# The Study of Morphological Traits and Identification of Self-incompatibility Alleles in Almond Cultivars and Genotypes

#### Mousa Rasouli

Department of Horticulture and Landscape, Faculty of Agriculture, Malayer University, P.O. Box 65719-95863 Malayer, Iran

Received: 10 April 2017

Accepted: 23 July 2017

# Abstract

The evaluation of an almond collection using morphological variables and identification of selfincompatibility genotype is useful for selecting pollinizers and for the design of crossing in almond breeding programs. In this study, important morphological traits and self-incompatibilities in 71 almond cultivars and genotypes were studied. Simple and multiplex specific PCR analyses were used in order to identify selfincompatibility alleles. Based on the results, cultivars and genotypes including 'Dir Ras–e-Savojbolagh', 'D-124', 'D-99', 'Shahrood 12', 'Tuono', 'Nonpareil', 'Price', 'Mirpanj-e-Tehran', 'Pakotahe-e- Taleghan', 'V-13-34', 'V-16-8, 'V-11-10', 'Zarghan 10', 'Uromiyeh 68', 'Barg dorosht-e-Hamedan' and 'Yazd 60' were late flowering and had the highest quality of nut and kernel characters. The result of the PCR method using combined primers AS1II and AmyC5R showed amplification of ten self-incompatibility alleles ( $S_1$ ,  $S_2$ ,  $S_3$ ,  $S_5$ ,  $S_6$ ,  $S_7$ ,  $S_8$ ,  $S_{10}$ ,  $S_{12}$ , and S unknown allele) and three  $S_f$  alleles. Moreover,  $S_1$  had the highest frequencies in comparison with other known S-alleles. Also, unknown alleles with different sizes were detected and 58 new bands were found in some cultivars.

Keywords: AS1II, AmyC5R, Incompatibility, Kernel, Prunus dulcis, S-allele, Specific PCR.

#### Introduction

The cultivated almond [*Prunus dulcis* Miller (D.A. Webb)] belongs to the Rosaceae family, subfamily Prunoideae, and typified by a drupe fruit structure (Kester and Gradiziel, 1996). Almond originated in central and southwest Asia and represents divergent evolution under cold and xerophytic environments. Related *Prunus* species are found growing wild from eastern China to the mountainous areas and deserts of western China, Afghanistan and Iran (Kester and Gradiziel, 1996; Browicz and Zohary, 1996). Almond is one of the most important nut crops worldwide and produces fruits with high commercial value. Iran is the main producer of this crop (FAO, 2012; Sepahvand *et al.*, 2015). The efficiency of cross-breeding programs mainly depends on the choice of the progenitors and knowledge on the transmission of traits that are to be improved. A high efficiency is especially important in fruit breeding, almond included, due to the high cost and time consuming of breeding programs of these species (Sanchez –Perez *et al.*, 2007). Late blooming, time of maturity and some of the fruit and kernel traits are the most important objectives of the almond breeding programs, and there are studies on transmission of these traits (Kester and Gradiziel, 1996; Sanchez –Perez *et al.*, 2007; Spiegel-Roy and Kochba 1974; Dicenta *et al.*, 1993).

<sup>\*</sup>Corresponding author: Email: m.rasouli@malayeru.ac.ir

In addition, almond is a predominantly selfincompatible species, although some of the selfcompatible cultivars have been described (Halasz al., 2006). Self-incompatibility is a et gametophytic type and controlled by a single Slocus with multiple codominant alleles and expressed within the styles of flowers as S-RNAs glycoproteins (Halasz et al., 2006; Wirthensohn et al., 2011). These glycoproteins are responsible for the inactivation of self-pollen tube growth in most species of genus Prunus, including almond (Socias I Company and Alonso, 2004; Alonso and Socias I Company, 2006), apricot (Hajilou et al., 2006), sweet cherry (Wunsch et al., 2004) and plum (Yamane et al., 1999). Ortega et al., (2005) characterized the alleles  $S_1$ - $S_{23}$ , and also  $S_f$ , with respect to the length polymorphisms of their first and second intron products by the use of two novel consensus primer pairs (EM-PC2consFD/ EM-PC3consRD and PaConsI-F/EM-PC1consRD).

Twenty six S- alleles of incompatibility (from  $S_1$  to  $S_{25}$  and  $S_{7A}$ ), a part from the self-compatible dominant allele  $S_{f}$  have been identified in the cultivated almond species. Two methods have mainly been used to determine the S genotype: Controlled pollination (in the field or in the laboratory) and S-RNase analysis (in the laboratory) (Boskovic et al. 2003), although other new technologies based on the DNA analysis have recently been developed (Lopez et al. 2006; Mousavi et al., 2010; Mousavi et al., 2014). Since information about S-haplotypes is very important to ensure fruit set, S-RNase gene specific primer PCR analysis has been developed to determine the S-haplotypes of various Rosaceae fruit tree species, such as almond (Ortega et al. 2005; Mousavi et al., 2010; Mousavi et al., 2014).

Rahemi *et al.*, (2010) studied the *S*-alleles in 96 wild almonds and related *Prunus* species from 10 taxonomic groups. They used six sets of primers including three degenerate primer pairs (PaConsI-F(FAM)/EMPC1consRD, PaConsI-F(FAM)/EM-PC3consRD, EM-PC2consFD/EM- PC3consRD), one general primer pair AS1II/AmyC5R, one allele specific primer pair (CEBASf/AmyC5R), and one set of multiplex (AS1II/CEBASf/AmyC5R). primers Results showed that the number of amplified bands (155) and their size ranges were higher than in previous reports. The primers, including the allele specific (CEBASf/AmyC5R), did not amplify any selfcompatibility allele (Sf) among the evaluated samples . Sizes of amplified alleles were compared with previous reports in almond and labeled accordingly. Alleles  $S_9$ ,  $S_2$ ,  $S_{13}$ , and  $S_{25}$  had the highest frequencies (12.26, 8.39, 7.74, and 7.74 percent, respectively) (Rahemi et al., 2010). Alleles  $S_{16}$ ,  $S_{17}$ ,  $S_{18}$ ,  $S_{19}$ ,  $S_{22}$ , and  $S_{28}$  were not observed in the examined samples and alleles S15 and S26 had a low frequency (0.65). The dendrogram revealed that S-alleles were more similar within a taxonomic group than other groups (Rahemi et al., 2010).

Wirthensohn et al., (2011) determined the selfincompatibility (SI) genotypes of 25 Australian almond cultivars by PCR analysis of genomic DNA using a combination of specific primers based on the intron regions and primers based on the conserved regions of Rosaceous S-RNase genes. DNA fingerprinting of the cultivars was achieved through microsatellite fragment analysis and comparison with European and American cultivars to determine the genetic diversity within Australian almond accessions. The results showed a diverse range of incompatibility groups within Australian cultivars and fingerprinting which reflected their ancestry, a combination of American and European backgrounds (Wirthensohn et al., 2011).

