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1.   Introduction 
In many practical transportation problems (TP), it is realistic to suppose that the 

amount that can be sent on any particular route bears a fixed cost for that route. 
Furthermore, when a route is altogether excluded, this can be expressed by limiting its 
capacity to zero. In a fixed charge transportation problem (FCTP), the fixed cost is 
incurred for every route that is used in the solution, while the variable cost is proportional 
to the amount shipped. The objective is to find the combination of routes that minimizes 
the total variable and fixed costs while satisfying the supply and demand requirements of 
each origin and destination. 

Fixed charge solid transportation problem (FCSTP) is an extension of the FCTP. 
The FCSTP deals with three type of constraints instead of two (source and destination) in 
the FCTP. This extra constraint is mainly due to modes of transportation (conveyance). 
Generally, in most real world application and problems, products are carried from origins 
to destinations by means of different types of conveyances (e.g., trucks, cargo flights, 
goods trains and ships). In other words, by considering a single type of conveyance, the 
FCSTP is altered to a classical FCTP. 

In recent years, the solid transportation problem (STP) received much attention and 
many models and algorithms have been investigated. Bit et al. [2] applied fuzzy 
programming technique to solve the multi-objective STP. Ida et al. [5] and Gen et al. [3] 
considered bi-criteria and multi-criteria STP with fuzzy numbers respectively. Gen et al. 
[4] gave a GA for solving the bi-criteria fuzzy STP. Li et al. [12] designed a neural 
network approach for the multi-criteria STP. Li et al., [13] also presented an improved 
GA to solve a multi-objective STP with fuzzy numbers. 

Jiménez and Verdegay [6] investigated a multi-objective solid transportation 
problem with interval data by a genetic algorithm (GA). Jiménez and Verdegay [7] 
investigated two types of uncertain STPs, in which the supplies, demands and 
conveyance capacities are intervalnumbers and fuzzy numbers. Jiménez and Verdegay 
[8]  designed an evolutionary algorithm-based parametric approach to solve the fuzzy 
STP. Yang and Liu [21] presented a hybrid algorithm that is designed based on the fuzzy 
simulation technique and tabu search (TS) algorithm for the fuzzy FCSTP.Yang and 
Yuan [22] investigated a bicriteria STP under stochastic environment.  

Ojha et al. [18] studied entropy based STP with general fuzzy cost and time. Ojha et 
al. [16] considered a stochastic discounted multi-objective STP with breakable items and 
applied analytical hierarchy process to solve the problem. Ojha et al. [17,19] have studied 
a STP with price discount and also presented single and multi-objective transportation 
problems using fuzzy logic. Nagarjan and Jeyaraman [15] studied the multi-objective 
STP with parameters as stochastic intervals. Kundu et al. [10,11] have presented two 
multi-objective STPs with constraints in uncertain environment. Recently, 
Molla-Alizadeh-Zavardehi et al. [14] developed simulated annealing (SA) and variable 
neighborhood search algorithms for fuzzy FCSTP. 

In this paper, we consider the FCSTP. Up to now, no one has considered 
Electromagnetism-like algorithm (EM) for any kind of STPs. Hence, we develop and use 
EM for solving the STP for the first time. 

The rest of the paper is organized as follows. Section 2 presents the general 
formulation of the FCSTP. After that, in Section 3, we propose solution representation and 
procedure and describe the detail of proposed EM. Thereafter, in Sections 4, to compare 
the solution quality of our proposed EM with the SA for solving the problem, the 
comprehensive computational results are presented for 140 randomly generated instances 
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with different sizes. Finally, some concluding remarks are given in Section 5. 
 

2.   Mathematical Model and Descriptions 
FCSTP can be stated as a distribution problem, in which there are m suppliers 
(warehouses or factories) n customers (destinations or demand points) and K 
conveyances (different modes of transport may be trucks, cargo flights, goods trains, 
ships, etc.). Each of the m suppliers can ship to any of the n customers using any of the K 
conveyances at a shipping cost per unit cijk (i.e., unit cost for shipping from supplier i to 
customer j by means of the k-th conveyance) plus a fixed cost fijk, assumed for opening 
this route. Each supplieri=1,2,…,m has ai units of supply, each customer j=1,2,…,n has a 
demand of bj units and each conveyance k=1,2,…,K has a capacity of ek units. The 
objective is to determine, in which routes are to be opened and the size of the shipment 
on those routes using conveyances in such a way that the total cost of the met demand is 
minimized while satisfying the supply and shipment capacity constraints. The standard 
FCSTP formulation is shown below. 
 

