium equation of rotating disks to hyper-geometric differential equation was 

provided and then it was solved. Using hyper-geometric method is the main novelty of this research. 

The distributions of radial displacement and stresses were obtained and an appropriate comparisons 

and discussions were made at the same environmental conditions. 

Keywords: Gas turbine engine, Rotating disk, Non-linearly variable thickness and density, Stress 

analysis, Hyper-geometric method 

1- Introduction 

Rotating disks are of practical concern in 

many fields of engineering such as 

mechanical, marine and aerospace 

industries including gas turbine engines 

like turbojet, turbofan, turboprop, and 

turbo shaft engines; gears, turbo-

machinery, flywheel systems turbo pumps, 

turbo generators and centrifugal 

compressors. The analysis of stress and 

strain distribution in variable thickness 

disks rotating at high speeds is important 

for a better understanding of the behavior 

and optimum design of rotors. For 

example, the stresses owing to centrifugal 

loads can have important effects on their 

strength and safety. Thus, optimization and 
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control of displacement and stress fields 

can help to reduce the overall weight and 

costs, especially in the aerospace industry. 

Stress analysis of variable thickness disks 

may be performed using the approach 

written by Timoshenko [1] with 

Grammel’s method [2], or numerical 

method, such as the finite element or finite 

difference methods [3-5], numerical 

methods that use truncated Taylor’s 

expansion [6], numerical integration [7], 

and boundary elements method [8]. 

Disk with uniform strength was designed 

by De Laval [9, 10]. The profile of this 

disk was portrayed by an exponential 

thickness function. A disk with a uniform 

strength profile must be solid, and at the 

outer edge, it has a rim where the blade 

roots are attached. Another variable-

thickness profile was developed by Stodola 

[11], and it was introduced by a hyperbolic 

relationship given as a reference thickness 

multiplied by the variable raised to an 

exponent. The solid disk does not define 

by this profile but by constant thickness 

disks, annular disks; diverging disks, 

converging disks; which are featuring 

linear and non-linear thickness distribution. 

Converging conical disk was the third 

variable-thickness profile introduced by 

Honegger [12]. Giovannozzi [13] extended 

the Honegger’s linear function, and 

developed its application to conical disks 

with diverging profile. Thickness function 

introduced by Honegger and Giovannozzi 

was further generalized by Güven [14] by 

extending a power of a linear function. The 

variation of which rests on the fourfold 

infinity of profiles, convex and concave, 

diverging and converging. 

In the last decade, Rotating disk with 

constant density and variable thickness in 

power linear function form was studied 

[15, 16], in the framework of investigation 

which also focused on rotary velocity 

causing plastic deformation. Eraslan [17] 

investigated elastic and plastic 

deformation, for identical profile disks 

with non-isothermal conditions.  

Recently, elastic stress analysis of rotating 

converging conical disks subjected to 

thermal load has been studied by Vivio and 

Vullo [18]. Semi-exact solution of elastic 

rotary disk by homotopy perturbation has 

been examined by Hojjati and Jafari [19]. 

Finite Difference Method for a rotating 

annular disk has been investigated by 

Zenkour and Mashat [20] without 

consideration of thermal conditions. 

Zenkour and Mashat considered a rotating 

annular disk with Runge-Kutta Method in 

another study [21]. Nejad et al. [22] 

derived a semianalytical solution for 

determination of displacements and 

stresses in a rotating cylindrical shell with 

variable thickness under uniform pressure, 

using disk form multilayers. Using Disk 

form multilayers, Mohammad Zamani 

Nejad et al., [23] elastic analysis of 

rotating thick truncated conical shells 

subjected to uniform pressure. Bagheri et 

al. [24] presented an analytical study of 

micro-rotating disks with angular 

acceleration on the basis of the strain 

gradient elasticity.  Abdalla [25] presented 

a thermo-mechanical analysis and 

optimization of functionally graded 

rotating disks. Dinkar Sharma et al. [26] 

investigated thermo-elastic characteristics 

in functionally graded rotating disks using 

finite element method. These thermo-

elastic characteristics of disk were plotted 

for various values of non-homogeneity 

parameter under power law distribution of 

material properties. 

In the present study, the focus was on the 

numerical solution of the second-order 

differential equation defining the stress and 
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strain states of the isotropic rotary disk, 

that is symmetrical to the middle axis. 

