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Abstract. A single server queue with Bernoulli vacation has been considered. In addition the
admission to queue is based on a Bernoulli process and the server gives two type of services.
For this model the probability generating function for the number of customers in the queue at
different servers state are obtained using supplementary variable technique. Some performance
measures are calculated. Some particular cases are obtained and numerical examples are also
presented.
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1. Introduction

The queueing literature exposes many useful results for vacation queues. In a queue,
after serving a customer(s) the server becomes unavailable for a random period
of time, called vacation period. Such queues are called vacation queues. Various
modifications have been defined on the number of vacation periods and the time
points at which the vacation starts or ends. One such model is Bernoulli vacation
model. In Bernoulli vacation model at each service completion epoch the decision
to take a vacation depends on a Bernoulli distribution. This type of vacation policy
was first introduced by Keilson and Servi (1986). Subsequently Keilson and Servi
(1987), Ramaswami and Servi (1988), Doshi (1986, 1990), Takagi (1991), Kalya-
naraman and Renganathan(1996) and Kalyanaraman and Pazhani Bala Muguran
(2008) among others have studied this and models of similar nature. In 1991, Tak-
agi made elaborate study on vacation models in his book on Queueing Analysis
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and in 2006, Tian and Zhang extensively studied various vacation systems in their
book entitled Vacation Queueing Models: Theory and Applications. Neuts (1984)
considered an M/G/1 queue with restriction on the number of customers to be
admitted during a service period or with restriction on the time period at which
the customers are admitted. Madan and Dayyeh (2002) investigated a bulk queue
with restricted admissibility of batches and with Bernoulli schedule server vaca-
tion. Anabosi and Madan (2003) have analyzed a single server queue with two
types of service under Bernoulli schedule server vacation. In their paper, the server
provides two types of heterogeneous exponential services and the customer may
choose either type service and with single vacation policy. In this article, a sin-
gle server infinite capacity Poisson arrival queue with two type of services, with
Bernoulli vacation and with restriction on admission of arrivals has been studied.
The corresponding mathematical model has been defined in section 2 and the gov-
erning differential difference equations, boundary conditions and the normalizing
condition are given in section 3. For this model the probability generating func-
tions of the number of customers in the queue when the server provides ith type of
service i = 1, 2, the probability generating function of the number of customers in
the queue when the server is on vacation and the probability generating function
of the number of customers in queue irrespective of the server state are derived in
section 4. Also performance measures related to this queueing model are derived
from these probability generating functions and are given in section 5. In section
6, some particular models are analyzed by taking specific values to the parameters.
In the last section, a numerical study has been carried out.

2. The Model

The arrival follows Poisson with rate λ(> 0) and a single server provides two type
of services, respectively called type 1 service and type 2 service. The service time
distributions are general and the distribution functions are respectively B1(x) and
B2 ). It is assumed that, when the service is about to start the customer may
choose type ith service (i = 1, 2) with probability pi (p1 + p2 = 1). As soon as
the service of a customer is completed the server may go for a vacation of random
length with probability q (0 ⩽ q < 1) or may continue to serve the next customer,
if any, probability (1−q). If there are no customers in the queue, at the completion
of service, the server remains in the system without taking further vacation. The
vacation period follows a general distribution with distribution function V (y). Fur-
ther it is assumed that not all the arriving customers are allowed to join the system
at all times. Let r0 ⩽ r ⩽ 1 be the probability that an arriving customer will be
allowed to join the system while the server is busy and let p 0 ⩽ p ⩽ 1 be the
probability that an arriving customer will be allowed to join the system while the
server is on vacation. For the analysis the supplementary variable elapsed service
time (elapsed vacation time) has been introduced. Let µi(x)dx be the conditional
probability of completion of the ith type of service during the interval (x, x + dx]
given that the elapsed service time is x, so that µi(x) = bi

1−Bi(x)
, i = 1, 2 and let

γ(x)dx be the conditional probability of completion of the vacation during the in-

terval (x, x+ dx] given that the elapsed vacation time is x, so that γ(x) = v(x)
1−V (x) .

