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Abstract. A collocation procedure is developed for the linear and nonlinear Fredholm and
Volterra integro-differential equations, using the globally defined B-spline and auxiliary basis
functions.The solution is collocated by cubic B-spline and the integrand is approximated
by the Newton-Cotes formula. The error analysis of proposed numerical method is studied
theoretically. Numerical results are given to illustrate the efficiency of the proposed method
which shows that our method can be applied for large values of N. The results are compared
with the results obtained by other methods to illustrate the accuracy and the implementation
of our method.
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1. Introduction

Consider the linear and nonlinear integro-differential equations of the form

m∑
r=0

pr(t)y
(r)(t) = g(t) +

∫ b

a
K(t, x, y(x))dx, t ∈ [a, b],m = 1, 2, (1)

with the boundary conditions,

∗Corresponding author. Email: Ebrahimi Nehzat@yahoo.com

c⃝ 2014 IAUCTB
http://www.ijm2c.ir



290 N. Ebrahimi & J. Rashidinia/ IJM2C, 04 - 03 (2014) 289-298.

m−1∑
r=0

[αi,ry
(r)(a) + βi,ry

(r)(b)] = γi, 0 ⩽ i ⩽ m− 1,

where αi,r, βi,r and γiare given real constants. The given kernel K is continu-
ous on [a, b] and satisfie a uniform Lipschitz, and g(t) and pr(t) are the known
functions and y is unknown function.The boundary value problems in terms of
integro-differential equations have many practical applications. A physical event
can be modelled by the differential equation, an integral equation or an integro-
differential equation or a system of these equations.some authors have proposed
numerical methods to approximate the solutions of linear and nonlinear Fredholm
and Volterra integro-differential equations, such as the direct method via block-
pulse functions [5], the sinc-collocation method [16,18,23], the variational iteration
method [22],the Chebyshev wavelet approximating method [10],the formulation
of the piecewise Tau method [11,12], the fast Galerkin scheme [4],the Modified
Homotopy Perturbation Method[21].Using a global approximation to the solution
of equations and functions is constructed by means of the spline quadrature in
[1,2,3,8,13,19,20].
In this paper, we use cubic B-spline collocation for approximation unknown func-
tion and use of the Newton-Cotes rules for approximating integrand.

2. Cubic B-Spline

We introduce the cubic B-spline space and basis functions to construct an inter-
polant s to be used in the formulation of the cubic B-spline collocation method.
Let π = {a = t0 < t1< · · · < tN = b}, be a uniform partition of the interval [a, b]
with step size h = b−a

N . The cubic B-spline space is denoted by

S3(π) = {s ∈ C2[a, b] : s |[ti,ti+1]∈ P3, i = 0, 1, . . . , N},

where P3 is the class of cubic polynomials. The construction of the cubic B-spline
interpolate s to the analytical solution y for (1) can be performed with the help of
the four additional knots such that t−2< t−1 < t0 and tN< tN+1< tN+2. We can
define a cubic B-spline s(t) of the form

s(t) =

N+1∑
i=−1

ciβ
3
i (t), (2)

where

β3
i (t) =

1

6h3


(t− ti−2)

3 t ∈ [ti−2, ti−1]

h3 + 3h2(t− ti−1) + 3h(t− ti−1)
2 − 3(t− ti−1)

3 t ∈ [ti−1, ti]

h3 + 3h2 (ti+1 − t) + 3h(ti+1 − t)2 − 3(ti+1 − t)3 t ∈ [ti, ti+1]

(ti+2 − t)3 t ∈ [ti+1, ti+2]
0 otherwise,

(3)
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satisfying the following interpolatory conditions

s(ti) = y(ti), 0 ⩽ i ⩽ N,

and the boundary conditions

C1.s
′
(t0) = y

′
(t0), s

′
(tN ) = y

′
(tN ),

C2.Djs(t0) = Djs(tN ), j = 1, 2,

C3.s′′(t0) = 0, s′′(tN ) = 0. (4)

3. The Collocation Method

3.1 Nonlinear Fredholm integro-differential equation

In the given nonlinear Fredholm integro-differential Eq. (1), we can approximate
the unknown function by cubic B-spline (2), then we obtain:

m∑
r=0

pr(t)s
(r)(t) = g(t)+

∫ b

a
K(t, x, s(x))dx, t ∈ [a, b],m = 1, 2, (5)

with the boundary conditions,

m−1∑
r=0

[αi,rs
(r)(a) + βi,rs

(r)(b)] = γi, 0 ⩽ i ⩽ m− 1.