Galerkin method is a subset of weighted 

residual techniques that reduces a 

continuous equilibrium problem to an 

approximately equivalent equilibrium 

problem with many degrees of freedom. It 

is a comprehensive general approach that 

all environmental conditions impose on the 

disks, boundary conditions, and also 

profiles of all types are included. Galerkin 

method also does not show the limitations 

of the approaches known up to now. The 

environmental conditions and boundary 

conditions can be pointed to thermal loads 

acting on disks and density variation and 

external loads applied to the inner and 

outer radius of the presence hub and rim, 

respectively. So, this method solves 

equilibrium equation of rotating disks for 

any arbitrary function of temperature, 

density and thickness. In the rest of work, 

an analytical method for parabolic rotating 

disks with variable density under the effect 

of the temperature gradient along the 

radius assuming the third order polynomial 

function for both of them is provided. 

Here, the equation of equilibrium by a 

linear combination of two independent 

hyper-geometric functions regardless of 

the point of singularity is resolved. Also, 

the proposed closed-form solution does not 

blind the physical meaning of its particular 

integral. To convert homogeneous part of 

the equilibrium equation to hyper-

geometric functions, a new variable is 

used. 

2- Deriving general differential equation 

Fig. 1 shows an element of the disk with 

variable thickness. In this section, only 

basic equations are needed to be discussed 

and the way they are obtained is ignored, 

because in many previous works, these 

relations have been obtained [27]. Then, 

the equilibrium equation of rotating disks 

in displacement variable with arbitrary 

variable thickness and variable density 

along the radius also under thermal load 

can be written as: 

 

 
Fig. 1 An element of the disk with variable 

thickness. 

 

where, , , , , , , ,  and  are 

radial displacement, radial coordinate, 

thickness, density, temperature gradient, 

constant angular velocity, Young modulus, 

Poisson ratio and linear expansion 

coefficient of the material, respectively. Of 

the above coefficients, the coefficients , 

,  and  are constant values and other 

coefficients are functions of coordinate , 

The relationship between stresses and 

radial displacement can be written as 

follows: 
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where,  and  are the radial and 

tangential stresses. 

In this study, a method called finite 

element Galerkin method for solving 

equilibrium Eq. (1) was used and its 

purpose is to derive an element stiffness 

matrix that establishes a relation between 

nodal displacements and external forces. 

Although a disk is a three-dimensional 

object, but because of symmetry, it can be 

avoided in two dimensions as is clear in 

Eq. (1), displacement and other parameters 

are only functions of  coordinate. 

Therefore, the finite element method 

should be applied to axisymmetric 

problems. In continuing, Galerkin method 

[28] is fully expressed in detail.  

 

 
Fig. 2 One-dimensional simple element. 

 

Because of one-dimensional equilibrium 

Eq. (1), so it should be used a linear 

approximation. Take Fig. 2, this is the 

simplest element to approximate a one-

dimensional element, where the element’s 

geometry is a straight line and the shape 

function is linear. If the dependent function 

is called u  and the variable is r , the linear 

displacement approximation is: 

where,  and  are shape functions for 

an element and are equal to: 

By applying the Galerkin method on Eq. 

(1), it can be concluded: 
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(5) 

where,  is volume of the isolate element 

and in polar coordinates is . 

Variable ( ) changes between inner radius 

 and outer radius , variable ( ) changes 

from  to  and variable  changes 

from 0 to . Then Eq. (5) can be written 

as: 
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(6) 

Therefore, by integration in the known 

intervals it yields: 
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The terms of Eq. (7) with the second order 

partial derivatives are subjected to weak 

formulation and thus by simplifying it 

results in: 

 

 

e

i

e

i

e

i

r

s

r

r
s

sr

2 2

2

r

sr

du
N h r

dr

dN du h dh
h r v N u dr

dr dr r dr

γ ω r h
1 v

E
N dr

dT dh
1 ν α h T r

dr dr


    



  
           

   

   
  

 
    

         
   





 

(8) 

The first term of left-hand side of Eq. (8) is 

related to boundary condition and its value 

must be obtained. According to Eq. (2) the 

first derivative of radial displacement  

can be written in the following form: 
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where the first one is related to  

boundary conditions and the other one is 

for and  boundary conditions. By 

substituting Eq. (9) into first term of Eq. 

(8), that means , then it 

can be written as the following form: 
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Now, for the master element and node (l) 

and (m), Eq. (8) converts to the following 

form: 
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where  is equal to: 
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It should be noted that in Eq. (11), the term 

of  is zero because the 

amount of  at nodes except nodes of 

master element is zero. Substituting for  

its value from Eq. (3) into relations (11) 

yields: 
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The purpose of Galerkin method is to 

derive a relationship between external 

forces exerted on the nodes and nodal 

displacements as expressed at the first of 

this section. This relationship for an 

element can be expressed by a matrix 

called the stiffness matrix and, it is a 

 matrix for the straight element. 