Mousavi *et al.*, (2014) studied the S-RNase alleles of 70 almond accessions that were identified by PCR using combinations of the consensus primers PaConsI-F, EM-PC1consR, EM-PC2consF, EM-PC3consR and EM-PC5consRD. Sixteen cultivars of different origins were also included in the analysis as a reference for 30 S-RNase alleles already characterized in this species. In most cases, the results showed two bands matching the size of the already known S-RNase alleles. However, in 13 accessions, some bands differed in size and were considered to correspond to new S-RNases. Nine new S-RNase alleles were cloned and sequenced from seven almond cultivars. The results from Mousavi et al., (2014) showed that Iranian almond cultivars had variation in S-alleles. Therefore, most cultivars had an S-genotype different from those of the established cross-incompatibility groups in almond. They were included in the universal group O. The alleles  $S_1$ ,  $S_2$ ,  $S_4$ ,  $S_7$ ,  $S_{12}$  and  $S_{24}$  had the highest frequencies, whereas S<sub>25</sub>, S<sub>38</sub>, S<sub>41</sub> and S<sub>42</sub> had the lowest frequencies in Iranian almonds. According to these results, S-alleles are more diverse in almonds originated in different geographical regions, and thus, could be considered as genetic markers in studies of genetic diversity. Identification of S-alleles in almond cultivars is important for orchard design and for designing crosses and choosing parents in breeding programs. Pollen-pistil compatibility relationships among some almond cultivars and genotypes have been poorly characterized.

The aim of this study was to evaluate the agronomic traits and identify self-incompatibility alleles in 71 almond cultivars and genotypes.

# Materials and Methods

#### Plant material

This experiment was performed at, Agriculture Research Center of Malayer and Horticulture and Landscape Department of Malayer University. The plant materials used were sampled from three trees in each sample of different geographical scales. They derived mainly from the almond collections of Kamal-Abad (Karaj, Iran). This area is located in Alborz province, at 36°08'27" N latitude, 50°03'26" E longitude and 1,270 m above the sea level, with an annual average temperature of 13.8°C and an annual average precipitation of 260 mm. In this study, 61 Iranian and 10 foreign almond cultivars and genotypes were investigated. The trees were nine years old, healthy, and had a full crop.

#### Morphological traits

Some morphological important traits of the assayed cultivars and genotypes, which were used in this study, were measured according to the Gulcan (1985) descriptor. To measure vegetative and fruit characteristics, at least 50 mature fruits from each tree were hand-harvested, the hulls removed and nuts dried for four weeks at room temperature. For each sample, some important fruit traits were analyzed.

Ten leaves were collected from the mid-shoot portion and used for measurements of leaf area (mm<sup>2</sup>) using the leaf area meter devise (Leaf Area Meter-England, WinDIAS3 software).

#### Identification of S-alleles

# DNA extraction

Total DNA was extracted using CTAB extraction method that based on the procedure described by Doyle and Doyle (1987).

#### PCR amplification

S-RNase alleles in Iranian of almond cultivars were identified by PCR, using the primer set studied for single-PCR was AS1II (forward) and AmyC5R (reverse), which represent common sequences in the almond self-incompatibility *S*-*RNases* and AmyC5R (reverse) and CEBASf (forward) primer, which is specifically designed for the self-compatibility allele ( $S_f$ ) (Sánchez-Pérez *et al.*, 2004). All primers had the annealing temperature of 53 °C. Primers were synthesized by Invitrogen<sup>TM</sup> Life Technologies. Their sequences (5' to 3') are as follows:

AS1II: TATTTTCAATTTGTGCAACAATGG;

# <u>AMYC5R</u>:CAAAATACCACTTCATGTAACAA C;:

#### CEBASE: AGATCTATCTATATCTTAAGTCTG.

In addition, two primers set were used for the multiplex-PCR:

a-AS1II (forward), CEBASf (forward), and AmyC5R (reverse)

b -A1Sc1 (forward), A1Sd2 (forward) and AmyC5R (reverse)

## PCR reaction

PCR reactions were performed in a 25  $\mu$ l volume with the reaction mixtures containing 16 mM (NH4)2SO4, 67 mM Tris-HCl pH 8.8, 0.01% Tween-20, 2 mM MgCl2, 0.1 mM of each dNTP, 0.2  $\mu$ M of each primer, one unit of Taq DNA Polymerase (Ecogen S.R.L., Barcelona, Spain), and 90 ng of genomic DNA. The cycling parameters were: one cycle of 95°C for three minutes; 35 cycles of 94°C for one minute, 53°C for one minute, and 72°C for two minutes, followed by a ten minute final extension (Fallah *et al.*, 2014)

#### Electrophoresis of PCR products

Amplified PCR products were separated by electrophoresis on 1.5% agarose gels (1 × TAE buffer), stained with ethidium bromide (0.5  $\mu$ g/mL), and visualized under the UV light using a 10Kb Plus DNA Ladder (Invitrogen<sup>TM</sup> Life Technologies, Barcelona, Spain) as molecular size standard (Fallah *et al.*, 2014)

# Data analysis

Values of traits including minimum, maximum and mean were measured. The frequency histograms for each trait were represented by using the mean values of the years of the study. Morphological data were statistically analyzed in the frame of completely randomized design (CRD) with SAS software version 9.1. The mean values were compared by Duncan's Multiple Range Tests.

Molecular weight of each of the potential specific bands was calculated using a 10Kb Plus DNA Ladder (Invitrogen<sup>TM</sup> Life Technologies) as molecular size standard and the software program Gene Tools (SynGene. GeneTools Analysis Software -Version 3.02.00 - Serial No. 7458\*5213).

#### Results

#### Morphological traits

The analysis of variance showed significant differences at 1% level among the studied cultivars and genotypes for all traits (Table 1), and the mean values for each characteristic were different (Table 1 and 2). Fig. 1 showed the distribution of the 71 almond cultivars for the some vegetative, phonological and fruit traits such as flowering time (Fig. 1a), growth vigor (Fig. 1b), foliage density (Fig. 1c), kernel color (Fig. 1d), shell hardness (Fig. 1e) and ripening time (Fig. 1f).

The flowering time of the almond cultivars and genotypes spread between the earliest ('Gazvin1') and the latest ('Shahrood 12'), (Table 2, Fig. 1a), considering the mean values of each cultivars and genotypes. The almond cultivars and genotypes followed a bimodal distribution (Fig. 1a).

For growth vigor trait, the majority of studied cultivars belonged to the intermediate group (Table 2, Fig. 1b), although some of the cultivars had weak and strong growth habit (Table 2, Fig. 1b). Foliage density trait in 71 studied cultivars and genotype showed that most of the cultivars had a dense growth habit (Table 2, Fig. 1c). The remaining cultivars were medium and low foliage density, respectively (Table 2, Fig. 1c). Results showed measurements of 1163.52 mm<sup>2</sup> (average), 3086.06 mm<sup>2</sup> (maximum in Mirpanjeh Tehran cultivars), respectively (Table 2). The variability of nut weight in the all assayed cultivars was very

high, as observed in fruits from 1.09 (Shekofeh) to 7.10 g (Shale Gazvin) (Table 2). In all cultivars and genotypes, an average of nut weight was 3.59 g (Table 2). In this study, all fruit resulted form open pollination.