Min ∑∑∑
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where xijkis the unknown quantity to be transported on the route (i,j) that from plant i to 
consumer j by means of conveyance k, cijkis the shipping cost per unit from plant i to 
consumer j by means of conveyance k. aiis the number of units available at plant i, bj is 
the number of units demanded at costumer j and ek is the unit of this product called 
conveyances that can be carried by K different mode of transportation. The transportation 
cost for shipping per unit from plant i to consumer j using conveyance k is cijk× xijk.  fijk 
is the fixed cost associated respectively. In this paper, we assume a balanced 
transportation problem, because the unbalanced transportation problem can be converted 
to a balanced transportation problem by introducing a dummy plant, dummy consumer or 
dummy conveyance. 
 
3.   Proposed Electromagnetism-Like Algorithm 
The EM was first introduced to simulate the electromagnetism theory of physics by Birbil 
and Fang [1] as a new stochastic population-based heuristic optimization tool to solve the 
problems with lower and upper bound in the form of: 
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                                 Min       f(x)        (7) 
s.t.x∈  [L,U]            (8) 

 
Where { }nkUxLRxUL kkk

n ,...,1,|],[ =≤≤∈= and x1,…,xn represent the decision 
variables. Uk and Lk represent, upper and lower bounds on the kth variable (k = 1,…, n), 
respectively, and  f (x) is objective function value.   
EM uses the attraction–repulsion mechanism of the electromagnetism theory to put the 
sample solutions toward to the optimal solution. By the Coulomb’s law, the amount of 
force is proportional to the product of the particle’s charge and inversely proportional to 
the distance between them. The positions of them are calculated iteratively according to 
the resultant force exerted by a population of other charged particles. The idea behind the 
algorithm is that inferior particles prevent a move in their direction by repelling other 
superior particles and that better particles facilitate moves in their direction. So, the force 
causes a global movement of all solutions towards the solutions with higher quality. 
The general structure of the EM algorithm is described in Algorithm 1. The EM algorithm 
has four main stages. The first step is determination of the initial solutions. In the first 
phase procedure, population size (popsize) of solutions are randomly generated from the 
feasible region. The attribute of solutions is assumed to be uniformly distributed among the 
corresponding upper bound and lower bound. 
After initialization, the second step is to conduct a local search to improve the solution’s 
quality. The third step is to calculate the total force exerted on each particle according to 
their charges. The final step includes moving along the direction of the force. After 
computing the total force of one particle, this particle moves the random step length in the 
lane of the force to cause the particles to move into any new feasible region along this lane 
which is uniformly distributed between 0 and 1. The changeable value of every dimension 
is limited to the corresponding lower upper and bounds. The specific formulas for the 
FBPM used to calculate charges, forces and the movement action of each solution will be 
described in Sections 3.3 and 3.4. 
 
ALGORITHM 1.EM (popsize, MAXITER, LSITER) 
l: lnitialize (popsize) 
2: iteration ← l 
3: while termination criterion are not satisfied do 
4:              Local search (LS1TER) 
5:              Calculate Forces 
6:              Move 
7:              iteration ← iteration + l 
8: end while 
 
3.1. Encoding Scheme and Initialization 
 
The random key method is used for solving the problem. The length of solutions vector is 
equal to the summation of numbers of suppliers, customers and conveyances (m + n + K). 
To generate a solution by this method, random real numbers between zero and one are 
generated for each position. By ascending sorting of the value corresponding to each 
position of subsection, the related discrete solution vector is obtained. It is easy to see that 
the optimal solution should be obtained under the condition that the demand of each 
destination, supply abilities of each plant and conveyance capacities are just satisfied. So 
the following method is employed to decode the solution. 
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Procedure: initialization 
Repeat the following process until no digits are left in solution vector: 
select leftmost digit i from subsection 1 of set π; 
select leftmost digit j from subsection 2 of set π; 
select leftmost digit k from subsection 3 of set π; 
Assign available amount of units to xijk = min{ai, bj, ek}; 
Update availability ai =ai– xijk ,bj = bj– xijk and ek = ek– xijk). 
If ai = 0, remove the digit i to the solution. 
If bj = 0, remove the digit j to the solution. 
If ek = 0, remove the digit k to the solution. 
 
3.2. Local Search  
 
The procedure that selects each near random solution (Algorithm 2, lines 4–12) then finds 
it’s related their objective value. This new selected solution will replace the current 
solution when its quality is better than the current solution (Algorithm 2, lines 13–16). 
Finally the current best point is updated (Algorithm 2, line 21).  
 