The following notations are introduced to define the model mathematically.

P
(i)
n (x, t) = Pr { at time t, there are n customers in the queue excluding one

receiving the ith type of service and the elapsed service time is x } ,i = 1, 2.
Vn(x, t) = Pr { at time t, the server is on vacation with elapsed vacation time is x

and the number of customers in the queue is n }
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Q(t) = Pr{at time t, there are no customers in the system and the server is idle}
Let P

(i)
n (x), Vn(x) and Q denote the corresponding steady state probabilities. The

probability generating functions for the probabilities {P (i)
n (x)}, {Vn(x)} are respec-

tively defined as,

P (i)(x, z) =

∞∑
n=0

znP (i)
n (x), i = 1, 2.

V (x, z) =
∞∑
n=0

znVn(x).

3. The Governing Equations

The forward Kolmogorov equations related to the model defined in the proceeding
section are

d

dx
P

(1)
0 (x) + (λ+ µ1(x))P

(1)
0 (x) = λ(1− r)P

(1)
0 (x) (1)

d

dx
P (1)
n (x) + (λ+ µ1(x))P

(1)
n (x) = λ(1− r)P (1)

n (x) + rλP
(1)
n−1(x), n = 1, 2, · · · (2)

d

dx
P

(2)
0 (x) + (λ+ µ2(x))P

(2)
0 (x) = λ(1− r)P

(2)
0 (x) (3)

d

dx
P (2)
n (x) + (λ+ µ2(x))P

(2)
n (x) = λ(1− r)P (2)

n (x) + rλP
(2)
n−1(x), n = 1, 2, · · · (4)

d

dx
V0 + (λ+ γ(x))V0(x) = λ(1− p)V0(x) (5)

d

dx
Vn + (λ+ γ(x))Vn(x) = λ(1− p)Vn(x) + pλVn−1(x), n = 1, 2, · · · (6)

λrQ = (1−q)

∫ ∞

0
µ1(x)P

(1)
0 (x)dx+(1−q)

∫ ∞

0
µ2(x)P

(2)
0 (x)dx+

∫ ∞

0
γ(x)V0(x)dx

(7)
The boundary conditions are

P
(1)
0 (0) = rλQp1 + (1− q)p1

∫∞
0 µ1(x)P

(1)
1 (x)dx+ (1− q)p1

∫∞
0 µ2(x)P

(2)
1 (x)dx

+p1
∫∞
0 γ(x)V1(x)dx

(8)



264 R. Kalyanaraman & V. Suvitha/ IJM2C, 02 - 04 (2012) 261-276.

P
(1)
0 (0) = (1− q)p1

∫∞
0 µ1(x)P

(1)
n+1(x)dx+ (1− q)p1

∫∞
0 µ2(x)P

(2)
n+1(x)dx

+p1
∫∞
0 γ(x)Vn+1(x)dx, n = 1, 2, · · ·

(9)

P
(2)
0 (0) = rλQp2 + (1− q)p2

∫∞
0 µ1(x)P

(1)
1 (x)dx+ (1− q)p2

∫∞
0 µ2(x)P

(2)
1 (x)dx

+p2
∫∞
0 γ(x)V1(x)dx

(10)

P
(2)
0 (0) = (1− q)p2

∫∞
0 µ1(x)P

(1)
n+1(x)dx+ (1− q)p1

∫∞
0 µ2(x)P

(2)
n+1(x)dx

+p2
∫∞
0 γ(x)Vn+1(x)dx, n = 1, 2, · · ·

(11)

Vn(0) = q

∫ ∞

0
µ1(x)P

(1)
n (x)dx+ q

∫ ∞

0
µ2(x)P

(2)
n (x)dx, n = 0, 1, 2, · · · (12)

and the normalization condition is

Q+
∞∑
n=0

∫ ∞

n=0
[P (1)

n (x) + P (2)
n (x) + Vn(x)]dx = 1

4. The Analysis

Multiplying equations 2, 4 and 6 by zn and summing from n = 1 to ∞ and then
adding (1), (3) and (5) with the corresponding equations, we get

d
dxP

(1)(x, z)