Results showed that 'Dir Ras-e-Savojbolagh' had a maximum nut width of 38.00 mm and a mínimum value of 14.00mm in cultivars (Table 2). An average nut width of 21.99 mm was calculated in all assayed almond cultivars (Table 2). The mean value of kernel weight of all the cultivars and genotypes was 1.19 grams (Table 2). Range of kernel weights was between 0.43g ('Tuono1') and 2.09g ('Number 3-12'). The rest of cultivars were between these ranges (Table 2). The average of kernel percent in examined almonds was 43.23 %. High and low amount of this trait were observed in 'Price' (76.60%) and 'Hybrid holo badam' (20.00%) cultivars, respectively (Table 2). The results revealed that the mean value of double kernels percent in assayed almonds ranged from

i.

0.00% to 55.00%, although the average of this trait was 16.80% (Table 2). The influence of the environment on the production of double kernels is well known (Spiegel-Roy and Kochba, 1974; Kester and Gradiziel, 1996).

As can be seen in Fig. 1e, the majority of studied cultivars were hard shell and the rest genotypes were intermediate, soft, paper and extra hard shell, respectively (Fig.1e). Shell hardness in 'Hybrid holo badam' was extra hard (cracking by hammer), while 'Price', 'Z-10'and 'Number 16-8'cultivars, were extra soft (paper) (Table 2). The ripening date in all assayed cultivars and genotypes showed a normal distribution between the earliest ('Number 9-7') and the latest cultiavars ('Dir Rase Savojbolagh') (Fig.1f). The majority of assayed cultivars showed the medium ripening date. Our results agreed with previous studies by Grasselly and Crossa-Raynaud (1980) and Sanchez –Perez *et al.*, (2007).

Table 1. Analysis of variance of some agronomic traits studied for 71 almond cultivars and genotypes .

| SOV               | DF                   | Mean square          |
|-------------------|----------------------|----------------------|
| Blooming time     | 70                   | 16.10 <sup>**1</sup> |
| Tree vigour       | 70                   | 4.77**               |
| Foliage density   | 70                   | 9.23**               |
| Leaf area         | 70                   | 547485.84**          |
| Length/width leaf | 70                   | 0.68**               |
| Nut weight        | 70                   | 6.25**               |
| Nut length        | 70                   | $0.88^{**}$          |
| Nut width         | 70                   | 0.57**               |
| Kernel weight     | 70                   | $0.48^{**}$          |
| Kernel color      | 70                   | $0.14^{**}$          |
| Double Kernel     | 70                   | 2156.86**            |
| Kernel percent    | 70                   | 600.44**             |
| Softness of shell | 70                   | 10.53**              |
| Ripening time     | 70                   | 7.50**               |
| Error             | 142                  | -                    |
| Total Error       | 212                  | -                    |
| %Coefficient of   | Variation 0.00 to 8. | 049%                 |

<sup>1</sup> n.s., \* and \*\* non-significant and significant respectively at the 5% and 1% level by Duncan's test.

# Journal of Nuts 8(2):137-150, 2017

Table 2. Some important traits on superior almond cultivars and genotypes in this study.

| Genotypes             | Blooming<br>time | Tree<br>vigor          | Foliage density  | Leaf area       | Length/width leaf | Nut<br>weight | Nut<br>length | Nut<br>width | Kernel<br>weight | Kernel<br>color  | Double<br>Kernel | Kernel<br>percent | Softness of shell  | Ripening<br>time |
|-----------------------|------------------|------------------------|------------------|-----------------|-------------------|---------------|---------------|--------------|------------------|------------------|------------------|-------------------|--------------------|------------------|
|                       | Code             | Code                   | Code             | mm <sup>2</sup> | -                 | gr            | mm            | mm           | gr               | Code             | <i>\$</i>        | 010               | Code               | Code             |
| Genco                 | $ML^1$           | $W^9$                  | Ι                | 1029.25         | 32.00             | 2.14          | 20.70         | 20.10        | 1.03             | Li <sup>14</sup> | 35.00            | 48.13             | Ι                  | М                |
| D-124                 | ML               | $I^{10}$               | Lo <sup>12</sup> | 1063.23         | 34.20             | 4.33          | 49.00         | 27.00        | 1.40             | Li               | 0.00             | 25.00             | Ι                  | Е                |
| Ruby                  | L                | W                      | Lo               | 1319.07         | 32.20             | 2.00          | 30.00         | 20.00        | 1.07             | Ι                | 8.00             | 63.00             | Ι                  | М                |
| Mission               | $VL^3$           | <b>S</b> <sup>11</sup> | S                | 940.62          | 33.90             | 3.30          | 25.00         | 19.00        | 1.62             | Ι                | 0.00             | 38.27             | Ι                  | М                |
| Nonpareil             | $M^4$            | W                      | Lo               | 547.24          | 40.50             | 1.22          | 29.40         | 18.50        | 0.81             | Li               | 01.00            | 66.14             | So <sup>15</sup>   | Е                |
| Price                 | М                | Ι                      | Ι                | 746.41          | 33.10             | 1.77          | 33.90         | 17.00        | 1.20             | Ι                | 20.00            | 76.60             | $P^{16}$           | М                |
| Ne Plus ultra         | L                | Ι                      | Lo               | 1132.89         | 34.00             | 2.04          | 35.60         | 19.40        | 1.04             | Li               | 5.00             | 51.86             | So                 | Е                |
| D-99                  | ML               | Ι                      | Lo               | 1129.26         | 31.00             | 2.13          | 32.20         | 22.00        | 1.36             | Li               | 10.00            | 63.00             | $H^{17}$           | Е                |
| Peerless              | $EM^5$           | W                      | $D^{13}$         | 857.60          | 30.10             | 3.20          | 33.50         | 23.00        | 1.13             | Ι                | 31.40            | 35.40             | Н                  | М                |
| Mirpanjeh Tehran      | М                | Ι                      | D                | 3086.06         | 23.00             | 3.65          | 42.00         | 19.00        | 1.30             | Li               | 50.00            | 55.00             | So                 | L                |
| Pakotahe Talaghan-1   | ML               | W                      | D                | 1610.34         | 36.20             | 4.23          | 36.00         | 24.00        | 1.40             | Li               | 40.00            | 40.00             | Ι                  | М                |
| V-13-34               | L                | W                      | D                | 1116.99         | 27.40             | 5.11          | 42.60         | 32.50        | 1.89             | Ι                | 33.05            | 36.00             | Н                  | L                |
| Orumieyh-68           | L                | W                      | D                | 1509.51         | 27.20             | 5.76          | 39.00         | 30.00        | 1.40             | Ι                | 20.31            | 24.31             | Ι                  | L                |
| Yazd-60               | $E^6$            | Ι                      | Lo               | 1279.04         | 35.80             | 3.70          | 31.00         | 20.00        | 1.40             | Ι                | 5.50             | 65.00             | Н                  | Е                |
| Pakotahe Talaghan-2   | М                | W                      | D                | 1410.29         | 32.30             | 5.11          | 42.60         | 32.50        | 1.88             | Li               | 23.00            | 48.94             | Ι                  | L                |
| Dir RaseSavojbolagh   | L                | W                      | Lo               | 809.88          | 29.30             | 3.16          | 50.00         | 38.00        | 0.96             | Li               | 21.00            | 46.74             | Н                  | VL               |
| V-16-8                | L                | W                      | Lo               | 1109.05         | 31.50             | 3.45          | 33.30         | 17.40        | 1.76             | Li               | 0.00             | 60.00             | Р                  | Е                |
| Barg Doroshte Hamedan | М                | Ι                      | Ι                | 2076.93         | 28.70             | 4.70          | 46.00         | 25.00        | 1.80             | Li               | 5.00             | 50.00             | Н                  | L                |
| Shale Gazvin          | Е                | Ι                      | D                | 1176.92         | 29.30             | 7.10          | 35.00         | 23.00        | 1.80             | Li               | 20.00            | 50.00             | Н                  | М                |
| Barg Siyahe Gazvin    | ML               | Ι                      | D                | 1379.02         | 31.60             | 2.42          | 30.00         | 14.00        | 1.50             | Li               | 22.00            | 60.00             | Ι                  | М                |
| Hybrid holo badam     | М                | Ι                      | Lo               | 1654.18         | 37.30             | 3.40          | 32.00         | 19.00        | 0.70             | Ι                | 2.50             | 20.00             | $\mathrm{EH}^{18}$ | L                |
| Gazvin 1              | $EE^7$           | W                      | Lo               | 1393.85         | 34.80             | 4.80          | 35.00         | 25.00        | 1.69             | Li               | 22.00            | 58.00             | Н                  | Е                |
| Shekofeh              | L                | W                      | D                | 1105.13         | 31.10             | 1.09          | 22.50         | 16.80        | 0.62             | Ι                | 19.90            | 60.00             | So                 | М                |
| Tuono1                | М                | S                      | D                | 886.55          | 10.23             | 2.27          | 25.50         | 15.40        | 0.43             | Li               | 18.00            | 27.00             | Н                  | Е                |
| Shahroodi 121         | $\mathrm{EL}^8$  | Ι                      | D                | 1512.32         | 38.70             | 6.21          | 39.70         | 27.40        | 1.96             | Ι                | 0.00             | 32.00             | Н                  | М                |
| Tuono2                | М                | S                      | D                | 1424.21         | 14.60             | 3.96          | 24.08         | 22.70        | 0.77             | Li               | 22.00            | 30.00             | Н                  | Е                |
| Shahroo12             | EL               | Ι                      | D                | 1077.70         | 12.73             | 6.21          | 32.70         | 25.40        | 0.81             | Ι                | 23.00            | 38.00             | Н                  | М                |
| Tuono3                | М                | Ι                      | Lo               | 1013.11         | 17.60             | 3.15          | 26.08         | 22.00        | 1.01             | Li               | 20.00            | 30.00             | Н                  | Е                |