ALGORITHM2. Local (LSITER) 
1: counter ←1 
2: fori = 1 to popsizedo 
3:        for k = 1 to ndo 
4:               λ1 ← U (0, 1) 
5:               while counter <LSITER do 
6:                           Y ← Xi 
7:                           λ2 ← U (0, 1) 
8:                           if λ1> 0.5 then 
9:                              Yk ← Yk + λ2 
10:                        else 
11: Yk ← Yk− λ2 
12:                        end if 
13:                        if f (Y) < f (Xi) then 
14:                            Xi ← Y 
15:                            counter ← LSITER − 1 
16:                        end if 
17:                        counter ←counter + 1 
18:             end while 
19:       end for 
20: end for 
21: Xbest ← argmin{f (Xi), i} 
 
3.3. Total Forces Computation 
 
The charge qi and the total force vector exerted on Xi computed by the superposition 
principle is 
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where ( ) ( )ik XfXf ≥  represents attraction and ( ) ( )ik XfXf <  represents repulsion. 
After comparing the objective values, the direction of the move between the particles is 
determined. Therefore, bestX  plays the role of attraction, i.e., it attracts all particles in the 
population. 
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And Xbest is the best solution in the current population. 
 
 
3.4. Movement Procedure 
 
After evaluating the total force vector Fi, particle Xi moves in the direction of the total 
force by a random step length, i.e., 
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i
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Where RNGj denotes the amount of feasible movement toward the zero or one and the 
random step length λ = random (0, 1). 
 
Since RKs are real numbers between zero and one, the adaptation of Eq. (12) for the RKs 
gives the following formula: 
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Note that the current best particle does not move because of having the better 

objective value and attracting all other particles. 
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4.   Experimental Design 
 
4.1. Instances 
 
In this subsection Instances generation are conducted to set the parameters and evaluate the 
performances of proposed algorithms. The data required for a problem consists of the 
number of suppliers, customers and conveyances, total demand, and range of variable 
costs and fixed costs [13]. For running the algorithms, 28 problem sets are generated at 
random, in which seven problem sizes are implemented for the experimental study. The 
problem size is determined by the number of suppliers, customers and conveyances. The 
problem details are shown in Table 1. 
 

Table 1. Test problems characteristics. 
   Range of variable costs Range of first and second fixed costs 

Problem size Total Demand Problem type Lower limit Upper limit Lower limit Upper limit 
10×10×4 10,000 A 3 8 50 200 
10×20×4 15,000 B 3 8 100 400 
15×15×6 15,000 C 3 8 200 800 
10×30×6 15,000 D 3 8 400 1,600 
50×50×8 50,000      

30×100×8 30,000      
50×200×10 50,000      
 

4.2. Experimental Results 
 
A computational study was conducted to evaluate the efficiency and effectiveness of the 
proposed algorithm, which was coded in MATLAB and run on a PC with 2.8 GHz Intel 
Core 2 Duo and 4 GB of RAM memory. For this purpose, we present and compare the 
results of EM with the SA algorithm as an effective algorithm in the literature. 

We use searching time as stopping criterion to be equal for both algorithms which is 
equal to 1.4 × (n + m + K) milliseconds. Therefore, CPU time is affected by all the problem 
characteristic n, m and K. The more the number of suppliers, customers and conveyances, 
the more the rise of CPU time increases. For further comparison, the convergence is 
investigated. The best results and their convergence are showed in Fig. 1. The superiority 
of EM on SA is clear. From this figure, it is concluded that EM has a better convergence 
than SA on this problems. 

We generated five test problems for each twenty eight problem type, summing to 
28 ൈ 5 ൌ 140 instances. Because the scale of objective functions in each instance is 
different, they could not be used directly. To solve this problem, the relative percentage 
deviation (RPD) is used for each instance. The RPD is obtained by: 
 

RPD = Algsol − Minsol × 100 Minsol 
 

whereAlgsoland Minsol are the obtained objective value and minimum objective value 
found from both proposed algorithms for each instance, respectively.The problems have 
been run ten times and the averages of RPDs for each algorithm and each problem size are 
showed in Fig. 2. As it is obvious, EM exhibits robust performance, meanwhile the 
problems size increases. It also shows remarkable performance improvements of EM in all 
size problems versus SA. 
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Figure 1.Convergence of EM and SA Algorithms. 

 
 

 
Figure 2. Means plot for the interaction between EM and SA in each problem size 

 
 

5.   Conclusion and Future Works 
A fixed charge solid transportation problem (FCSTP) is one of the NP-hard problems that 
are difficult to solve by traditional methods. In this paper, we have proposed an efficient 
Electromagnetism-like algorithm (EM) with new solution representation and procedure to 
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solve the problem. To comprehensively compare the results obtained by the EM and SA in 
terms of the solution quality, we have established an experiment with 28 different problem 
type and 140 randomly generated instances with different sizes. The computational results 
have shown the superiority of the EM in comparison with SA. There still exist rich 
opportunities for researchers to further the study in this area. The future work is to extend 
our approach to the case of inventory cost [9] or fuzzy numbers [20] for solving real life 
distribution problems. It seems that EM has the capability of achieving better results for 
large-sized problems if it hybridizes with other suitable single solution metaheuristics like 
variable neighborhood search or local search methods; therefore it can be considered in 
future work. Also, it can be interesting to investigate and develop new algorithms based on 
other metaheuristics and compare them with our algorithms. 
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