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ABSTRACT: A robust linear quantitative structure-property relationship (QSPR) model has been 

constructed to model and predict the refractivity indices of 101 organic compounds as common halo-

derivatives of normal paraffin by application of the structural descriptors combined with multiple linear 

regressions (MLR) method. In the main part of this study, theoretical molecular descriptors were 

adopted from the original pool through the stepwise feature selection method. A simple model with low 

standard errors and promising correlation coefficients was obtained. MLR method could model the 

relationship between refractivity and structural descriptors, perfectly. The accuracy of the proposed 

MLR model was illustrated using cross-validation, validation through an external test set, and Y-

randomization techniques. The linear techniques such as MLR combined with a successful variable 

selection procedure are capable of generating an efficient QSPR model for predicting the refractivity 

indices of different compounds. The constructed model, with high statistical significance (R2
train = 

0.926; Ftrain = 240.675; R2
test = 0.947; Ftest = 52.978; REP (%) = 1.219; Q2

LOO = 0.914 and Q2
LGO = 

0.914), could be adequately used for the prediction and description of the affecting parameters on 

refractivity behavior of similar or even unknown compounds.  

 

INTRODUCTION 

The physical term of refractive index (RI or n) is a measure 

for how much the speed of light is reduced inside a distinct 

medium. The speed of light in a medium can be expressed 

as: V=C/n where V is the speed of light in the medium, C 

denotes the speed of light in air or vacuum (approximately 

3×108 meters per second) while n refers to the refractive 

index [1-3]. 

Refractive indices (RIs) of liquids can be determined 

through several methods from experimental point of view. 

For instance, deviation refractometers use the angle of 

deviation [4-11]. 

Displacing the engaged beam, relating to a laser radiation 

which passes through a distinct medium (a liquid) 

accounting for the term refractive index. However, the 

interferometric refractometers are greatly influenced by 

changes in the optical path [12-21].   

Interferometric methods are predominantly used for 

accurate measurements of the RIs of gases [18, 20] and so 
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far relatively few experiments have been reported for 

liquids and solids. In most of these cases, the changes of n  

with temperature or pressure were determined [13, 15, 16 

and 22-27] and only very few absolute measurements have 

been reported [17, 19 and  21]. 

Quantitative structure-property relationships (QSPR) 

represent statistical models, which quantify the relation 

between the structure of the molecule and the properties of 

the compound, allowing the prediction of the properties of 

the novel compounds [28-38]. QSPR models have been 

reported for different properties of organic compounds [29, 

35-45]. 

 The application of these techniques urgently requires the 

variable selection step for building well-fitted models. In 

this study, we employed the elimination selection-stepwise 

regression (ES-SWR) variable selection method. The result 

of this study was the development of a new linear and 

reliable QSPR-based model only containing 4 independent 

variables. The proposed methodology was validated using 

several strategies involving cross-validation, Y-

randomization, and external validation using division of the 

entire data set into training and test sets. 

The aim of this study was to search an efficient method to 

build an accurate quantitative relationship between the 

molecular structure and the refractive index of some 

organic compounds by using the elimination selection-

stepwise multiple linear regression (ES-SW-MLR) 

approach. 

MATERIALS AND METHODS 

Computer hardware and software 

A Pentium IV personal computer (CPU at 3.06 GHz) with 

the Windows XP operating system was used. The geometry 

optimization was performed with HyperChem (Version 7.0 

Hypercube, Inc). To calculate the molecular descriptors, the 

Dragon 2.1 software was used. The SPSS software (version 

14, Chicago, IL, USA)) was employed for the subsequent 

MLR analysis. The other advanced calculations were 

performed in the MATLAB (Version 7.0, Math works, Inc) 

environment. 

Data set  

Experimental data of the refractivity indices of some 

organic compounds were taken from a well-known 

Handbook written by Dean [46]. The data set was randomly 

splitted into training and prediction (test) sets. In fact, the 

prediction set involving 20 compounds was randomly 

selected from the original data set including 101 

compounds and the remaining compounds placed in the 

training set. The training set with 81 compounds, was used 

to establish and adjust the parameters of the model, while 

the test set was used to evaluate its predictive capability. 