1. Medium Late; 2. Late; 3. Very Late; 4. Medium; 5. Early Medium; 6. Early; 7. Extra Early; 8. Extra Late; 9. Weak; 10. Intermediate; 11. Strong; 12. Low; 13. Dense; 14. Light; 15.Soft; 16. Paper; 17. Hard; 18. Extra Hard





#### Identification of self-incompatibility alleles

PCR using combined primers AS1II and AmyC5R in the assayed almond cultivars and genotypes showed amplification of ten selfincompatibility alleles ( $S_1$ ,  $S_2$ ,  $S_3$ ,  $S_5$ ,  $S_6$ ,  $S_7$ ,  $S_8$ ,  $S_{10}$ ,  $S_{12}$ , and S unknown) and three S<sub>f</sub> allels (Fig. 2, Tables 3 and 4). In this case, S1 and S unknown had more frequencies in comparison with other Salleles. Differences in the sizes of the PCR amplified fragments (from 382-2412 bp) permitted identification of these self-incompatibility alleles. Additionally, S-genotypes of the new assayed almond selections were determined (Tables 3 and 4).

 $S_{9}$ ,  $S_{13}$ ,  $S_{27}$ ,  $S_{19}$ ,  $S_{22}$ ,  $S_{23}$ ,  $S_{25}$ , and  $S_{29}$ , alleles were not detected (Table 4). DNA fragment sizes from the amplified bands corresponding to each Sallele agreed in most cases with the available data (Table 4). In addition, new bands were found with different sizes in some cultivars and genotypes. Future study should be done using controlled pollination and sequencer. The source of the selffertile allele,  $S_f$ , is thought to be P. webbii, which grows wild in the regions of southern Italy and from which 'Genco' and some other cultivars originate (Marchese et al., 2008). PCR using combined primers AmyC5R (reverse) and CEBASf (forward) in all the accessions showed amplification of self-compatibility allele  $(S_t)$ (Table 3and 4). However, the PCR-amplified fragment of the self-compatibility allele S f was of a similar size (1.2 bp) to the fragment amplified from the S<sub>3</sub> allele. As expected, the amplified new product (0.4bp) was present in self-compatible 'Lauranne', 'Antoneta', cultivars 'Marta'. 'Tuono', 'Genco', 'R1000' and 'Guara' as well as in the 'Spanish-230' cultivar.

#### Discussion

The leaf characters of evaluated cultivars were similar to studies by Sabeti (1994) and Baninasab and Rahemi (2007). Leaf length to leaf with ratio is an important trait in almond cultivars, and it is related to the photosynthesis rate for increasing of carbohydrate synthesis (Sanchez –Perez *et al.*, 2007) In this research, the results indicated that in all studied cultivars, the average, maximum and minimum of this trait was 31.25, 45.50 (Z-3 cultivars) and 10.23 (Tuono1), respectively (Table 2).

Results showed significant differences in the weight in-shell between both pollination types in almond cultivars. The differences between these mean values (2.7g for self-pollination, and 2.8 g for open pollination) were not important from a commercial point of view, since this weight difference was mainly due to the shell. Also, our results agreed with those of Socias I Company *et al.*, (2004), who observed a significantly higher average nut weight (i.e. weight in-shell) in fruits from open pollination.

Results of our research were in concurrence with previous studies (Kester et al., 1977; Spiegel-Roy and Kochba, 1974; Dicenta et al., 1993). The majority of studied cultivars and genotypes showed a light kernel color (Fig. 1d). Dark and extra dark kernel colors were not observed in any assayed cultivars, although some cultivars showed an intermediate color and had extra light color in this trait (Fig. 1d). Kernel percent is very important in almond breeding programs and breeders have to consider the parents with high kernel percentage in their crosses (Kester et al., 1977; Dicenta et al., 1993). The shell hardness was controlled by major genes, hard shell being dominant, although when cultivars with intermediate shell hardness were crossed, the inheritance was more complex. It was proposed that shell hardness and in-shell/kernel ratio were quantitative traits with an intermediate heritability. Arteaga and Socias i Company (2001) obtained the lowest heritability (around 0.3) for shell hardness.

