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Abstract 

The structural analysis of an infinite unsymmetric laminated composite Timoshenko beam over 

Pasternak viscoelastic foundation under moving load is studied. The beam is subjected to a travelling 

concentrated load. Closed form steady state solutions, based on the first-order shear deformation 

theory (FSDT) are developed. In this analysis, the effect of bend-twist coupling is also evaluated. 

Selecting of an appropriate displacement field for deflection of the composite beam and using the 

principle of total minimum potential energy, the governing differential equations of motion are 

obtained and solved using complex infinite Fourier transformation method. The dynamic response of 

unsymmetric angle-ply laminated beam under moving load has been compared with existing results in 

the literature and a very good agreement is observed. The results for variation of the deflection, 

bending moment, shear force and bending stress are presented. In addition, the influences of the 

stiffness, shear layer viscosity of foundation, velocity of the moving load and also different 

thicknesses of the beam on the structural response are studied. 

Keywords: First shear deformation theory; Unsymmetric; Composite beam; Pasternak viscoelastic 

foundation; Moving load 

1- Introduction 

In modern industrialized world as time 

goes on heavy beams of simple materials 

are gradually being substituted by light and 

stronger composite beams. Therefore, the 

composite beams are often considered as 

an important element of structures. 

Structures such as railroads, overhead 

cranes and bridges are always under the 

action of dynamic moving loads. 

Therefore, the analysis of a laminated 

composite beam under moving loads may 

find many practical applications and is of 

valuable interest in engineering designs.  

Many researchers have been performed on 

dynamic response of the infinite beams 

resting on various elastic and viscoelastic 

foundation. Duffy [1] examined vibrations 

that arised when a moving, vibrating load 

passes over an infinite railroad track lying 

on a Winkler foundation. Cai, et al. [2] 

described an exact method for 
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investigating the dynamic response of an 

infinite uniform beam resting on periodic 

rolle supports and subjected to a moving 

force. Mackertich [3] carried out an 

analysis of the problem of vibrations of an 

infinite beam on elastic foundation excited 

by a moving and vibrating mass. Nguyen 

and Duhamel [4] presented a numerical 

approach to the stationary solution of 

infinite Euler–Bernoulli beams posed on 

Winkler foundations under moving 

harmonic loads. Patil [5] determined the 

resonant frequency of the railroad track by 

modeling the track as a beam on a massless 

Winkler Foundation. Uzzal, et al. [6] 

performed the dynamic response of an 

Euler- Bernoulli beam supported on two-

parameter Pasternak foundation subjected 

to moving load as well as moving mass. 

Ding, et al. [7] investigated the dynamic 

response of infinite Timoshenko beams 

supported by nonlinear viscoelastic 

foundations subjected to a moving 

concentrated force. Mallik, et al. [8] 

described the steady-state response of a 

uniform beam placed on an elastic 

foundation and subjected to a concentrated 

load moving with a constant speed. Lu and 

Xuejun [9] performed dynamic analysis of 

infinite beam under a moving line load 

with uniform velocity. Kerr [10] showed 

the advantages of using Pasternak model 

over the other models. He also further 

enhanced the elastic model of Pasternak to 

model viscoelastic foundation.  

Chen, et al. [11] established the dynamic 

stiffness matrix of an infinite or semi-finite 

Timoshenko beam under harmonic moving 

load on viscoelastic foundation. Steady 

state response of a beam on a viscoelastic 

foundation subjected to harmonic moving 

load carried out by Sun [12]. He used 

Fourier transform to solve the problem. 

Verichev and Metrikine [13] studied the 

stability of vibration of a bogie uniformly 

moving along a Timoshenko beam on a 

viscoelastic foundation. Liu and Li [14] 

presented an effective numerical method 

for solving elastic wave propagation 

problems in an infinite Timoshenko beam 

on viscoelastic foundation in time domain. 

Kargarnovin and Younesian [15] studied 

the response of a Timoshenko beam with 

uniform cross-section and infinite length 

supported by a generalized Pasternak-type 

viscoelastic foundation subjected to an 

arbitrary distributed harmonic moving 

load. The solution of equations of motion 

resulted in, the distribution of deflection, 

bending moment and shear force along the 

beam length. Also, Kargarnovin, et al. [16] 

studied response of infinite beams 

supported by nonlinear viscoelastic 

foundations subjected to harmonic moving 

loads. They carried out a parametric study 

and influences of the load speed and 

frequency on the beam responses 

investigated. Muscolino and Palmeri [17] 

studied dynamic response of elastic beams 

resting on viscoelastically damped 

foundation under moving oscillators. They 

used Maxwell model to represent the 

viscoelastic behavior of a dissipative 

elastomeric pad. Çalım [18] analyzed 

dynamic behavior of beams on Pasternak 

viscoelastic foundation subjected to time-

dependent loads. Although dynamic 

response of beams on viscoelastic 

foundation is a widely studied topic, there 

are only few studies that exist in the 

literature pertaining to the analysis of 

composite beams on viscoelastic 

foundation under moving loads.  