Determination of molecular descriptors 

Molecular descriptors are defined as numerical 

characteristics associated with chemical structures. The 

molecular descriptor is the final result of a logic and 

mathematical procedure which transforms chemical 

information encoded within a symbolic representation of a 

molecule into a useful number applied to correlate physico-

chemical properties of the organic compounds [47]. 

The Dragon software was used to calculate the descriptors 

in this research and a total of 1481 molecular descriptors, 

from 18 different types of theoretical descriptor, were 

calculated for each molecule. Since the values of many 

descriptors are related to the bonds length and bonds angles 

etc., the chemical structure of every molecule must be 

optimized before calculating its molecular descriptors. For 

this reason, chemical structure of the 101 studied molecules 

were first drawn with the Hyperchem software and 

immediately saved with the HIN extension. To optimize the 

geometry of these molecules, the AM1 geometrical 

optimization was applied. After optimizing the chemical 

structures of all compounds, the molecular descriptors were 

calculated using Dragon.  

Elimination selection-stepwise multiple linear regression 

(ES-SW-MLR) 

As mentioned earlier in the introduction section, the ES-

SWR algorithm [47] was used to select the most impressive 

descriptors. ES-SWR is a popular stepwise technique that 
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combines forward selection (FS-SWR) and backward 

elimination (BE-SWR). It is essentially a forward selection 

approach, but at each step it considers the possibility of 

deleting a variable as in the backward elimination 

approach, provided that the number of model variables is 

greater than two. 

Model validation 

The accuracy of the proposed MLR model was examined 

using the following evaluation techniques: leave-one-out 

(LOO) and leave-group-out (LGO) cross-validation 

procedures, validation through an external test set, and Y-

randomization. Accordingly, proper statistical terms related 

to our constructed model confirm that it is a reliable 

approach to predict the numerical values of RIs of a broad 

spectrum of organic compounds. 

Cross-validation test 

Cross-validation is a popular technique used to explore the 

reliability of statistical models. Based on this technique, a 

number of modified data sets are created by deleting one or 

a small group (leave some-out) of objects in each case. For 

each data set, an input-output model is developed, based on 

the utilized modeling technique. The model is evaluated by 

measuring its accuracy in predicting the responses of the 

remaining data involving the ones that have not been 

utilized in the development of the model [48]. 

Y-randomization test 

This technique ensures the robustness of a QSRR model 

and non-dependency of the implemented variables by 

chance [49, 50]. In this approach, the dependent variable 

vector (n) is randomly shuffled and a new QSPR model is 

developed using the original independent variables matrix. 

The new QSPR models being built should have low R2 and 

Q2 values over several repetitions and/or iterations. If the 

opposite happens, an acceptable QSPR model cannot be 

obtained for the specific modeling method and data 

processing. 

RESULTS 

The multiple linear regression method (MLR) is one of the 

most used modeling methods in diverse series of QSPR 

studies. As a matter of fact, MLR analysis has been carried 

out to derive the best QSPR model. A small set of 

molecular descriptors proposed by our team were used to 

establish a proper QSPR model. The MLR technique was 

performed on the molecules of the training set shown in 

Table 1. 

 

Table 1. The data set and the corresponding observed and predicted values of refractivity indices (RIs) using the ES-SW-MLR  

approach for the training and test sets. 

R.E.(%) 
a

 ES-SW-MLR RI (Exp.) 
Compound 

No. 
Training set 

0.267 1.44 1.436 2-Bromobutane 1 

-1.396 1.467 1.488 1-Bromo-4-chlorobutane 2 

-3.671 1.437 1.492 1-Bromo-2-chloroethane 3 

-0.447 1.408 1.414 Bromo-chloro-fluoro-methane 4 

-1.068 1.465 1.481 1-Bromo-3-chloro-2-methylpropane 5 

-1.592 1.461 1.485 1-Bromo-3-chloropropane 6 

1.638 1.392 1.369 2-Bromo-2-chloro-1,1,1-trifluroethane 7 

0.636 1.465 1.456 1-Bromodecane 8 

-0.383 1.433 1.439 2-Bromo-1,1-diethoxyethane 9 

0.311 1.449 1.445 2-Bromo-1,1-dimethoxyethane 10 

0.117 1.46 1.458 1-Bromododecane 11 

0.912 1.437 1.424 Bromoethane 12 

0.358 1.452 1.447 2-Bromoheptane 13 

0.634 1.457 1.448 1-Bromohexane 14 
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1.691 1.447 1.423 Bromo-methane 15 