The results of multiplex-PCR using three

primers, AS1II / CEBASf / AmyC5R, differentiated in a single reaction, the ten selfincompatibility alleles and the  $S_f$  allele. Except for the  $S_f$  allele, the lengths of the amplified fragments generated in the multiplex-PCR were identical to those observed by single-PCR using the two primers (AS1II / AmyC5R). Thus, multiplex PCR is a very powerful, easy and inexpensive in early selection and primary study of self-incompatibility and self-compatibility alleles in almond cultivars (Sanchez -Perez et al., 2004; Mousavi et al., 2014 ). Pairs of primers developed by Tamura et al., (2000) (AS1II and AmyC5R) for the conserved regions of the S-alleles were quite efficient in the identification of a number of these S-alleles. Martinez-Gomez et al. (2003) demonstrated the specificity of these PCR primers for the identification of eight S alleles in almond cultivars assayed in single PCR reactions. The selfcompatibility allele present in 'Tuono', 'Lauranne' is S<sub>f</sub>, found in cultivars from Puglia, Italy ('Tuono'

and 'Genco') and introduced into new selfcompatible cultivars through breeding (Dicenta and Garcia, 1993). The identification of the Sgenotypes in almond cultivars is essential in breeding programs to maximize the efficiency of crosses (Mousavi et al., 2010; Mousavi et al., 2011a; Mousavi et al., 2011b; Mousavi et al., 2014). Self-compatibility permits high yields even following poor cross-pollination conditions (Mousavi et al., 2014). A PCR-based early identification of self-compatible progeny seedlings those with the  $S_f$  allele permits drastic reduction of the number of plants/trees that need to be grown to first flowering, where their compatibility could be assessed by traditional methods (Zeinolabedini et al., 2012). In addition, the multiplex PCR is an easy low-cost tool that permits identification of other new S-alleles using multiple primers sets (Sanchez-Perez et al., 2004).

|                             |        |           | Incompatibility                               | A1          |        |           | Incompatibility                               |
|-----------------------------|--------|-----------|-----------------------------------------------|-------------|--------|-----------|-----------------------------------------------|
| Almond cultivar/ genotype * | Origin | Size (bp) | Genotype /                                    | cultivar/   | Origin | Size (bp) | Genotype /                                    |
|                             |        |           | S-alelle                                      | genotype *  |        |           | S-alelle                                      |
| Azar                        | Iran   | 800/1700  | S <sub>2</sub> /S <sub>9</sub>                | Tuono       | Italy  | 1100/1200 | $S_1/S_f$                                     |
| Bahar-e- Hamedan            | Iran   | 1650/2000 | $S_{2}/S_{8}$                                 | V-1-21      | Iran   | 694/2000  | $S_{2}/S_{8}$                                 |
| Barg Doroshte Hamedan       | Iran   | 572/772   | <b>S</b> <sub>2</sub> / <b>S</b> <sub>2</sub> | V-2-27      | Iran   | 740/934   | <b>S</b> <sub>2</sub> / <b>S</b> <sub>2</sub> |
| Barg Siyahe Gazvin          | Iran   | 1900/2000 | $S_{2}/S_{8}$                                 | V-2-7       | Iran   | 750/1100  | $S_{2}/S_{1}$                                 |
| D-124                       | Iran   | 604/1200  | S <sub>2</sub> /S <sub>3</sub>                | V-2-29      | Iran   | 800/1100  | $S_2/S_1$                                     |
| D-99                        | Iran   | 382/1100  | $S_{2}/S_{1}$                                 | V-3-12      | Iran   | 800/980   | $S_2/S_?$                                     |
| Dir RaseSavojbolagh         | Iran   | 640/900   | $S_{2}/S_{2}$                                 | V-3-17      | Iran   | 388/1200  | S <sub>2</sub> /S <sub>3</sub>                |
| Genco                       | Iran   | 1100/1200 | $S_1/S_f$                                     | V-4-6       | Iran   | 394/1200  | $S_{2}/S_{3}$                                 |
| Hybrid Holo Badam           | Iran   | 880/1540  | $S_{2}/S_{2}$                                 | V-5-6       | Iran   | 1361/1900 | $S_2/S_2$                                     |
| Kerman-5                    | Iran   | 800/880   | $S_2/S_2$                                     | V-5-17      | Iran   | 600/2000  | S <sub>5</sub> /S <sub>8</sub>                |
| Kerman-20                   | Iran   | 760/800   | $S_{10}/S_{2}$                                | V-8-4       | Iran   | 600/600   | $S_{2}/S_{5}$                                 |
| Mashhad-10                  | Iran   | 800/1600  | $S_2/S_2$                                     | V-9-2       | Iran   | 518/1600  | $S_2/S_2$                                     |
| Mashhad-4                   | Iran   | 1100/2100 | $S_1/S_4$                                     | V-9-7       | Iran   | 740/1900  | $\mathbf{S}_2/\mathbf{S}_2$                   |
| Mashhad-6                   | Iran   | 550/1000  | $S_{2}/S_{12}$                                | V-9-32      | Iran   | 822/800   | $S_{2}/S_{7}$                                 |
| Mashhad-7                   | Iran   | 1100/1200 | $S_1/S_3$                                     | V-11- 10    | Iran   | 1030/2000 | S <sub>2</sub> /S <sub>8</sub>                |
| Mashhad-9                   | Iran   | 610/1250  | ${\bf S}_{?} / {\bf S}_{?}$                   | V-12-26     | Iran   | 783/1100  | $S_{2}/S_{1}$                                 |
| Mirpanjeh Tehran            | Iran   | 600/1600  | $S_5/S_?$                                     | V-13-34     | Iran   | 1600/1650 | $\mathbf{S}_2 / \mathbf{S}_2$                 |
| Mission                     | USA    | 600/1100  | $S_{5}/S_{1}$                                 | V-14-24     | Iran   | 700/1100  | $S_{7}/S_{1}$                                 |
| Ne Plus ultra               | USA    | 700/1100  | $S_{7}/S_{1}$                                 | V-16-3      | Iran   | 614/600   | S <sub>2</sub> /S <sub>5</sub>                |
| Nonpareil                   | USA    | 700/2000  | $S_7/S_8$                                     | V-16-8      | Iran   | 1250/1270 | $\mathbf{S}_2 / \mathbf{S}_2$                 |
| Orumieyh-54                 | Iran   | 760/800   | $S_2/S_2$                                     | V-16-25     | Iran   | 800/1100  | $S_7/S_1$                                     |
| Orumieyh-68                 | Iran   | /640      | $S_{2}/S_{2}$                                 | Yazd-13     | Iran   | 860/2000  | $S_{6}/S_{7}$                                 |
| Orumieyh-98                 | Iran   | /1260     | $S_{2}/S_{2}$                                 | Yazd-60     | Iran   | 760/800   | $S_2/S_2$                                     |
| Pakotahe Razan              | Iran   | 689/1250  | <b>S</b> <sub>2</sub> / <b>S</b> <sub>2</sub> | Yazd-103    | Iran   | 560/1000  | $S_4/S_{12}$                                  |
| Pakotahe Talaghan-1         | Iran   | 700/1100  | $S_{7}/S_{1}$                                 | Yazd-318    | Iran   | 550/1000  | $S_{?}/S_{12}$                                |
| Peerless                    | Iran   | 860/1100  | $S_6/S_1$                                     | Yazd-444    | Iran   | 760/800   | $S_2/S_2$                                     |
| Gazvin1                     | Iran   | 760/800   | $S_2/S_2$                                     | Zarghan -3  | Iran   | 658/640   | $\mathbf{S}_2 / \mathbf{S}_2$                 |
| Price                       | USA    | 700/1100  | $S_{7}/S_{1}$                                 | Zarghan -7  | Iran   | 1100/2100 | $S_1/S_4$                                     |
| Ruby                        | USA    | 860/1100  | $S_{6}/S_{1}$                                 | Zarghan -8  | Iran   | 800/1100  | $S_2/S_1$                                     |
| Sahand                      | Iran   | 800/1100  | $S_2/S_1$                                     | Zarghan -10 | Iran   | 600/1100  | $S_{5}/S_{1}$                                 |
| Shahroodi 12                | Iran   | 1100/1200 | $S_1/S_3$                                     | Zarghan -26 | Iran   | 1284/1260 | <b>S</b> <sub>2</sub> / <b>S</b> <sub>2</sub> |
| Shale Gazvin                | Iran   | 1000/1700 | <b>S</b> <sub>?</sub> / <b>S</b> <sub>?</sub> | Zarghan -36 | Iran   | 800/1200  | $S_2/S_3$                                     |
| Shekofeh                    | Iran   | 1300/1650 | <b>S</b> <sub>?</sub> / <b>S</b> <sub>?</sub> |             |        |           |                                               |

