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Abstract 
 
 The classification and regression trees (CART) possess the advantage of being able to handle 
large data sets and yield readily interpretable models. In spite to these advantages, they are also 
recognized as highly unstable classifiers with respect to minor perturbations in the training data. 
In the other words methods present high variance. Fuzzy logic brings in an improvement in these 
aspects due to the elasticity of fuzzy sets formalism. ACS, which is a meta-heuristic algorithm 
and derived from the observation of real ants, was used to optimize fuzzy parameters. The 
purpose of this study was to explore the use of fuzzy regression tree (RT) for modeling of 
melting points of a large variety of chemical compounds. To test the ability of the resulted tree, a 
set of approximately 4173 structures and their melting points were used (3000 compounds as 
training set and 1173 as validation set). Further, an external test set contains of 277 drugs were 
used to validate the prediction ability of the tree. Comparison the results obtained from both trees 
showed that the fuzzy RT performs better than that produced by recursive partitioning procedure.  
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1. Introduction 
 
 Decision tree (DT) techniques belong to computational intelligent methods and became highly 
popular in the age of modern computers. They are based on a sequence of questions that can be 
answered by either yes or no. Each question queries whether a predictor satisfies a given 
condition, whereby the condition can be both continuous and discrete. Depending on the answer 
to each question, one can either proceed to another question or arrive at a response value. DTs 
can be used for non-linear regression (Regression Tree) when using continuous variables or they 
can be used for classification (Classification Tree) when using discrete classes. When used for 
feature selection, the DT is grown as a regression tree [1].  
 Without prior knowledge of the nonlinearity, the regression tree is capable of approximating 
any non-linear relationship using a set of linear models. Although regression trees are 
interpretable representations of a non-linear input-output relationship, the discontinuity at the 
decision boundaries is unnatural and brings undesired effects to the overall regression and 
generalization of the problem [2]. CART offers several advantages over alternative quantitative 
structure activity/property relationship (QSAR/QSPR) methodologies, including simplicity, 
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interpretability, and the ability to handle large data sets [3]. In addition, another major advantage 
is that it makes no underlying assumptions regarding the distribution of the values of the 
predictors. It means that the tree is constructed in a recursive binary way, resulting in nodes 
connected by branches.  
 Although decision tree techniques have already been shown to be interpretable, efficient, 
problem independent and able to treat large scale applications, but they are also recognized as 
highly unstable classifiers with respect to minor perturbations in the training data. In the other 
words methods present high variance. Fuzzy logic brings in an improvement in these aspects due 
to the elasticity of fuzzy sets formalism [2]. 
 In this work, ant colony optimization (ACO) [4, 5] was used to build a fuzzy regression tree 
(RT) and the resulted tree was used for quantitative structure-property relationship study of the 
melting points of 4173 structurally diverse chemicals.  
 The melting point is not only important in the screening for solid-state characteristics, but also 
is used as a descriptor for predicting other properties, such as solubility [6-8]. However, the 
experimental estimation of melting points is believed to be a difficult task [9]; many compounds, 
including some environmentally and pharmaceutically important ones, decompose prior to or 
during melting. In addition, the estimation of melting points from structural properties (QSPR) is 
generally more difficult than the prediction of some other properties such as boiling points [10].  
 The influence of different molecular parameters on melting points has already been the 
subject of intense research [10-17]. A number of these studies focused on very restricted classes 
of compounds [13], or developed a non-linear model to predict melting points [10, 17]. 
Karthikeyan et al. [10] proposed a nonlinear artificial neural network (ANN) model for 
predicting the melting point of a diverse data set of 4173 compounds and. This model achieved a 
maximum correlation coefficient of R2 = 0.662.  The goal of this work was development of a 
predictive model based on fuzzy RT for the melting point of the data set collected by 
Karthikeyan et al. [10].  
 
2. Data set 
 
 The data set consisted of melting points of 4173 chemicals, used by Karthikeyan et al. [10]. 
The molecules were partitioned into training and validation sets, with respective sizes of 3000 
and 1173, by sample set partitioning based on joint x-y distances (SPXY) method [18].  
 A large number of 2D and 3D descriptors to capture molecular, physicochemical and other 
graph-based properties were employed, calculated by Karthikeyan et al. [10]. The 2D descriptors 
include physical properties (such as charge, van der Waals volume, and molecular refractivity), 
subdivided surface areas (atomic contributions to logP and molecular refractivity), counts of 
elemental atom types and of bond types, Kier/ Hall connectivity and kappa shape indices, 
topological indices (Wiener index and Balaban index), pharmacophore feature counts (number of 
acidic and basic groups and hydrogen bond donors and acceptors), and partial charge descriptors. 
 The conformation-independent 3D descriptors include potential energy terms (such as total 
potential energy and contributions of angle bend, electrostatic, out-of-plane, solvation, etc. 
terms) and surface area, volume, and shape descriptors (among them water accessible surface 
area, mass density, and principal moments of inertia). A total number of 202 descriptors were 
finally used in this study. 
 