P (1)(x, z)
= −T − µ1(x) whereT = λr(1− z) (13)

d
dxP

(2)(x, z)

P (2)(x, z)
= −T − µ2(x) (14)

d
dxV (x, z)

V (x, z)
= −R− γ(x) whereR = λp(1− z) (15)

Integration of the above equations leads to

P (1)(x, z) = A(1−B1(x))e
−Tx (16)

P (2)(x, z) = A0(1−B2(x))e
−Tx (17)

V (x, z) = A1(1− V (x))e−Bx (18)
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Taking x = 0 in equations (16), (17) and (18), one can find the constants A, A0

and A1 as

A = P (1)(0, z), (19)

A0 = P (2)(0, z)and, (20)

A1 = V (0, z), (21)

Using equations (19), (20) and (21) respectively in equations (16), (17) and (18) ,
we get

P (1)(x, z) = P (1)(0, z)(1−B1(x))e
−Tx (22)

P (2)(x, z) = P (2)(0, z)(1−B2(x))e
−Tx (23)

V (x, z) = V (0, z)(1− V (x))e−Rx (24)

Applying a similar manipulations on equations (8), (9), (10) and (11) as in the case
of (1) -(6) and using equations (7), (22), (23) and (24) , we get

|z−(1−q)P1B
∗
1(T )|p(1)(0, z) = rλp1(z−1)Q+(1−q)p1B

∗
2(T )P

(2)(0, z)+p1V
∗(R)V (0, z)

(25)

|z−(1−q)P2B
∗
2(T )|p(2)(0, z) = rλp2(z−1)Q+(1−q)p2B

∗
1(T )P

(1)(0, z)+p2V
∗(R)V (0, z)

(26)
Using equation (26) on equation (25), we get

|z− (1− q)(P1B
∗
1(T )+p2B

∗
2(T )|P (1)(0, z) = p1V

∗(R)V (0, z)+λrp1(z−1)Q, (27)

Using equation (25) on equation (26), we get

|z− (1− q)(P1B
∗
1(T )+p2B

∗
2(T )|P (2)(0, z) = p2V

∗(R)V (0, z)+λrp2(z−1)Q, (28)

Applying similar manipulations on equation (12) as in the case of (8)- (11) and
using equations (27) and (28)

V (0, z) =
λrq(z − 1)(p1B

∗
1(T ) + p2B

∗
2(T ))Q

z − (1− q + qV ∗(R))(p1B∗
1(T ) + p2B∗

2(T ))
(29)
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Using equation (29) on equations (27) and (28), we get

P (1)(0, z) =
λr(z − 1)p1Q

z − (1− q + qV ∗(R))(p1B∗
1(T ) + p2B∗

2(T ))
(30)

P (2)(0, z) =
λr(z − 1)p2Q

z − (1− q + qV ∗(R))(p1B∗
1(T ) + p2B∗

2(T ))
(31)

V (z) =
∫∞
0 V (x, z)dx

= V (0, z) (1−V ∗(R))
R

(32)

P (1)(z) =
∫∞
0 P (1)(x, z)dx

= P (1)(0, z) (1−B∗
1 (T ))
T

(33)

P (2)(z) =
∫∞
0 P (2)(x, z)dx

= P (2)(0, z) (1−B∗
2 (T ))
T

(34)

The unknown idle probability Q is obtained using the normalizing condition
Q+ P (1)(1) + P (2)(1)V (1) = 1 as

Q =
1 + λpqV ∗(1)

(0) + λr(p1B
∗
1(0) + p2B

∗
2(0))

1 + λq(p− r)V ∗(1)(0)
(35)

Equations (32), (33) and (34) together with equation (35) are respectively, the
probability generating functions of the number of customers in the queue when the
server is on vacation, server is serving type 1 service and serving type 2 service
respectively. Here Q > 0 guarantees the existence of the probability generating
functions in equations (32), (33) and (34) and therefore the stability condition for
the system is

λrqV ∗(1)

(0) + λr(p1B
∗
1(0) + p2B

∗
2(0))

λq(r − p)V ∗(1)(0)− 1
< 1.