Table 3. Identification of the S-alleles in the some almond cultivars assayed and the reference cultivars by specific primers based on the first intron conserved region sequences of the S-alleles.

self-compatible cultivars

| Incompatibility group | Almond cultivars*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S-genotypes                                                                                                                                                                                                                                                                                                                          |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ι                     | Nonpareil, IXL, Long IXL, Riedenhoure, Tardy Nonpareil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S <sub>7</sub> S <sub>8</sub>                                                                                                                                                                                                                                                                                                        |
| II                    | Mission, Zarghan -10, Granada*, Harvey, Mono, Shahrekord-E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S_1S_5$                                                                                                                                                                                                                                                                                                                             |
| III                   | Granada, Harvey, Mono, Robson, Sauret 2, Thompson, Woods Colony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $S_5S_7$                                                                                                                                                                                                                                                                                                                             |
| IV                    | Ne Plus Ultra, Price, Pakotahe Talaghan-1, V-14-24, V-16-25, Aldrich, Merced, Ne Plus Ultra,<br>Norman, Pearl, RiponYalda-1, Yalda-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $S_1S_7$                                                                                                                                                                                                                                                                                                                             |
| V                     | V-5-17, Carmel, Carrion, Jubilee, Livingston, Monarch, Reams, Sauret 1, Tioga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $S_5S_8$                                                                                                                                                                                                                                                                                                                             |
| VI                    | Bigelow, Butte, Dottie Won, Grace, Kutsch, Monterey, Northland, Rivers, Nonpareil, Sultana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $S_1S_8$                                                                                                                                                                                                                                                                                                                             |
| VII                   | Eureka, Kapareil, Solano, Sonora, Vesta, A-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $S_8S_{13}$                                                                                                                                                                                                                                                                                                                          |
| VIII                  | Mashhad-7, Shahrood 12 <sub>1</sub> , Shahrood 12 <sub>2</sub> , Jeffries, Ferragnès, Ferralise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $S_1S_3$                                                                                                                                                                                                                                                                                                                             |
| IX                    | Jeffries, Nonpareil, IXL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $S_{7A}S_8$                                                                                                                                                                                                                                                                                                                          |
| Х                     | Harpareil, Jordanolo, Monagha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $S_{7}S_{14}$                                                                                                                                                                                                                                                                                                                        |
| XI                    | Jubilee,Reams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $S_8S_{15}$                                                                                                                                                                                                                                                                                                                          |
| XII                   | Revers Nonpareil, Bigelow,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $S_8S_{16}$                                                                                                                                                                                                                                                                                                                          |
| XIII                  | Drake, Smith XL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $S_6S_8$                                                                                                                                                                                                                                                                                                                             |
| XIV                   | Peerless, Ruby, Fritz, Peerless, Rumbrta-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $S_1S_6$                                                                                                                                                                                                                                                                                                                             |
| XV                    | Anxaneta, Tarragones, A230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $S_2S_9$                                                                                                                                                                                                                                                                                                                             |
| XVI                   | Azar, Anxaneta, Tarragones, Ardéchoise, Desmayo Largueta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $S_1 S_{10}$                                                                                                                                                                                                                                                                                                                         |
| XVII                  | Achaak, Ferrastar, Kerman-20, G-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $S_2 S_{10}$                                                                                                                                                                                                                                                                                                                         |
| XVIII                 | Pajarera-2, Pestanhieta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S_{12}S_{23}$                                                                                                                                                                                                                                                                                                                       |
| XIX                   | Malagueña, Planeta Fina, Planeta Roja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S <sub>22</sub> S <sub>23</sub>                                                                                                                                                                                                                                                                                                      |
| XX                    | Garrigues, Pajarera-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S_{13}S_{27}$                                                                                                                                                                                                                                                                                                                       |
| XXI                   | Sefid, Monaghay-e-Najafabad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S_7 S_{13}$                                                                                                                                                                                                                                                                                                                         |
| XXII                  | Khorshidi, Pierce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S <sub>8</sub> S <sub>23</sub>                                                                                                                                                                                                                                                                                                       |
| XXIII                 | Tajeri, Holoei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_{10}S_{29}$                                                                                                                                                                                                                                                                                                                       |
| XXIV                  | Shekoofe, Azar-1, Fournat de Breze-naud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S_{24}S_{27}$                                                                                                                                                                                                                                                                                                                       |
| XXV                   | Sahand, V-2-29, Zarghan -8, Cristomorto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S_1S_2$                                                                                                                                                                                                                                                                                                                             |
| XXVI                  | K-1-16, Shamshiri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $S_7S_{24}$                                                                                                                                                                                                                                                                                                                          |
| XXVII                 | Mashhad-4, Zarghan -7, K-11-40, Zarghan-7, Ferraduel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $S_1S_4$                                                                                                                                                                                                                                                                                                                             |
| XXVIII                | Neyriz-1, Mashhad-13, Zanjan-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_{12}S_{24}$                                                                                                                                                                                                                                                                                                                       |
| Table 4. Continued    | Mashhad-30, G-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $S_4S_7$                                                                                                                                                                                                                                                                                                                             |
| XXX                   | Yazd-103, Carretas Bajas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $S_4S_{12}$                                                                                                                                                                                                                                                                                                                          |
| XXXI                  | Yazd-13, Tokyo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_6S_7$                                                                                                                                                                                                                                                                                                                             |
| XXXII                 | Ai, Azar-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $S_3S_4$                                                                                                                                                                                                                                                                                                                             |
| XXXIII                | Masbovera, A200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $S_1S_9$                                                                                                                                                                                                                                                                                                                             |
| 0                     | <ul> <li>Barg Siyahe Gazvin (S<sub>2</sub>S<sub>8</sub>), Barg Doroshte Hamedan(S<sub>2</sub>S<sub>2</sub>), Bahar-e- Hamedan (S<sub>2</sub>S<sub>8</sub>), D-124(S<sub>2</sub>S<br/>Dir aseSavojbolagh(S<sub>3</sub>S<sub>3</sub>), Hybrid Holo Badam (S<sub>2</sub>S<sub>2</sub>), Kerman-5 (S<sub>2</sub>S<sub>2</sub>), Mashhad-10(S<sub>2</sub>S<sub>2</sub>), Ma<br/>Mashhad-9(S<sub>2</sub>S<sub>2</sub>), Mirpanjeh Tehran(S<sub>5</sub>S<sub>2</sub>), Orumieyh-54(S<sub>2</sub>S<sub>2</sub>), Orumieyh-68(S<sub>2</sub>S<sub>2</sub>), Orumiey<br/>Pakotahe Razan(S<sub>2</sub>S<sub>2</sub>), Pakotahe Talaghan-2(S<sub>2</sub>S<sub>2</sub>), Gazvin 1(S<sub>3</sub>S<sub>2</sub>), Shale Gazvin(S<sub>5</sub>S<sub>2</sub>), Shekofa<br/>21(S<sub>2</sub>S<sub>8</sub>), V-2-27(S<sub>2</sub>S<sub>2</sub>), V-2-7(S<sub>2</sub>S<sub>1</sub>), V-3-12(S<sub>2</sub>S<sub>2</sub>), V-3-17(S<sub>2</sub>S<sub>3</sub>), V-4-6(S<sub>2</sub>S<sub>3</sub>), V-5-6(S<sub>2</sub>S<sub>2</sub>), V-8-<br/>2(S<sub>2</sub>S<sub>2</sub>), V-9-7(S<sub>2</sub>S<sub>2</sub>), V-9-32(S<sub>2</sub>S<sub>2</sub>), V-11-10(S<sub>2</sub>S<sub>8</sub>), V-12-26(S<sub>2</sub>S<sub>1</sub>), V-13-34(S<sub>2</sub>S<sub>2</sub>), V-16-3(S<sub>2</sub>S<sub>2</sub>)<br/>Yazd-60(S<sub>3</sub>S<sub>2</sub>), Yazd-318(S<sub>2</sub>S<sub>1</sub>), Yazd-444(S<sub>2</sub>S<sub>2</sub>), Zarghan -3(S<sub>2</sub>S<sub>2</sub>), Zarghan -26(S<sub>2</sub>S<sub>2</sub>), Zarghan</li> </ul> | 58), D-99(S <sub>2</sub> S <sub>1</sub> ),<br>shhad-6(S <sub>2</sub> S <sub>2</sub> ),<br><i>t</i> h-98(S <sub>2</sub> S <sub>2</sub> ),<br>eh(S <sub>2</sub> S <sub>2</sub> ), V-1-<br>(S <sub>2</sub> S <sub>2</sub> S <sub>2</sub> ), V-9-<br>, V-16-8(S <sub>2</sub> S <sub>2</sub> ),<br>an -36(S <sub>2</sub> S <sub>3</sub> ) |