Schematically this relationship can be 

written in the following form: 
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Thus, according to relation (13) the 

stiffness matrix of an element can be 

written in the following form and this is 

the most important part of this project. 
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and the force matrix  becomes: 
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After that, the global stiffness matrix of 

whole structure can be derived by a 

reasonable meshing and assembling 

stiffness matrix of all elements. The 

common nodes must be assembled. The 

number of global stiffness matrix arrays is 
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dependent on the number of nodes. 

Remember the first term of relation (10) 

which relates to the boundary conditions 

was omitted. Now after determining the 

global stiffness matrix, the removed term 

can be added to the first and last array of 

the global stiffness matrix and forces 

matrix, because they are related to 

boundary conditions in the first and last 

nodes. According to relation (14) the 

amounts of nodal displacements can be 

derived by multiplying the inverse of 

global stiffness into the force matrix, so: 

     
1

U K F


   (17) 

where  is total nodes displacement,  is 

global stiffness matrix and  is total nodes 

forces. After that, the amount of radial and 

tangential stresses can be found from Eq. 

(2). It should be noted that first it is 

necessary to find the displacement 

variation along the elements by using 

relations (3) and (4). Then by using 

relation (2) the values of stresses can be 

derived. 

3- Analytical method 

At this part, an analytical procedure for 

non-uniform variable thickness with the 

following disk profile thickness function is 

presented. 

   0 01 1
k k

h h m r h x        (18) 

where , ,  are the geometric 

specifications and  is 

dimensionless variable. By substituting Eq. 

(18) into Eq. (1) it is concluded that: 

   

 

 

 
 

2

2

2

2 2

3 2

1 1 1

1
1

1

1

d u du
r m r k m r

dr dr

k m u
r

dT dT
v m r r m k r T

dr dr

v
m r r

E





 

            

 
      
 

 
            

 

  
   

 (19) 

or with respect to variable x : 

   

 

 
 

 

2

2

2 2 3

3 2

3

2

1 1 1

1
1 1

1

1

e

e

d u du
x x k x

dx dt

k x u
x

v r
x x

E n

v r dT dT
x x x k T

n dx dx








          

         

  
   



    
        

 

 
(20) 

4- Homogeneous solution 

Eq. (20) has a homogeneous solution and 

two particular solutions due to thermal 

load and centrifugal load. In order to gain 

the homogeneous solution of Eq. (20), it 

defines: 

   

 

2

2
1 1 1

1
1 1 0

d u du
x x k x

dx dx

k x u
x



          

          

 (21) 

Here, introduces a new variable in form of 

 and this is the second 

important part of the project. By 

substituting first and second derivative of 

the variable  into relation (21) it can 

be concluded that: 

   

 

2

2
1 3 3

1 0

d d
x x k x

dx dx

k

 

 

          

    

 (22) 

This equation is well known as Gauss 

hyper-geometric differential equation. In 

general case, hyper-geometric differential 
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equation [29] is written in the following 

form: 

     1 1 2 2y z A y z A y z     (23) 

where,  and  becomes: 

   

   

 

1

2

, ; 1 ;1

1

, ; 1;1

c a b

y z F a b a b c z

y z z

F c a c b c a b z

 

    

 

      

 (24) 

In Eq. (25), function F  is a hyper-

geometric series that defines as [30]: 

  
   

 

   

 

       

   

0

2

3

, , ;
!

1 1
1

1 1 2 1

1 2 1 2

1 2 3 1 2

n

n n

n n

a b z
F a b c z

c n

a a b ba b
z z

c c c

a a a b b b
z

c c c






 

    
    

    

        
  

      



 
(25) 

Nevertheless, the values of ,  and  for 

Eq. (22) are equal: 

2

2

2 4 4

2

2 4 4

2

3

k k k v
a

k k k v
b

c


      






      



 


 (26) 

Therefore, the two linear independent 

solutions of Eq. (22) can be written in the 

below form: 

   

   

 

1

2

, ; 1 ;1

1

, ; 1;1

c a b

x F a b a b c x

x x

F c a c b c a b x




 

    

 

      

 (27) 

Subsequently, according to a new variable 

 that was defined in the 

previous steps, can write: 

   

   

 

1

2

, ; 1 ;1

1

, ; 1;1

c a b

u x x F a b a b c x

u x x x

F c a c b c a b x

 