The probability generating function that the number of customers in the queue
irrespective of the server state is

U(z) = Q+ P (1)(z) + P (2)(z) + V (z)

= [R(z−1)+q(p1B∗
1 (T )+p2B∗

2 (T ))(R−T )(1−v∗(R))]Q
R[z−(1−q+qV ∗(R))(p1B∗

1 (T )+p2B∗
2 (T ))]
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5. The Performance Measures

Using straightforward calculations the following performance measures have been
obtained. (i) Mean number of customers in the queue

Lq = U ′(1) =
λ2r(C2 + C3 − C4)

2C1(1 + λq(p− r)V ∗(1)(0))

where

C1 = 1 + λpqV ∗(1)

(0) + λr(p1B
∗(1)

1 (0) + p2B
∗(1)

2 (0))

C2 = pqV ∗(2)

(0) + 2rqDV ∗(1)

(0)(p1B
∗(1)

1 (0) + p2B
∗(1)

2 (0))

D = 1− λ(p− r)(p1B
∗(1)

1 (0) + p2B
∗(1)

2 (0))

C3 = r(p1B
∗(2)

1 (0) + p2B
∗(2)

2 (0))(1 + λq(p− r))V ∗(1)

(0))

C4 = λpq(p− r)V ∗(2)

(0))(p1B
∗(1)

1 (0) + p2B
∗(1)

2 (0))

(ii) The variance of the number of customers in the queue

VLq = U ′′(1) + U ′(1)− (U ′(1))2

= 2λrC0(1+λq(p−r)V ∗(1) (0))−3λ4r2(C2+C3−C4)

12C2
1 (1+λq(p−r)V ∗(1) (0))2

where

U ′′(1) = λ2r[3C5(C2+C3−C4)−2C1(C6+C7−C8)]

6C2
1 (1+λq(p−r)V ∗(1) (0))2

C0 = 3(C5 + C1)(C2 + C3 − C4)− 2C1(C6 + C7 − C8)

C5 = 2λ2pq(p− r)V ∗(1)

(0))(p1B
∗(1)

1 (0) + p2B
∗(1)

2 (0)) + λ2P 2qV ∗(2)

(0)

+λ2r2(p1B
∗(2)

1 (0) + p2B
∗(2)

2 (0))

C6 = λr2(p1B
∗(3)

1 (0) + p2B
∗(3)

2 (0))(1 + λq(p− r)V ∗(1)

(0)) + λp2qV ∗(3)

(0)
C7 = 3λrDD0

D0 = pqV ∗(2)

(0)(p1B
∗(1)

1 (0) + p2B
∗(1)

2 (0)) + rqV ∗(1)

(0)(p1B
∗(2)

1 (0) + p2B
∗(2)

2 (0))

C8 = λ2p2q(p− r)V ∗(3)

(0)(p1B
∗(1)

1 (0) + p2B
∗(1)

2 (0))

(iii) The expected waiting time in the queue

Wq =
Lq

λ′ =
λ(C2 + C3 − C4)

2C1

where

λ′ = actual arrival rate
= λr[P (1) +Q] + λpV (1)

= λr

1+qλ(p−r)V ∗(1) (0)

(iv) Variance of the waiting time in the queue
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VWq =
U ′′(1)
λ′2 − (U

′(1)
λ′ )2

= 2D1(1+λQ(p−r)V ∗(1) (0))−3λ2r(C2+C3−C4)2

12C2
1r

where D1 = 3C5(C2 + C3 − C4)− 2C1(C6 + C7 − C8)
(v) Mean number of customers in the queue when the server is busy

Lqb = P ′(1) = P (1)′(1) + P (2)′(1)

= λ2rD2

2C1(1+λq(p−r))V ∗(1) (0))

where

D2 = r(p1B
∗(2)

1 (0) + p2B
∗(2)

2 (0))(1 + λpqV ∗(1)

(0))− (p1B
∗(1)

1 (0) + p2B
∗(1)

2 (0))D3

D3 = λp2qV ∗(2)

(0) + 2λrpqV ∗(1)