| Table 4. Incompatibility groups of the some almond cultivars assayed and the reference             |
|----------------------------------------------------------------------------------------------------|
| cultivars by specific primers based on the first intron conserved region sequences of the alleles. |

\*Reference cultivars are written underlined (Adapted from Boskovic et al., (2003); Ortega et al., (2006); Valizadeh and Ershadi , (2009); Mousavi et al., (2011 and 2014)).

Genco (S<sub>1</sub>S<sub>f</sub>), Tuono<sub>1</sub>, Tuono<sub>2</sub>, Tuono<sub>3</sub> (S<sub>1</sub>S<sub>f</sub>),



Fig. 2. Frequency of self-incompatibility and  $S_f$  alleles in 71 almonds cultivars studied in this reserch.

Conclusions

The results of this study showed that cultivars and genotypes including 'Dir Ras-e-Savojbolagh', 'D-124', 'D-99', 'Shahrood 12', 'Tuono', 'Nonpareil', 'Price', 'Mirpanj-e-Tehran', 'Pakotahe-e- Taleghan', 'V-13-34', 'V-16-8, 'V-11-10', 'Zarghan 10', 'Uromiyeh 68', 'Barg dorosht-e-Hamedan' and 'Yazd 60' were better than the other cultivars and genotypes in terms of important traits such as late flowering. Ultimately, 58 new bands were found with different sizes in cultivars, which have to be studied using controlled pollination and sequencer. Idenitification of the new S-RNases should be verified by cloning and sequencing before this information is used for orchard design and for parental choice in breeding programmers.

# Acknowledgements

This research was conducted in horticulture laboratory of Malayer University and Horticulture Research Institute of Karaj. I am grateful to Ali Jodakhanloo for his assistance in this research. The author also thank Dr. Ali Imani for providing the germplasm and to Dr. Pedro Martinez-Gomez for providing the primers set.

#### References

- Alonso JM, Socias I Company R (2006) Almond S-genotype identification by PCR using specific and non- specific allele primers. Acta Horticulturae. 726, 321-328.
- Arteaga N, Socias I Company R (2001) Heritability of fruit and kernel traits in

almond. Acta Horticulturae. 591, 269–274.

- Baninasab B, Rahemi M (2007) Evaluation of three wild species of almond by the morphological characters. Journal of Central European Agriculture. 7(4), 619-626.
- Boskovic R, Tobutt KR, Batlle I, Martínez-Gómez P, Gradziel TM (2003) Stylar rybonucleases in almond: correlation with and prediction of incompatibility genotypes. Plant Breeding. 122(1), 70-76.
- Browicz K, Zohary D (1996) The genus Amygdalus L. (Rosaceae): Species relationships, distribution and evolution under domestication. Genetic Resources and Crop Evolution. 43(3), 229-247.
- Doyle JJ, and Doyle JL (1987) A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem bull. 19, 11-15.
- Fallah M, Rasouli M, Sharafi Y, Imani A (2014) Study of Compatibility Relationships Among Some Almond Cultivars and Genotypes Using of SAlleles Identification. Journal of Nuts. 5(2), 49-56.
- FAO (2012) FAOSTAT database results. http://faostat.Fao.org.faostat. Servlet
- Gulcan R (1985) Descriptor list for almond (Amygdalus amygdalus). Revised Edn.), International Board for Plant Genetic Resources, Rome.