0.548 1.449 1.441 1-Bromo-3-methyl butane 16 

0.389 1.442 1.436 1-Bromo-2-methyl propane 17 

0.262 1.429 1.425 2-Bromo-2-methyl propane 18 

0.839 1.464 1.452 1-Bromooctane 19 

0.375 1.45 1.444 1-Bromopentane 20 

-0.002 1.444 1.445 3-Bromopentane 21 

-0.005 1.437 1.437 1-Bromopropane 22 

0.312 1.433 1.429 2-Bromopropane 23 

-0.888 1.447 1.46 1-Bromotetradecane 24 

-0.371 1.454 1.459 1-Bromotridecane 25 

0.444 1.463 1.456 1-Bromoundecane 26 

-2.07 1.514 1.546 1-Chloro-3-iodopropane 27 

2.056 1.399 1.371 Chloromethane 28 

-1.138 1.529 1.547 Dibromochloromethane 29 

-0.838 1.416 1.428 1,2-Dibromo-2-chloro-1,1,2-trifluoroethane 30 

1.617 1.515 1.491 1,10-Dibromodecane 31 

-1.733 1.421 1.446 1,2-Dibromo-1,1-difluoroethane 32 

-0.52 1.497 1.505 1,2-Dibromo-3,3-dimethylbutane 33 

-2.622 1.498 1.538 1,1-Dibromoethane 34 

-2.62 1.498 1.539 1,2-Dibromoethane 35 

0.154 1.363 1.361 1,2-Dibromohexafluoropropane 36 

-1.739 1.515 1.542 Dibromomethane 37 

1.174 1.516 1.498 1,8-Dibromooctane 38 

-0.508 1.501 1.509 1,4-Dibromopentane 39 

-0.198 1.506 1.509 1,5-Dibromopentane 40 

-1.568 1.499 1.523 1,3-Dibromopropane 41 

1.95 1.394 1.367 1,2-Dibromotetrafluoroethane 42 

-1.74 1.394 1.419 1,2-Dibromo-1,1,2-trifluoroethane 43 

-0.769 1.445 1.457 1,4-Dichlorobutane 44 

0.876 1.429 1.416 1,1-Dicholoroethane 45 

-0.734 1.434 1.445 1,2-Dichloroethane 46 

-2.602 1.337 1.372 Dichlorofluoromethane 47 

0.011 1.457 1.457 1,6-Dichlorohexane 48 

-0.299 1.451 1.455 1,5-Dichloropentane 49 

-0.469 1.432 1.439 1,2-Dichloropropane 50 

-0.704 1.438 1.449 1,3-Dichloropropane 51 

2.758 1.345 1.309 1,1-Dichlorotetrafluoroethane 52 

0.376 1.418 1.413 1,1-Difluorotetrachloroethane 53 

0 1.413 1.413 1,2-Difluorotetrachloroethane 54 

1.443 1.645 1.621 1,4-Diiodobutane 55 

-0.986 1.725 1.743 Diiodomethane 56 

1.723 1.406 1.382 Fluorotrichloromethane 57 

1.345 1.569 1.548 Hexachloropropane 58 

0.592 1.509 1.5 1-Iodobutane 59 

1.369 1.52 1.499 2-Iodobutane 60 

0.781 1.496 1.484 2-Iodododecane 61 

1.365 1.534 1.513 Iodoethane 62 

0.869 1.503 1.49 1-Iodoheptane 63 

-1.523 1.458 1.481 1-Iodohexadecane 64 

1.206 1.51 1.492 2-Iodo-2-methylpropane 65 

1.063 1.503 1.487 1-Iodononane 66 

1.126 1.506 1.489 1-Iodooctane 67 
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0.386 1.501 1.495 1-Iodopentane 68 