3. Theory of ant colony system 
 
 Dorigo and his colleagues were the first to apply ant colony, referred as ant system (AS), to 
the traveling salesman problem [19]. Later on, a more promising method, named as ant colony 
system (ACS) was developed [20]. Previously, we employed both algorithms to solve variable 
selection problem in multivariate calibration and QSPR studies [21].  
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 In this study, ACS algorithm was used to build a fuzzy regression tree (RT). First of all, a RT 
based on the algorithm proposed by Breiman was built [1]. To obtain a fuzzy RT, a fuzzy 
membership function with proper parameters should be applied at each node. ACS was used to 
optimize the fuzzy parameters of the RT. It is worthy to note that variables used to split 
molecules at each node were those selected previously by Breiman’s algorithm and the ACS 
algorithm was used to optimize the value of cut point at each node and the upper and lower 
thresholds. 
 The ACS-CART algorithm [22] is briefly described in the following: supposed the optimum 
RT obtained by Breiman’s algorithm has m nodes. At each node, an appropriate cut point must 
be selected for the chosen variable. Selection is done based on cut-point pheromone matrix. For 
each variable, ten cut points between minimum and maximum quantity of each variable in data 
matrix are chosen. It is suggested that a variable at each node has different optimum cut point 
and because that there are m nodes, cut points pheromone matrix must be a matrix of size m×10. 
At the beginning, an equal amount of pheromone values are assigned to each cut points ( ). 
Based on this pheromone matrix a probability vector is calculated for the ith selected variable. 
 To divide members of a parent node into children nodes a membership function is required. 
Preliminary studies showed that from four types of membership functions (MFs), Triangular-
shaped MF (TMF) was the best. Other studied MFs were: Gaussian MF, Generalized bell-shaped 
MF, and Sigmoidally shaped MF. TMF has three parameters: a,b, and c, where a and c locate the 
"feet" of the triangle and the parameter b locates the peak. The value of the cut-point is the b 
value of the TMF. The remaining two parameters (a and c) are selected such that a symmetric 
Triangular shape is produced.  
 As mentioned above, there is a cut-points pheromone matrixes based on which an ant selects a 
cut-point value at each node. Details presented in our previous paper [5].When a colony of ants 
is created, all ants are evaluated as followed: for an ant, in each terminal node a weighted MLR 
model with selected descriptors by the stepwise method is developed and calculated coefficients 
are stored (recall that each ant is a fuzzy regression tree). Weights in the weighted MLR are 
equal to the membership value of each molecule in the terminal node. Note that membership 
function at each node is a curve that defines how each molecule in the parent node is mapped to 
a membership value (or degree of membership) between 0 and 1. So, summation of the 
membership values of a molecule in all terminal nodes equal to unity.  After that, the best ant, 
ant with highest correlation coefficient in the regression model, updating both pheromone 
matrixes, i.e., the pheromone values of selected cut-point by the best ant is increased by a 
constant factor υ (setting to 0.4 by trial and error): 
 

( ) ( ) ( )[ ]υτττ ×+=+ ttt kikiki ,,, 1    k∈β 
 
where β is set of selected variable by the best ant, k is each of selected variable, t is number of 
iteration and i indicates number of node.  
 At the end of each of iteration, pheromone evaporation is done as followed: 

 
( ) ( ) ( )[ ]ρτττ ×−=+ ttt kikiki ,,, 1  

 
 Therefore, after the first iteration, the best cut-point values that used to split compounds at 
each node by the best ant give higher pheromone values than the others.  

 
4. Results and discussion 
  
 The goal of this work is development of a predictive model to estimate melting point of 
various chemicals. To obtain such a model, a diverse set of chemicals containing 4173 molecules 
belonging to a wide variety of organic compounds was used. Fig 1 represents the histogram of 
the melting point data, indicating that the data have a nearly normal distribution. A large 



V. Zare-Shahabadi / J. Iran. Chem. Res. 4 (2011) 97-103 

 

 

100 

standard deviation in the melting point data (i.e., 65 °C) indicates diversity of the used data 
points.  

 
 
Fig. 1. Histogram of the distribution of the experimental melting points for the total data set of 
4173 chemicals. 
 