(0)(p1B
∗(1)

1 (0) + p2B
∗(1)

2 (0))

(vi) Mean number of customers in the queue when the server is on vacation

Lqv = V ′(1) =
λ2r(D4D5 − λqr2V ∗(1)

(0)(p1B
∗(2)

1 (0) + p2B
∗(2)

2 (0)))

2C1(1 + λq(p− r)V ∗(1)(0))

where

D4 = 2qrV ∗(1)

(0)(p1B
∗(2)

1 (0) + p2B
∗(2)

2 (0)) + qpV ∗(2)

(0)

D5 = 1 + λr(p1B
∗(1)

1 (0) + p2B
∗(1)

2 (0))

(vii) Utilization factor= the fraction of time that the server is busy

ρ = 1− V (1)−Q

= λr(p1B∗(1)
1 (0)+p1B∗(1)

2 (0))

λq(r−q)V ∗(1) (0)−1

(viii) Mean number of customers in the system

L = Lq + ρ

= λ2r(C2+C3−C4)−2λrC1(p1B∗(1)
1 (0)+p1B∗(2)

2 (0))

2C1(1+λq(p−r)V ∗(1) (0))

(ix) Mean response time= Mean time a customers spends in the system

M = L
λ′

= λ(C2+C3−C4)−2C1(p1B∗(1)
1 (0)+p2B∗(1)

2 (0))
2C1

6. Some Particular Models

In this section some particular models are derived by taking known distributions
to service time and vacation time. The service times (both type 1 and type 2)
are negative exponential with parameters µ1 for type 1 and µ2 for type 2. The
arrival process is Poisson with parameter λ. We consider three different models
by assigning different distributions to the vacation times. For model 1 (M − 1),
the vacation times are negative exponential, for model 2 (M − 2) it is hyper
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exponential, for model 3 (M − 3), it is Erlang-k distribution where as for model
4 (M − 4) it is negative exponential. For all this models using the formulas in
sections 4 and 5 the results for the idle probability, the probability generating
function for the number of customers in the queue irrespective of server state, the
mean number of customers in the queue, the variance of the number of customers
in the queue, the expected waiting time in the queue, the variance of the waiting
time in the queue, the mean number of customers in the queue when the server is
busy, the mean number of customers in the queue when the server is on vacation
the utilization factor, the mean number of customers in the system and the mean
response time are obtained.

Model (1): In this model the vacation time distribution is negative exponential
with parameter θ.

Q = µ1µ2(θ−λpq)−λrθ(p1µ2+p2µ2µ1)
µ1µ2(θ−λq(p−r))

U(z) = {(R+θ)(T+µ1)(T+µ2)(z−1)+q(R−T )[T (p1µ1+p2)+µ1µ2]}Q
z(R+θ)(T+µ1)(T+µ2)−[θ+R(1−q)][T (p1µ1+p2µ2)+µ1µ2]

Lq = U ′(1) = λ2rU4

µ1µ2U2(θ−λq(p−r))

VLq = U ′′(1) + U ′(1)− [U ′(1)]2

= λ2r[(θ−λq(p−r))[2(U3U4+U2U5)+θµ1µ2U2U4]−λ2rθU2
4 ]

µ2
1µ

2
2U

2
2 θ(θ−λq(p−r))2

Wq =
Lq

λ′ = λU4

µ1µ2U2θ

VWq
= U ′′(1)

λ′2 − (U
′(1)
λ′ )2

= 2(θ−λq(p−r))(U3U4+U2U5)−λ2rθU2
4

µ2
1µ

2
2U

2
2 θ

3r

Lqb =
λ2r{rθ(p1µ2

2+p2µ2
1)(θθ−λpq)+λpqU0(p1µ2+p2µ1)}

µ1µ2U2(θ−λq(p−r))

Lqv = λ2r{qU0(µ1µ2−λr(p1µ2+p2µ1))+λqr2θ(p1µ2
2+p2µ2

1)}
µ1µ2U2(θ−λq(p−r))

ρ = λrθ(p1θµ2+p2µµ1)
µ1µ2(θ−λq(p−r))