     

  

      

 (28) 

Finally, the homogenous solution of 

equilibrium equation of non-linearly 

variable thickness profile (18) is: 

     1 1 2 2hu x A u x A u x     (29) 

or 

   

 

 

1

2

, ; 1 ;1

1

, ; 1;1

h

c a b

u x A x F a b a b c x

A x x

F c a c b c a b x

 

      

   

      

 (30) 

Or in the other hands, with respect to 

variable : 

     

   

 

1

2

, ; 1 ;1

1

, ; 1;1

h

c a b

u r A m r F a b a b c m r

A m r m r

F c a c b c a b m r

 

        

     

       

 (31) 

where,  and  are new integration 

constants that can be evaluated from the 

boundary conditions. 

5- Particular solution 

To gain the particular solution of Eq. (19), 

it is best to find the solution in one step 

(including thermal load, centrifugal load 

with variable density). Now, we shall to 

assume the function of thermal and density 

respect to coordinate , then: 

2 3

0 1 2 3

2 3

0 1 2 3

e e e

T T r r r

r r r

r r r

  

    

      

   
         

   

 (32) 
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By substituting Eq. (33) into Eq. (19), the 

right-hand side of it, can be written in the 

following compact form: 

  2 3

1 2 3

4 5 6

4 5 6

r r r r

r r r

   

  

     

     

 (33) 

where: 

   

   
 

   
 

   
 

 

 

1 0 1

2 2

0

2 1 2 1

2 2 1
0

3 2 3 2

2 2 2
1

4 3 3

2 2 3
2

5 2

2 2

6

1

1
1 2

1

1 2 3

1

1 3

1

1

e

e

e

e

e

m k T

m m k
E

m
r

m m k
E

m
r

m k m
E r

m
r

E r

   

  
     


  

     


  

    


  



 


      

  
          

 
     

 
           

 
     

 
         



 
     

 
 



 
 

3

3

e

m

E r

























  


  

(34) 

By paying attention to Eq. (34), the 

particular solution can be assumed as 

  2 3

1 2 3

4 5 6

4 5 6

pu r r r r

r r r

  

  

     

     

 (35) 

where , , , ,  and are 

constants; and by substituting this 

relations, along with its first and second 

derivatives, in Eq. (19) and by equaling to 

zero the coefficients of various powers in 

the variable r , the following relations are 

obtained: 

 

 

 

 

 

 

6
6

5 6
5

4 5
4

3 4
3

2 3
2

1 2
1

35 6

35

24 5

24

15 4

15

8 3

8

3 2

3

1

m k m

m k m

mn k m

m k m

m k m

k m






 




 




 




 




 







    

  


    


  
 

    

  


    

  


    


  
 

    

(36) 

6- General solution and corresponding 

displacement state 

The general solution of non-homogeneous 

differential Eq. (19) as a function of , is 



46 
B. Shahriari & N.S. Seddighi / Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 15 (2023) 0037~0051 

 

 

given by a linear combination of the 

homogenous solution (30) and the 

particular integral  Eq. (36). Thus, the 

radial displacement function of the non-

linearly variable thickness disk can be 

derived in the following form: 

h pu u u   (37) 

By substituting this relation, along with its 

first derivative in Eq. (2) and at the same 

time, applying the boundary condition, the 

integration constants as  and can be 

found. Moreover, it is possible to express 

the radial and tangential stresses versus 

coordinate . 

7- Case studies 

Here, we provide some case studies that 

show the use of the present numerical and 

analytical formulation outlined. Results 

determined as per the numerical solution 

are compared with those obtained by the 

exact analytical solution in the following 

figure for all cases. In addition, results for 

stress function and radial displacement of 

the rotating variable-thickness annular 

disks with inner radius ( ) and 

outer radius ( ) in the following 

figure are presented. Also, the geometry of 

the rotors involves a parabolic profile web 

explained in Eq. (26) and their profiles in 

each figure have been shown. The material 

is used in the cases is Inconel-718 has the 

following specifications: , 

, , 

. 

In the all cases, the disks are subjected to 

thermal load and they have variable 

density along the radius that has been 

expressed in relations (32) together their 

distribution curves have been shown in 

Fig. 3 and Fig. 4. 

 

 
Fig. 3 Temperature variation along the radius 

 

 
Fig. 4 Density variation along the radius 

 

It should be noted that the angular velocity 

of all disks is constant and equal to 

. 

Here, five different cases were studied, the 

first three cases without rim and hub and 

two end discs have been checked with hub 

and rim. 