The composite material for a specific 

application usually requires the utilization 

of angle-ply and unsymmetric laminates. 

Therefore, in their mechanical response 

can be seen bend-stretch, shear-stretch and 
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bend-twist coupling effects. Kadivar and 

Mohebpour [19] analyzed free vibration of 

the composite beams and the coupling 

generated due to bend-twist phenomenon 

over non-cross-ply laminated composite 

beam. Rezvani and Khorramabadi [20] 

carried out dynamic analysis of an infinite 

Timoshenko beam made of a symmetric 

laminated composite located on a 

generalized Pasternak viscoelastic 

foundation Later, Rezvani, et al. [21] 

studied the response of an infinite 

Timoshenko composite beam subjected to 

a harmonic moving load based on the third 

order shear deformation theory (TSDT). 

They investigated the effects of two types 

of composite materials with symmetric 

cross-ply laminates over the beam response 

In this paper, the structural analysis of an 

infinite unsymmetric laminated composite 

beam on the generalized Pasternak 

viscoelastic foundation subjected to a 

concentrated moving load is performed 

based on the first-order shear deformation 

theory. After verification of the solution 

method, the steady-state response of the 

beam is obtained analytically. In addition, 

deflection, bending moment, shear force 

and bending stress are calculated 

analytically along the beam span in terms 

of the distance from the position of the 

moving load. Finally, the effects of the 

stiffness, shear layer viscosity coefficient 

of foundation, velocity of moving load and 

different thicknesses of the beam on the 

structural response are investigated.  

2- Governing Differential Equations of the 

FSDT  

A laminated composite beam with infinite 

length, a number of layers N , width of b  

and thickness h is considered. Each lamina 

is made of an unidirectional reinforced-

fiber with the same thickness and the 

orientations of the layer are unsymmetric. 

The coordinate system placed at the mid-

plane of the laminate as shown in Fig. 1. 

Based on the first shear deformation theory 

(FSDT) and unsymmetric laminated 

composite beam, the displacements field is 

[22]: 

U( , , , ) ( , )
V( , , , ) ( , )

W( , , , ) ( , )









x

y

x y z t z x t
x y z t z x t

x y z t w x t

 (1) 

Where U, V and W are the beam's 

displacement components and ( , )w x t , 

),( txx  and ( , )y x t  are the beam's 

deflection, rotational angle due to the 

bending and rotational angle due to torsion, 

respectively. Fig. 2 depicts the generalized 

Pasternak viscoelastic foundation with a 

viscous shear layer. The transferred forces 

and moments from the foundation the 

beam can be calculated as [21]: 

 

 

 

Fig. 1 A schematic of generally laminated composite beam 
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Fig. 2 Extended Pasternack viscoelastic foundation with viscous shear layers 
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Which ( , )q x t , 1( , )M x t , and 2 ( , )M x t  

are the foundation excited force, bending 

moment and torsional moment per unit 

length of the beam, respectively. Also 

k and   are the foundation rocking 

stiffness and damping coefficients, k  and 

  are the foundation torsional stiffness 

and damping coefficients, k  and   are 

the foundation normal stiffness and 

damping coefficients, and   is the 

foundation shear viscosity coefficient. By 

applying the total minimum potential 

energy theorem [23], governing differential 

equations for the dynamic behavior of the 

unsymmetric composite laminated beam 

over Pasternak viscoelastic foundation is 

found as: 
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Which 2K , b and ( , )p x t  represent the 

correction factor for the shear force, width 

of the beam and moving load, respectively. 

0I  and 2I  are the zero and 2
nd

-order 

moment of inertia such as: 

2
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Which   as the density of the composite 

beam, ijA  and ijD  are the components of 

the extensional and bending stiffness 

matrices which are given as [23]:  

 

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The ( )k
ijQ  represents the reduced 

transformed stiffness of the 
th

k layer 

which are calculated as [23]: 
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Which m Cos , n Sin  and ijQ  are 

known in terms of the engineering 

constants and can be written as [23]:  
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(10) 

 

In order to calculate the beam steady-state 

response, a new parameter s  which 

represents the position of the moving load 

with respect to the x direction, is defined as 

follows: 

vtxs   (11) 

After implementing the following 

differentiation chain rules:  
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On Eqs. (3-5), one can get: 
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The constant coefficients of 1C  to 18C  are 

given in appendix A. 