We now collocate Eq. (5) at collocation points tj = a+jh, h = b−a
N , j = 0, 1, . . . , N,

and we obtain

m∑
r=0

pr(tj)s
(r)(tj) = g(tj) +

∫ b

a
K(tj , x, s(x))dx, j = 0, . . . , N, m = 1, 2. (6)

To approximate the integro-differential Eq. (6), we can use the Newton- Cotes

formula[9], when n is even then the Simpson rule can be used and when n is multiple
of 3 ,we have to use the three-eighth rule,then we get the following nonlinear system:

m∑
r=0

pr(tj)s
(r)(tj) = g(tj) + h

N∑
i=0

wj,iK(tj , xi, s(xi)), j = 0, . . . , N,m = 1, 2, (7)

with the boundary conditions,
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m−1∑
r=0

[αi,rs
(r)(a) + βi,rs

(r)(b)] = γi, 0 ⩽ i ⩽ m− 1,

where xi = a + ih, i = 0, 1, . . . , N,we need more equations to obtain the unique
solution for Eq. (7). Hence by associating Eq. (7) with (4) , we have the following
nonlinear system (N + 3)× (N + 3):

∑m
r=0 pr(tj)s

(r)(tj) = g(tj) + h
∑N

i=0wj,iK(tj , xi, s(xi)), j = 0, . . . , N,m = 1, 2,

∑m−1
r=0 [αi,rs

(r)(a) + βi,rs
(r)(b)] = γi, 0 ⩽ i ⩽ m− 1, (8)

where wj,i represents the weights for a quadrature rule of Newton-Cotes type.

By solving the above nonlinear system , we can determine the coefficients ci, i =
−1, . . . , N +1, by setting ci in (2), we obtain the approximate solution for Eq. (1).

3.2 Nonlinear Volterra integro-differential equation

Now we consider nonlinear Volterra integro-differential equation

m∑
r=0

pr(t)y
(r)(t) = g(t) +

∫ t

a
K(t, x, y(x))dx, t ∈ [a, b],m = 1, 2, (9)

with the boundary conditions,

m−1∑
r=0

[αi,ry
(r)(a) + βi,ry

(r)(b)] = γi, 0 ⩽ i ⩽ m− 1,

the solutions of Eq. (9)can be replaced with cubic B-spline and so we collocate Eq.
(9) at collocation points tj = a+ jh, h = t−a

N , j = 0, 1, . . . , N, then we obtain

m∑
r=0

pr(tj)s
(r)(tj) = g(tj) +

∫ tj

a
K(tj , x, s(x))dx, j = 0, . . . , N, m = 1, 2. (10)

To approximate the integro-differential Eq. (10), we can use the Newton- Cotes

formula, when n is even then the Simpson rule can be used and when n is multiple of
3, we have to use the three-eighth rule,then we get the following nonlinear system:

m∑
r=0

pr(tj)s
(r)(tj) = g(tj) + h

j∑
i=0

wj,iK(tj , xi, s(xi)), j = 1, . . . , N,m = 1, 2, (11)

with the boundary conditions,

m−1∑
r=0

[αi,rs
(r)(a) + βi,rs

(r)(b)] = γi, 0 ⩽ i ⩽ m− 1.
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We need more equations to obtain the unique solution for Eq. (11). Hence by
associating Eq. (11) with (4) , we have the following nonlinear system (N + 3) ×
(N + 3):

∑m
r=0 pr(tj)s

(r)(tj) = g(tj) + h
∑j

i=0wj,iK(tj , xi, s(xi)), j = 1, . . . , N,m = 1, 2,

∑m
r=0 pr(t0)s

(r)(t0) = g(t0)

∑m−1
r=0 [αi,rs

(r)(a) + βi,rs
(r)(b)] = γi, 0 ⩽ i ⩽ m− 1. (12)

By solving the above nonlinear system , we can determine the coefficients ci, i =

−1, . . . , N +1, by setting ci in (2), we obtain the approximate solution for Eq. (9).

4. Error analysis: convergence of the approximate solution

In this section, we consider the error analysis of the Fredholm and Volterra integro-
differential equation of the second kind , first we recall the following definition in
[17].
Definition : Let s(t) be the cubic B-spline interpolate f ∈ C4[a, b], then for all
admissible h,there is a number Mj < ∞ ,independent of h, such that

∥Dj(f − s)∥2 ≤ Mj∥f (4)∥2h4−j−1/2, j = 0, . . . , 3 ,

where

Mj =
2

j!
, j = 0, . . . , 3,

and Dj is the j-th derivative and if p = 4− j− 1/2 is the largest number for which
such an inequality holds, then p is called the order of convergence of the method.
Theorem : The approximate method

m∑
r=0

pr(tj)s
(r)(tj) = g(tj) + h

j∑
i=0

wj,iK(tj , xi, s(xi)), j = 1, . . . , N,m = 1, 2, (13)

for solution of the nonlinear Volterra integro-differential Eq .(9) is converge and
the error bounded is

|e(m)
j | ⩽ 1

|pmj |

m−1∑
r=0

|prj ||e(r)j |+ hWL

|pmj |

j∑
i=0

|ei|+
|E(h, tj)|
|pmj |

,

where e
(r)
j = s

(r)
j − y

(r)
j , r = 0, . . . ,m, j = 1, . . . , N.