1.441 1.521 1.499 2-Iodopropane 69 

1.671 1.528 1.503 Pentachloroethane 70 

-1.028 1.619 1.636 1,1,2,2-Tetrabromoethane 71 

0 1.413 1.413 Tetrachloro-1,2-difluoroethane 72 

0.887 1.504 1.491 1,1,2,2-Tetrachloroethane 73 

-0.455 1.499 1.506 Tetrachloroethylene 74 

-1.997 1.227 1.252 Tetradecafluorohexane 75 

-1.627 1.574 1.601 Tribromomethane 76 

1.492 1.459 1.438 1,1,1-Trichloroethane 77 

-0.139 1.469 1.471 1,1,2-Trichloroethane 78 

1.583 1.406 1.384 Trichlorofluoromethane 79 

-0.911 1.472 1.485 1,2,3-Trichloropropane 80 

1.587 1.377 1.356 1,1,2-Trichlorotrifluoroethane 81 

   Test set  

-0.689 1.47 1.48 Bromochloromethane 1 

0.285 1.501 1.497 Bromodichloromethane 2 

0.663 1.46 1.451 1-Bromoheptane 3 

-0.442 1.436 1.442 2-Bromo-2-methyl butane 4 

0.28 1.444 1.44 2-Bromopentane 5 

1.521 1.529 1.506 Bromotrichloro methane 6 

2.07 1.336 1.309 Chloro-2,2,2-trifluoroethane 7 

1.387 1.421 1.402 Dibromodifluoromethane 8 

0.281 1.511 1.507 1,6-Dibromohexane 9 

-1.505 1.497 1.52 1,2-Dibromopropane 10 

0.064 1.44 1.439 1,1-Dichloro-3,3-dimethylbutane 11 

0.992 1.439 1.425 Dichloromethane 12 

3.022 1.349 1.309 1,2-Dichloro-1,1,2,2-tetrafluoroethane 13 

-0.948 1.627 1.642 1,3-Diiodopropane 14 

1.182 1.503 1.485 1-Iododecane 15 

0.97 1.511 1.496 1-Iodo-2-methylpropane 16 

0.002 1.506 1.506 1-Iodopropane 17 

1.231 1.499 1.481 1,1,1,2-Tetrachloroethane 18 

-1.584 1.559 1.584 1,2,3-Tribromopropane 19 

1.539 1.391 1.37 1,1,1-Trichlorotrifluoroethane 20 
         a 

Relative error percentage 

 

After regression analysis, a few suitable models were 

obtained among which the best model was selected and 

presented in eq. (1). A limited number of the proposed 

molecular descriptors (MAXDP, H0p, X1sol and Au) were 

used to establish the QSPR model. Additional validation 

was performed on an external data set consisting of the RIs 

of 20 organic compounds. Finally, the simple MLR 

analysis provided a useful equation that can be used to 

predict the parameter n of the mentioned compounds. The 

best equation obtained for the RIs of these compounds 

appears as follows: 

n= 1.3275- 0.0223×MAXDP + 0.0186×H0p + 0.0388× 

X1sol – 0.0052×Au               (eq.1) 

N = 81; R2
train = 0.926; Ftrain = 240.675; R2

test = 0.947; Ftest 

= 52.978; REP(%) = 1.219; Q2
LOO = 0.914; Q2

LGO = 0.914 

In this equation, N is the number of compounds; R2 is the 

squared correlation coefficient, Q2 LOO and Q2 LGO are the 

squared cross-validation coefficients for LOO and LGO 

respectively, REP is the relative error for prediction set and 

F is the Fisher statistic term. From the above equation, it 

can be concluded that according to the ES-SWR algorithm 

the most significant descriptors are maximal 
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electropological positive variation (MAXDP), H 

autocorrelation of lag0/weighted by atomic polarizabilities 

(H0p), salvation connectivity index chi-1 (X1sol) and A 

total size index/unweighted (Au). 

 

 

DISCUSSION 

Table 2 presents the correlation matrix, where it is clear 

that the four selected descriptors are almost completely 

uncorrelated. This is an essential condition by which we 

can claim that the selected variables behave, independently. 

A brief explanation of the descriptors that were selected in 

the final linear model is as follows. 
 

Table 2. Correlation matrix for the four selected descriptors in the linear model 

 MAXDP H0p X1sol Au 

MAXDP 1    

H0p 0.64 1   

X1sol 0.51 0.34 1  

Au 0.68 0.46 0.25 1 

 

The first descriptor is MAXDP, which is one of the 

geometrical descriptors. Its effect on the n was negative, 

indicating that the n is inversely related to this descriptor.  