3- Solution of Governing Differential 

Equations 

To facilitate solution of motion’s 

differential equations the complex Fourier 

Transform and its inverse defined as [24]: 
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After implementing the Fourier transform 

on Eq. (13), the complex Fourier 

Transforms of ( )w q , ( ) x q  and ( )y q  

are obtained as: 
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Which the coefficients of 1B  to 19B  are 

given in Appendix B. By performing the 

inverse Fourier transform on Eq. (15), 

( )x s , )(sy  and ( )w s  become: 
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4-Results and Discussion 

In this section, numerical results are 

presented for an unsymmetrical laminated 

composite beam  0 / 45 / 45 / 90 . In this 

example we will demonstrate the 
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importance of the bend-twist coupling term 

in such beam. Table 1 shows the different 

property details of the T300/5208 

composite beam [23] and Pasternak 

viscoelastic foundation [21]. 

 

Table 1 Different property details of the composite T300/5208 beam and Pasternak viscoelastic foundation [21, 

23] 

Geometrical data for the 

composite layers 

Mechanical properties of 

composite beam 

Mechanical properties of Pasternak 

viscoelastic foundation 

Number of layers  ( 4N  ) 3
1540 /kg m   13.8k MN   

Width the beam  ( 5b cm ) 1 132E Gpa  5520 .N s   

The thickness of the beam 

( 10h cm ) 2 10.8E Gpa  13.8k MN   

Angle-ply laminated beam 

 0 / 45 / 45 / 90  12 5.65G Gpa  5520 .N s   

Correction factor for shear force 

5 / 6K   13 23 3.38G G Gpa   69 .kN s   

Magnitude load velocity    

40 /v m s  12 0.24v   69k Mpa  

Magnitude of the moving load 

F(s) 144600 ( )s  13 23 0.59v v   2
138 . /kN s m   

 

In this study, the results are compared with 

the analytical results an isotropic Euler-

Bernoulli beam under moving load 

obtained by Fryba [25]. For this purpose, 

the shear viscosity coefficient, foundation 

rocking stiffness, damping coefficients and 

normal damping coefficient in our analysis 

are neglected. By setting these coefficients 

equal to zero in Eqs. (3) and (5), one deals 

with a beam supported by a Winkler elastic 

foundation. 
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By substituting 
x

w
x




 , EID 11 , 

GAA 
55

, II 
2

, AI 
0

 and 2 *
K k  

and neglect the effect of rotary inertia in 

Eqs. (17) and (18(, the governing 

differential equations for the dynamic 

behavior of isotropic Euler-Bernoulli beam 

over elastic foundation is found as: 

4 2

4 2
( , )

w w
EI A kw p x t

x x


 
  

 
 (18) 

This equation is exactly the same as the 

one given in the literature for the dynamic 

response of an isotropic Euler-Bernoulli 

beam supported by a Winkler elastic 

foundation under the motion of a traveling 

load [25]. After implementing the Fourier 

transform on Eq. (19), primarily the 

displacement and subsequently the bending 

moment and shear force can be calculated. 

The variation of w, xM and xQ  versus s 

are plotted in Fig. 3. It has to be mentioned 

that the plots in the Fig. 3 are similar to 

those presented in Ref [16]. 
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Fig. 3 Deflection, bending moment and shear force 

for isotropic Euler-Bernoulli beam over a Winkler 

elastic foundation [25] 

 

4-1-Comparison between symmetric and 

unsymmetric laminated composite beam 

In this section, by using the data of given 

in Table 1, the values of w , x  and y  are 

solved for two cases of the symmetric 

(0/90/90/0) and the unsymmetric (0/45/-

45/90) configurations [19]. Then, by 

employing Eqs. (15-17), the shear force, 

bending moment and bending stress are 

accordingly obtained. The results for 

deflection, shear force, bending moment 

and bending stress distribution of 

symmetric and unsymmetric composite 

laminated beam are presented vs. s, the 

distance from the position of the moving 

load in Figs. (4-7). As it is evident from 

Fig. 4, there is almost no difference 

between the defection of symmetric and 

unsymmetric laminated composite beam. 