7-1- Case 1 

Fig. 5 and Fig. 6, show displacement 

distribution and radial and hoop stresses 

distribution curves as function of r and 

having temperature gradient and density 

variation according to Fig. 3 and Fig. 4 for 

an Inconel-718 annular disk according Eq. 



47 
B. Shahriari & N.S. Seddighi / Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 15 (2023) 0037~0051 

 

(18) with ( ). It is a 

concave and convergent profile. 

 

 
Fig. 5 Numerical and analytical displacement-

distribution curve  for case 1 

 

 
Fig. 6 Numerical and analytical stress-distribution 

curves  and  for case 1 

7-2- Case 2 

Figs. 7 and 8, show displacement 

distribution and radial and hoop stresses 

distribution curves as function of r  and 

having temperature gradient and density 

variation according to Figs. 3 and 4 for an 

Inconel-718 annular disk according Eq. 

(18) with ( 0.5, 1.1625k m  ). It is a 

convex and convergent profile.  

 

 
Fig. 7 Numerical and analytical displacement-

distribution curve  for case 2 

 

 
Fig. 8 Numerical and analytical stress-distribution 

curves  and for case 2 

7-3- Case 3 

Fig. 9 and Fig. 10, show displacement 

distribution and radial and hoop stresses 

distribution curves as function of r and 

having temperature gradient and density 

variation according to Fig. 3 and Fig. 4 for 

an Inconel-718 annular disk according Eq. 

(18) with (  ). It is a 

concave and divergent profile.  
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Fig. 9 Numerical and analytical displacement-

distribution curve  for case 3 

 

 
Fig. 10 FEM and analytical stress-distribution 

curves  and for case 3 

7-4-Case 4 

If, as it often happens in turbine and 

compressor discs, the discs feature a rim 

and a hub, both of which are considered of 

constant thickness, it is necessary to 

determine first of all radial stresses  and 

which are present in section A ( ) 

and in section B ( ), respectively, and 

which constitute two unknown hyperstatic 

values. In this practical case, the rim ring is 

simulated by an axisymmetric radial stress 

at the outer interface. Fig. 11, Fig. 12 and 

Fig. 13, show displacement distribution 

and radial and hoop stresses distribution 

curves as function of r  and having 

temperature gradient and density variation 

according to Fig. 3 and Fig. 4 for an 

Inconel-718 annular disk according Eq. 

(18) (  ) with rim and 

hub. It is a concave and convergent profile. 

 

 
Fig. 11 Numerical and analytical displacement-

distribution curve  for case 4 

 

 
Fig. 12 Numerical and analytical radial stress-

distribution curves  for case 4 
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Fig. 13 Numerical and analytical hoop stress-

distribution curves for case 4 

7-5- Case 5 

Fig. 14, Fig. 15 and Fig. 16, show 

displacement distribution and radial and 

hoop stresses distribution curves as 

function of  and having temperature 

gradient and density variation according to 

Fig. 3 and Fig. 4 for an Inconel-718 

annular disk according Eq. (18) (k=0.5, 

m=1.1625) with rim and hub. It is a convex 

and convergent profile. 

 

 
Fig. 14 Numerical and analytical displacement-

distribution curve  for case 5  

 
Fig. 15 FEM and analytical radial stress-

distribution curves  and for case 5 

 

 
Fig. 16 FEM and analytical hoop stress-distribution 

curves  and for case 5 

8- Conclusion 

In this study, radial displacement and 

radial and tangential stresses for each type 

of desired thickness function of 

symmetrical disk that rotates at a constant 

rotational speed and under centrifugal load 

and temperature gradient which has 

varying density along the radius is 

obtained. To do this, Galerkin method 

which is a numerical method was used. It 

was concluded that the Galerkin method is 

quite comprehensive, practical and there 

are not any restrictions to it. In fact, a 

stiffness matrix element was obtained 

schematically by selecting the appropriate 
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number of elements, the matrix values for 

each rotating disk with arbitrary loading 

conditions can be acquired and finally 

nodal displacements can be reckoned. 

Displacement and stress distribution of 

some nonlinearly rotating disks with 

varying densities and under the influence 

of the temperature gradient along with the 

hub and rim were obtained using analytical 

methods, and the results were completely 

consistent with the results of numerical 

methods. Thus, it can be concluded that the 

numerical methods are accurate. Another 

result of the project, is that using a new 

variable is that it converts the homogenous 

part of equilibrium equation to a hyper-

geometric differential equation and it 

makes it extremely easy to solve.  
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