- Hajilou J, Grigorian V, Mohammadi SA, Nazemieh A, Romero C, Vilanova S, Burgos L (2006) Self- and Cross- (in) compatibility between important apricot Cultivars in northwest Iran. Journal of Hortrticultural Science and Biotechnology. 81(3), 513-517.
- Halasz J, Hegedus A, Pedryc A (2006) Review of the molecular background of selfincompatibility in rosaceous fruit trees. International Journal of Horticultural Science. 12(2), 7-18.
- Kester DE, Gradiziel TM, Almonds, in: Janick J, Moore JN (1996) (Eds.), Fruit Breeding. Vol. III. Nuts, John Wiley and Sons, New York. pp. 1-97.
- Kester DE, Hansche PE, Beres W, Asay RN (1977) Variance components and heritability of nut and kernel traits in almond. Journal-American Society for Horticultural Science (USA). 102, 264– 266.
- Lopez M, Vargas FJ, Batlle I (2006) Self- (in) compatibility almond genotypes: A review. Euphytica. 150(1-2), 1-16.
- Marchese A, Boškovic R, Martinez-Gomez P (2008) The origin of the self-compatible almond 'Supernovae'. Plant Breeding. 127, 105–107.
- Martínez-Gómez P, López M, Alonso JM, Ortega E, Sánchez-Pérez R, Batlle I, Socias i Company R, Dicenta F, Dandekar AM, Gradziel TM (2003) Identification of self-incompatibility alleles in almond and related *Prunus* species using PCR. Acta Horticulture. 662, 353-357.
- Mousavi A, Babadaei R, Fatahi MR, Zamani Z, Dicenta F, Ortega E (2014) Selfincompatibility in the Iranian Almond Cultivar 'Mamaei' Using Pollen Tube Growth,Fruit Set and PCR Technique. Journal of Nuts. 5(2), 1-10.

- Mousavi A, Fatahi Moghadam MR, Zamani Z, Imani A (2010) Evaluation of quantitative and qualitative characteristics of some almondcultivars and genotypes. Iranian Journal of Horticultural Sciences. 41(2), 119-131. [In Persian].
- Mousavi A, Fatahi MR, Zamani Z, Imani A, Dicenta F, Ortega E (2011a) Identification of selfincompatibility genotypes in Iranian almond cultivars. Acta Horticulture. 912, 303-3011.
- Mousavi A, Fatahi R, Zamani Z, Imani A, Dicenta F, Ortega E (2014) Genetic variation and frequency of S-alleles in Iranian almond cultivars. Acta Horticulture. 1028, 45-48.
- Mousavi A, Fatahi Moghadam MR, Zamani Z, Imani A, Ortega E, Dicenta F (2011b) Identification of self-incompatibility alleles in Iranian almond cultivars and genotypes using PCR. Iranian Journal of Horticultural Sciences. 42(2), 169-183. [In Persian].
- Ortega E, Boskovic RI, Sargent DJ, Tobutt KR (2006) Analysis of SRNase alleles of almond (*Prunus dulcis*): characterization of new sequences, resolution of synonyms and evidence of intragenic recombination. Molecular Genetics and Genomics. 276, 413-426.
- Ortega E, Mousavi A, Dicenta F (2011) Cloning and Characterization of Nine New S-RNases from Iranian Almond Cultivars. Acta Horticulture. 912, 593-599.
- Ortega E, Sutherland BG, Dicenta F, Boskovic R, Tobutt KR (2005) Determination of incompatibility genotypes in almond using first and second intron consensus primers: detection of new S alleles and correction of reported S genotypes. Plant Breeding. 124, 188-196.
- Rahemi AR, Fatahi R, Ebadi A, Taghavi T, Hassani D, Gradziel T, Chaparro J

(2010) Genetic variation of S-alleles in wild almonds and their related Prunus species. Australian Journal of Crop Science. 4(8), 648-659.

- Sabeti H (1994) Forests, Trees, and Shrubs of Iran, Iran University of Science and Technology Press, Tehran. pp. 400. [In Persian]
- Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2004) Identification of *S*-alleles in almond using multiplex-PCR. Euphytica. 138, 263-269.
- Sánchez-Pérez R, Ortega E, Duval H, Martínez-Gómez P, Dicenta F (2007) Inheritance and relationships of important agronomic traits in almond. Euphytica. 155, 381-391.
- Sepahvand E, Khadivi-Khub A, Momenpour A, Fallahi E (2015) Evaluation of an almond collection using morphological variables to choose superior trees. Fruits. 70, 53-59.
- Shahmoradi M, Rasouli M, Ghazvini RF, Imani A, Hamidogli Y (2013) Discrimination and preliminary selection of self-compatible progenies among. Journal of Nuts. 3(3), 47-54.
- Sheikh-Alian A, Vezvaei A, Ebadi A, Fatahi-Moghadam MR, Sarkhosh A (2010)
  Determination and identification of selfincompatibility alleles in selective Iranian and foreign almond (*Prunus dulcis* M.) cultivars by PCR Method. Iranian Journal of Horticultural Sciences. 41(3), 247-252. [In Persian].
- Socias I Company R, Alonso JM (2004) Crossincompatibility of Ferralis and Ferragnes and pollination efficiency for selfcompatibility transmission in almond. Euphytica. 135, 333-338.
- Spiegel-Roy P, Kochba J (1974) The inheritance of bitter and double kernel characters in

the almond. ZPflanzenzuchtg. 71, 319–329.

- Tamura M, Ushijima K, Gradziel TM, Dandekar AM (1999) Cloning of genomic DNA sequences encoding almond (*Prunus* dulcis) S-Rnase genes. Plant Physiology. 120, 1206-1210.
- Tamura M, Ushijima MK, Sassa H, Hirano H, Tao RT, Gradziel TM, Dandekar AM (2000) Identification of self-incompatibility genotype of almond by allele–specific PCR analysis. Theoretical and Applied Genetics. 101, 344–349.
- Valizadeh B, Ershadi A (2009) Identification of self-incompatibility alleles in Iranian almond cultivars by PCR using consensus and allele-specific primers. Journal of Hortrticultural Science and Biotechnology. 84, 285-290.
- Wirthensohn M, Rahemi M, Fernández i Martí A (2011) Identification of selfincompatibility genotypes and DNA fingerpriting of some Australian almond cultivars. Acta Horticulture. 912, 561-566.
- Wunsch A, Hormoze JI (2004) S-allele identification by PCR analysis in sweet cherry cultivars. Plant Breeding. 123, 1-6.
- Yamane H, Tao R, Sugiora A (1999) Identification and cDNA cloning for S-RNases in selfincompatible Japanese plum (*Pruns Salisina* cv, sordum). Plant Biotechnology. 16(5), 389-396.
- Zeinolabedini M, Khayam-Nekoui M, Imani A, Majidian P (2012) Identification of selfcompatibility and self-incompatibility genotypes in almond and some Prunus species using molecular markers. Seed and Plant Improvment Journal. 28-1(2), 227-238. [In Persian].