The variation of the shear force of 

symmetric and unsymmetric laminated 

composite beam is shown in Fig.5. As 

shown in this figure, except point around 

0s  , interval the shear force values for two 

beams are almost the same. Moreover, 

there is a sign change for the shear force 

for points before and after the point of load 

exertion 

 

Fig. 4 Comparison of deflection variation for 

symmetric and unsymmetric composite beam 

 

 

Fig. 5 Comparison of shear force distribution 

between symmetric and unsymmetric composite 

beam 

 

Figure 6 shows the bending moment 

distribution for symmetric and 

unsymmetric laminated composite beam. 

Contrary to two previous cases, this figure 

depicts a clear difference between load 

carrying capacity of unsymmetric laminate 

composite beam and symmetric one. 

However, in both beams the maximum 

bending moment is located near to the 

point where the point load is applied. It can 

also be seen that the magnitude of the 

bending moment in the unsymmetric 

laminated composite beam is less than the 

symmetric one. 
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Fig. 6 Bending moment vs. s distribution of a 

symmetric and unsymmetric composite beam 

 

Having the bending moment 

distribution, one can easily obtain the 

bending stress, x  for symmetric and 

unsymmetric laminated composite beam. 

Fig.7 illustrates the bending stress 

distribution on the upper layer. Having the 

bending moment distribution, one can 

easily obtain the bending stress, x  for 

symmetric and unsymmetric laminated 

composite beam. Fig.7 illustrates the 

bending stress distribution on the upper 

layer.  

 

 

Fig. 7 Bending stress vs. s distribution of a symmetric 

and unsymmetric composite beam for the upper layer 

4-2-Effects of different parameters on the beam 

deflection 

The maximum value of deflection of an 

unsymmetric laminated composite beam 

with varying of the foundation normal 

stiffness, foundation viscosity and the 

moving load velocity is shown in Fig 8. As 

seen in this figure, by increasing the 

foundation normal stiffness coefficient, the 

maximum value of deflection decreases 

and it moves towards the point where the 

load is applied i.e. 0s  . Also, by 

increasing the foundation viscosity 

coefficient and the moving load velocity, 

the maximum value of deflection decreases 

and it moves further away from the point 

where the load is applied ( 0s  ). 

 
Fig. 8 Effects of different parameters on the maximum 

value of the deflection 

4-3-Effects of different parameters on the 

shear force 

The maximum value of the shear force of 

an unsymmetric laminated composite beam 

with varying of the foundation normal 

stiffness, foundation viscosity and the 

moving load velocity is shown in Fig 9. As 

illustrated in this figure, the maximum 

value of the shear force takes place right at 

the point where the load is exerted i.e. 

0s  . Moreover, as foundation normal 
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stiffness coefficient, foundation viscosity 

coefficient and the moving load velocity 

increases, the maximum value of the shear 

force decreases 

 

Fig. 9 Effects of different parameters on the maximum 

value of the shear force 

 

4-4-Effects of different parameters on the 

bending moment 

Figure 10 shows the effects of different 

parameters such as the foundation normal 

stiffness coefficient, foundation viscosity 

coefficient and the moving load velocity 

on the maximum value of the bending 

moment of an unsymmetric laminated 

composite beam. As observed, by 

increasing the foundation normal stiffness 

coefficient, the maximum value of bending 

moment moves closer to the point where 

the load is applied ( 0s  ). Whereas, by 

increasing the foundation viscosity 

coefficient and the moving load velocity, 

the maximum value of the bending 

moment decreases and the point of 

maximum bending moment moves further 

away from the load exertion point ( 0s  ). 

Also, when the foundation shear viscosity 

coefficient and the moving load velocity 

are zero, the bending moment diagram has 

a maximum value at the point where the 

moving load is applied ( 0s  ) 

 

 

 

Fig. 10 Effects of different parameters on the 

maximum value of the bending moment 

 

4-5-Effects of different parameters on the 

bending stress distribution 

It is clear that in the laminated composite 

beam the linear trend of normal stress 

variation due to the bending moment does 

not change in each layer. Therefore, to 

investigate the effects of different 

parameters on the normal stress 

distribution of the entire cross section, 

analysis was conducted only on the upper 

layer of the beam. Figure 11 shows the 

effects of different parameters such as the 

foundation normal stiffness coefficient, 

foundation viscosity coefficient and the 

moving load velocity on x  distribution of 

the central line of upper layer of an 

unsymmetric laminated composite beam. 