Proof : We know that at tj = a + jh, h = t−a
N , j = 1, . . . , N , the corresponding

approximation method for nonlinear Volterra integro-differential equation (9) is

m∑
r=0

pr(tj)s
(r)(tj) = g(tj) + h

j∑
i=0

wj,iK(tj , xi, s(xi)), j = 1, . . . , N,m = 1, 2. (14)
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By discretizing (9) and approximating the integrand by the Newton- Cotes for-

mula, we obtain

m∑
r=0

pr(tj)y
(r)(tj) = g(tj) + h

j∑
i=0

wj,iK(tj , xi, y(xi)) + E(h, tj), j = 1, . . . , N,

m = 1, 2, (15)

where E(h, tj) =
∫ tj
a K(tj , x, y(x))dx− h

∑j
i=0wj,iK(tj , xi, y(xi)).

By subtracting (15) from (14) and using interpolatory conditions of cubic B-spline,
we get

m∑
r=0

pr(tj)[s
(r)(tj)−y(r)(tj)] = h

j∑
i=0

wj,i[K(tj , xi, s(xi))−K(tj , xi, y(xi))]−E(h, tj).

We suppose that W = maxi,j |wj,i| and s(m)(tj) = s
(m)
j , y(m)(tj) = y

(m)
j , j =

1, . . . , N,m = 1, 2. and kernel K satisfies a Lipschitz condition in its third argu-
ment of the form

|K(t, x, s)−K(t, x, y)| ≤ L|s− y|,

where L is independent of t, x, s and y. We get

|pmj ||s(m)
j − y

(m)
j | ≤

m−1∑
r=0

|prj ||s(r)j − y
(r)
j |+ hWL

j∑
i=0

|s(xi)− y(xi)|+ |E(h, tj)|.

Since that |pmj | ̸= 0 then we have

|e(m)
j | ⩽ 1

|pmj |

m−1∑
r=0

|prj ||e(r)j |+ hWL

|pmj |

j∑
i=0

|ei|+
|E(h, tj)|
|pmj |

,

where e
(r)
j = s

(r)
j − y

(r)
j , r = 0, . . . ,m, j = 1, . . . , N.

Since by assumption both the quadrature error and the function approximate error
are zero in the limit ,it follows when h → 0, limmax |E(h, tj)| = 0, and the above
second term is zero and the first term in the above tend to zero because this term
is due to interpolating of y(t)by cubic B-spline. We get for a fixed j,

|e(m)
j | → 0 as h → 0,m = 0, 1, 2.

5. Numerical Examples

In order to test the applicability of the presented method, we consider four examples
of linear and nonlinear Volterra and Fredholm integro-differential equations with
the boundary conditions. The absolute errors in the solution for various values of
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N are tabulated in Tables.The RMS error in the solutions:

E =

√√√√ 1

N

N∑
i=0

[s(xi)− y(xi)]2

is computed by our purposed method where y(t) is the exact solution and
s(t) is the approximated solution of integral equation. Programs preformed by
Mathematica for all the four examples.

Example 1. Consider the following linear Fredholm integro-differential equation
with exact solution y(t) = et,

y′′(t) = et − t+

∫ 1

0
xty(x)dx,

with boundary conditions:y(0) = 1, y′(0) = 1.
This equation has been solved by our method with N = 10, 30, 60, the absolute
errors at the particular grid points and the RMS errors are tabulated in table 1 ,
which shows that the error in the solutions for our method decreases by reducing
the values of h.
Example 2. Consider the following linear Volterra integro-differential equation
with exact solution y(t) = e−t cosh t,

y′(t) + y(t) =

∫ t

0
ex−ty(x)dx,

with boundary conditions :y(0) = 1.
This equation has been solved by our method with N = 10, 30, 60, the absolute
errors at the particular grid points and the RMS errors are tabulated in table 2 ,
which shows that the error in the solutions for our method decreases by reducing
the values of h.
Example 3. Consider the following nonlinear Fredholm integro-differential equa-
tion with exact solution y(t) = t,

y′(t) =
5

4
− t2

3
+

∫ 1

0
(t2 − x)y2(x)dx,

with boundary conditions :y(0) = 0.
The absolute errors at the particular grid points are tabulated in table 3 , and
compared with the absolute errors obtained by [14,15]. This table verified that
our results are more accurate in comparison.