 In attempting to develop a structure-melting point relationship with sufficient predictive 
ability, the RT analysis that represented good predictive ability in QSAR/QSPR studies [3] was 
used. First of all, an ordinary regression tree, obtained by the algorithm proposed by Breiman 
[1], was constructed. This tree, after pruning stage, classified 4173 compounds of training and 
validation sets to 41 groups (shown in Fig. 2). It represented poor prediction ability with 
correlation coefficients of 0.41 and 0.11 for the training and validation sets, respectively. 
Descriptors used to split root node up to node No. 7 are TPSA, balabanJ, a_nN, PM3_LUMO, 
MNDO_LUMO, b_1rotR, and vsa_acc. These descriptors are explained in Table 1. 
 
Table 1 
Descriptors used in constructing ordinary CART as split criteria. 
 
Descriptor Definition 

 
TPSA Polar surface area calculated using group contributions to 

approximate the polar surface area from connection table 
information only. 

  
balabanJ Balaban's connectivity topological index 
  
a_nN Number of nitrogen atoms 
  
PM3-LUMO The energy (eV) of the Lowest Unoccupied Molecular Orbital 

calculated using the PM3 Hamiltonian [MOPAC]. 
  
MNDO-LUMO The energy (eV) of the Lowest Unoccupied Molecular Orbital 

calculated using the MNDO Hamiltonian [MOPAC]. 
  
b-1rotR Fraction of rotatable single bonds 
  
vsa-acc Approximation to the sum of VDW surface areas of pure 

hydrogen bond acceptors 
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Fig. 2. Tree obtained by ordinary CART algorithm. 

 One of the reasons for poor prediction ability of the tree is that it uses mean of each terminal 
nodes as a prediction value for all of its members. Therefore, in the first step, to improve the 
results of the tree, a multivariate linear regression model (MLR) is built in each terminal node 
and the calculated coefficients were used to predict the melting points of validation molecules. In 
each terminal node, the proper descriptors were selected by stepwise variable selection method 
[22]. The root mean square errors (RMSE) values for the training and validation sets are 36.93 
and 109.81 °C, respectively. The respective R2 values for the training and prediction sets are 0.56 
and 0.12. High value of R2 for training set together with low value for prediction set indicates the 
presence of over-fitting in the resulted model.  
 In the consequent step, we decided to combine the ACS algorithm with CART algorithm to 
overcome the disadvantage of the CART by applying the fuzzy role at each node of the tree.  
 As noted previously, ACS algorithm has some parameters which should be optimized to 
obtain better results. These parameters include φ, υ, ρ, and number of iterations. All of these 
parameters, except φ and number of iterations, were set to optimum value by trial and error. The 
optimum values were 0.4 and 0.4, for υ and ρ, respectively. The proper values for φ and number 
of iterations were found to be 30 for both parameters. It is worth mentioning that larger values 
for these parameters, higher the chance of finding the global optima, together with an expected 
increase in computation time.    
 The obtained fuzzy tree revealed better prediction ability over the conventional CART model 
(i.e., R2 of training set of 0.72 and of prediction set of 0.79). Note that at each terminal node, a 
MLR model with those variables selected by stepwise method was developed. A plot of 
predicted versus observed melting points exhibits good correlation for the majority of 
compounds. The observed improvement is obviously the results of applying the fuzzy role on the 
CART.  
 To further investigate the predictive ability of the model, it was used to predict the melting 
points of an external validation set of 277 drugs. The results are also including in Fig. 3. The 
high prediction ability is observed from this figure (R2 = 0.78),  
 As it is seen from Fig. 3, some compounds exhibit significant deviation from the regression 
line. These compounds belong to two groups: small molecules with self-organizing ability in the 
solid state that results in stronger interactions than ordinary molecules of the same size and larger 
molecules whose physicochemically similar neighbors are just in an area of chemical space that 
does not allow for appropriate interactions result in underestimated melting points [10].  
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Fig. 3. Plot obtained for a training set (filled blue diamonds), a validation set (unfilled triangles), 
and an external validation set (stars) between experimental and predicted melting points. 
 
5. Conclusion 
 

Regression tree is a powerful method in data mining filed. It can handle large data set and 
develop linear and/or non-linear relationship between independent variables and dependent 
variable. However, RT has some disadvantages. For example, it has high variance. In this work, 
the ACS algorithm was used to build a fuzzy regression tree which has higher stability compared 
to the ordinary RT. The resulted fuzzy tree was successfully employed for prediction of melting 
points of a large set of chemicals. 
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