As illustrated in the figure, by increasing 

the value of k , the maximum value of the 

stress decreases and it moves closer to the 

point where the load is applied. As seen, 

when the foundation shear viscosity 

coefficient and the moving load velocity 
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are zero, the value of stress x  are 

maximum at the moving load exertion 

point. By increasing the foundation 

viscosity coefficient and the moving load 

velocity, this maximum point moves 

behind of the load exertion point and the 

value of stress x  decreases. 

 

 

Fig. 11 Effects of different parameters on the x  

distribution 

 

5-Conclusions 

In this study, the behaviour of an 

unsymmetric laminated composite beam 

over Pasternak viscoelastic foundation 

under travelling concentrated load was 

analyzed. For this purpose, by employing 

the first order shear deformation theory 

and using the principle of total minimum 

potential energy, the governing differential 

equations of motion were obtained. The 

complex infinite Fourier transformation 

method applied as well and the obtained 

analytically parameter values of deflection, 

bending moment, shear force and the 

bending stress. Based on this analysis the 

following were concluded: 

1. By increasing the foundation normal 

stiffness coefficients, the maximum value 

of beam deflection, bending moment and 

stress decreased and the maximum value of 

deflection was approached closer to the 

moving load exertion point.  

2. By increasing the foundation viscosity 

coefficient and the moving load velocity, 

the maximum value of deflection, bending 

moment and the stress decreased and it was 

moved further away from the point where 

the load was applied. 

3. The maximum value of the bending 

moment and the stress occurred when the 

foundation viscosity coefficient and the 

moving load velocity were zero and it 

takes placed right at the point where the 

load was exerted i.e. 0s  .  

4. By increasing the foundation normal 

stiffness coefficient, foundation viscosity 

coefficient and the moving load velocity, 

the maximum value of the shear force 

decreased and it takes placed right at the 

point where the load was exerted i.e. 0s  .  

All of the obtained results may be useful 

for design purposes and a better 

understanding of the behavior of the 

structural systems of railways under 

moving loads. 

 

Appendix 

Appendix A 

Parameters of Eq. (13) 

kAbKC  4410
2

 
2

2111 vIbDbC   

vC 11  162 bDC   

45

2

12 AbKC   kAbKC  55

2

3  

vC 13  
45

2

4 AbKC   

2

55

2

014 vIbAbKC   vC 5  

vC 15  55

2

6 AbKC   

kC 16  
167 bDC   

45

2

17 AbKC   
2

2668 vIbDbC   

55

2

18 AbKC   45

2

9 AbKC   
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Appendix B 

Parameters of Eq. (15) 

871221 66
~

CCCCCCB   

1162
~

CCB   

101293 646
~

CCCCCCB   

1214
~

CCB   

5125

~
CCB   

3126

~
CCB   

71817

~
CCCCB   

11157588

~
CCCCCCB   

7383911011159

~
CCCCCCCCCCB   

1135951010

~
CCCCCCB   

9331011

~
CCCCB   

8131713112

~
CCCCCCB   

71417135111318141813513

~
CCCCCCCCCCCCCCCB   

14 3 13 8 3 13 7 1 13 9 1 15 8 5 13 11 5 14 8 5 14 7 1 14 11 1 15 7 1 13 10          B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C  

1 5 5 1 3 1 0 1 1 7 1 1 5 1 1 1 1 8 3 1 3 1 1 3 1 4 8 1 1 7 1 2 3 1 4 7

2 1 2 1 8 6 7 1 8 1 1 4 1 0 6 8 1 8 5 1 3 9 5 1 4 1 1 5 1 5 8 5 1 5 7 1 1 4 9

6 6
        

        

B C C C C C C C C C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C C C C C C C C C C C C C
 

1 3 1 4 1 1 3 1 5 8 3 1 5 7 5 1 5 1 1 5 1 6 8 5 1 4 9 5 1 6 7 5 1 7 1 2

3 1 3 1 0 3 1 3 9 1 1 5 1 0 1 1 6 1 1 5 1 4 1 0 1 1 5 9 6 1 1 1 8

6
       

      

B C C C C C C C C C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C C C C C C C
 

1 7 5 1 5 9 5 1 6 1 1 3 1 6 7 3 1 6 8 3 1 7 1 2 1 1 6 1 0 1 1 6 9

3 1 4 1 0 3 1 4 9 3 1 3 1 1 9 1 8 4 1 2 1 8 6 1 0 1 8 5 1 5 1 06

      

      

B C C C C C C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C C C C C C C
 

9151015111391531015318 666
~

CCCCCCCCCCCCCCCB   

1013916319 6
~

CCCCCCB   
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