Example 4. Consider the following nonlinear Volterra integro-differential
equation with exact solutiony(t) = cos t,

y′(t) = 2 sin t cos t−
∫ t

0
3 cos(t− x)y2(x)dx,

with boundary conditions :y(0) = 1.
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Table 1. The error ∥E∥ in solution of example 1 at particular points

t N = 10 N = 30 N = 60
0 0 0 0
0.1 4.39(−6) 4.82(−7) 1.20(−7)
0.2 1.81(−5) 2.0(−6) 5.0(−7)
0.3 4.24(−5) 4.69(−6) 1.17(−6)
0.4 7.83(−5) 8.67(−6) 2.16(−6)
0.5 1.27(−4) 1.41(−5) 3.52(−6)
0.6 1.91(−4) 2.11(−5) 5.28(−6)
0.7 2.70(−4) 2.99(−5) 7.49(−6)
0.8 3.67(−4) 4.07(−5) 1.01(−5)
0.9 4.85(−4) 5.37(−5) 1.34(−5)
1 6.25(−4) 6.91(−5) 1.72(−5)

The RMS error in our method 2.61(−4) 2.89(−5) 7.24(−6)

Table 2. The error ∥E∥ in solution of example 2 at particular points

t N = 10 N = 30 N = 60
0 6.66(−16) 4.44(−16) 0
0.1 3.62(−4) 4.03(−5) 8.01(−7)
0.2 5.10(−5) 5.51(−6) 1.37(−6)
0.3 4.21(−4) 4.67(−5) 1.75(−6)
0.4 7.32(−5) 7.90(−6) 1.97(−6)
0.5 4.56(−4) 5.06(−5) 2.04(−6)
0.6 7.48(−5) 8.04(−6) 2.0(−6)
0.7 4.76(−4) 5.28(−5) 1.86(−6)
0.8 6.18(−5) 6.58(−6) 1.63(−6)
0.9 4.86(−4) 5.38(−5) 1.34(−6)
1 3.87(−5) 4.02(−6) 9.98(−7)

The RMS error in our method 2.84(−4) 3.14(−5) 7.86(−6)

Table 3. The error ∥E∥ in solution of example 3 at particular points

t Our method method in [14] method in [15]
withN = 15

0 1.73(−18) 5.06(−15) 1.55(−3)
0.1 1.38(−17) 3.63(−14) 4.01(−3)
0.2 2.77(−17) 7.36(−14) 3.98(−3)
0.3 5.55(−17) 1.11(−13) 1.47(−3)
0.4 2.22(−16) 1.41(−13) 6.40(−3)
0.5 5.55(−17) 1.75(−13) 8.87(−3)
0.6 0 2.29(−13) 3.82(−3)
0.7 2.22(−16) 2.51(−13) 3.75(−3)
0.8 4.44(−16) 2.67(−13) 7.70(−4)
0.9 3.33(−16) 2.85(−13) 2.14(−3)
1 0 2.86(−13) 1.37(−3)

The absolute errors at the particular grid points are tabulated in table 4 and
compared with the absolute errors obtained by [6,7] .This table verified that our
results are more accurate in comparison.
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Table 4. The error ∥E∥ in solution of example 4 at particular points

t Our method Our method method in [7] method in[6]
withN = 12 withN = 34

0 0 0 0 0
0.1 4.93(−4) 4.21(−5) 1.16(−3) 1.41(−4)
0.2 8.63(−5) 5.31(−5) 1.63(−3) 4.21(−3)
0.3 2.01(−5) 1.67(−5) 1.23(−3) 5.05(−3)
0.4 2.95(−4) 5.51(−6) 2.20(−4) 2.62(−3)
0.5 3.27(−4) 3.71(−5) 1.33(−3) 1.54(−2)
0.6 1.71(−4) 2.08(−5) 9.93(−2) 3.63(−3)
0.7 2.26(−4) 4.72(−5) 7.66(−4) 1.19(−2)
0.8 2.79(−4) 7.84(−6) 1.30(−3) 1.37(−2)
0.9 1.07(−5) 1.75(−5) 2.26(−3) 4.38(−3)
1 5.94(−4) 7.35(−5) 3.18(−3) 2.65(−2)

Conclusions

In the present work, a technique has been developed for solving linear and nonlin-
ear Fredholm and Volterra integro-differential equations by using the Newton-Cotes
formula and collocating by cubic B-spline. These equations are converted to a sys-
tem of linear or nonlinear algebraic equations in terms of the linear combination
coefficients appearing in the representation of the solution in spline basic func-
tions.This method tested on 4 examples .The absolute errors in the solutions of
these examples show that our approach is more accurate in comparison with the
methods given in [6,7,14,15] and our results verified the accurate nature of our
method.
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