The second descriptor of this model was H autocorrelation 

of lag0/weighted by atomic polarizabilities (H0p). It is one 

of the GETAWAY descriptors. Its effect on the n was 

positive. Another descriptor of this model was X1sol that 

had a positive effect on the n. It is among the topological 

descriptors. 

The final descriptor is Au which was among the WHIM 

descriptors. This descriptor exerted a negative effect on n. 

Thereby, by increase in Au descriptor; a perceptible 

decrease in the dependent variable (RI) is noted. 

 Equation (1) was used to predict the RIs for the prediction 

(test) set. The data set and the corresponding  

experimental and predicted values of n for all of the 

molecules studied in this work are summarized in Table 1. 

Figure 1 shows the plot of the predicted values by the ES-

SW-MLR against the experimental values of the RIs for 

both the training and the prediction sets. The residuals 

(experimental RI− predicted RI) versus experimental values 

of n, obtained by the ES-SW-MLR modeling are shown in 

Figure 2. Accordingly, the normal and rationale distribution 

of the residuals on both sides of the zero line indicates there 

is no systematic error in the built and developed ES-SW-

MLR model. In summary, the results obtained altogether 

explicitly emphasize once more that the linear MLR 

technique combined with a successful variable selection 

procedures are adequate to generate efficient QSPR-based 

models for predicting of the term n for a wide variety of 

organic compounds. 
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            Figure 1. The predicted RI values by the MLR modeling vs. the experimental values of refractivity indices (RIs) 

 

Figure 2. Plot of the residuals against the experimental values of the refractivity indices (RIs) 
 

For a more exhaustive testing of the predictive power of the 

model, validation of the model was also carried out using 

the LOO and the LGO cross-validation techniques on the 

training set of compounds. For LOO cross-validation, a 

data point is removed from the set, and the model is 

recalculated. The predicted n for that point is then 

compared with its actual value. This is repeated until each 

data point has been omitted once. On the other hand, for 

LGO, 20% of the data points are removed from the data set 

and the model was refitted; the predicted values for those 

points were then compared with the experimental values. 

Again, this is repeated until each data point has been 

omitted once. The results produced by the LOO (Q2
LOO = 

0.914) and the LGO (Q2
LGO = 0.912) cross-validation tests 

illustrated the quality of the obtained model. 

The model was further validated by applying Y-

randomization approach. Several random shuffles of the Y 

vector (n) were performed and the low R2 and Q2 values 

that were obtained showing that the good results in the 

original model use not due to a chance correlation or 

structural dependency of the training set. The results of the 

Y-randomization test are presented in Table 3. In view of 

the success of the given linear model over external and 

internal validations and closeness of the predicted and 

experimental values of RI, the use of our model in further 

complementary investigations seems highly justified. In  
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other words, the proposed method could be a useful aid to 

the costly and time-consuming experiments for determining 

the refractivity indices of other organic compounds 

regarding its high predictive ability and simplicity. 
 

Table 3. R
2
 and Q

2
 values after several Y-randomization tests. 

Iteration R
2
 Q

2
 Iteration R

2
 Q

2
 

1 0.212 0.130 6 0.205 0.324 

2 0.054 0.085 7 0.182 0.081 

3 0.332 0.121 8 0.152 0.023 

4 0.072 0.123 9 0.178 0.049 

5 0.121 0.135 10 0.311 0.126 

                            CONCLUSIONS 

A simple QSPR model was presented for prediction of the 

refractivity index as one of the prominent characteristics of 

organic liquids. This model is a simple and interpretable 

multivariate linear model, which has only four variables or 

molecular descriptors. These four molecular descriptors 

were selected using ES-SW technique. The calculation of 

the variables is mainly based on the chemical structure of 

the related molecules. The validation procedures by the aid 

of cross-validation, separation of data into independent 

training and validation sets as well as Y-randomization 

illustrated the accuracy and robustness of the produced 

QSPR model not only by calculating its fitness on sets of 

training data, but also by testing the predictive ability of the 

model. The QSPR model with simply calculated molecular 

descriptors could be employed to estimate the refractivity 

indices (RIs) of similar or new organic compounds. 
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