L = Lq + ρ = λ2rU4+θU2λr(p1µ2+p2µ1)
µ1µ2U2(θ−λq(p−r))

M = λU4+θU2(p1µ2+p2µ1)
µ1µ2U2θ

where
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U ′′(1) = 2λ2r(U3U4+U2U5)
µ2

1µ
2
2U

2
2 θ(θ−λq(p−r))

U0 = pµ1µ2 + rθ(p1µ2 + p2µ1)

U1 = µ1µ2 + λ(p− r)(p1µ2 + p2µ1)

U2 = µ1µ2(θ − λqp)− λrθ(p1µ2 + p2µ1)

U3 = λ2pqµ1µ2U0 + λ2r2θ2(p1µ
2
2 + p2µ

2
1)

U4 = qU0U1 + rθ(p1µ
2
2 + p2µ

2
1)(θ − λq(p− r))

U5 = qU1U6 + r2θ2(p1µ
3
2 + p2µ

3
1)(θ − λq(p− r))

U6 = λp2µ2
1µ

2
2 + λrθpµ1µ2(p1µ2 + p2µ1) + λθ2r2(p1µ

2
2 + p2µ

2
1)

λ′ = λrθ
θ−λq(p−r)

Model (2): In this model the vacation time distribution is Hyper exponential with
parameters q1, q2, (q1 + q2 = 1), θ1 and θ2.

Q = µ1µ2[θ1θ2−λpq(q1θ2+q2θ1)]−λrθ1θ2(p1µ2+p2µ2

µ1µ2[θ1θ2−λq(p−r)(q1θ2+q2θ1)]

U(z) = R(Z−1)A9+q(R−T )A11[(R+θ1)(R+θ2)−A10]
R{ZA9−[(1−q)(R+θ1)+(R+θ2)+qA10A11]} Q

Lq = U ′(1) = λ2r[qU1A2+rθ1θ2A3(p1µ2
2+p2µ2

1)]
µ1µ2A3A4

VLq = U ′′(1) + U ′(1)− [U ′(1)]2

= λ2r{2A3A12+θ1θ2A8A13}
θ1θ2A2

3A
2
4µ

2
1µ

2
2

Wq =
Lq

λ′ = λ[qU1A2+rθ1θ2A3(p1µ2
2+p2µ2

1)]
µ1µ2A4θ1θ2

VWq
= U ′′(1)

λ′2 − (U
′(1)
λ′ )2

= 2A3A12−λ2rθ1θ2A2
13

rµ2
1µ

2
2A

2
4θ

3
1θ

3
2

Lqb =
λ2r{rθ1θ2(p1µ2

2+p2µ2
1)[θ1θ2−λpq(q1θ2+q2θ1)]+λpqA2(p1µ2+p2µ1)}

µ1µ2A3A4

Lqv = λ2r{qA2[µ1µ2−λr(p1µ2+p2µ1)]+λr2qθ1θ2(q1θ1+q2θ2)(p1µ2
2+p2µ2

1)}
µ1µ2A3A4

ρ = λrθ1θ2(p1µ2+p2µ1)
µ1µ2A3

L = Lq + ρ

= λ2rqU1A2+λrθ1θ2[λrA3(p1µ2
2+p2µ2

1)+A4(p1µ2+p2µ1)]
µ1µ2A3A4

M = λqU1A2+θ1θ2[λrA3(p1µ2
2+p2µ2

1)+A4(p1µ2+p2µ1)]
µ1µ2A4θ1θ2
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where

U ′′(1) = 2λ2rA12

θ1θ2A3A2
4µ

2
1µ

2
2

A2 = pµ1µ2(q1θ
2
1 + q2θ

2
1) + rθ1θ2(q1θ1 + q2θ1)(p1µ2 + p2µ1)

A3 = θ1θ2 − λq(p− r)(q1θ2 + q2θ1)

A4 = µ1µ2[θ1θ2 − λqp(q1θ2 + q2θ1)]− λrθ1θ2(p1µ2 + p2µ1)

A5 = λp2µ2
1µ

2
2(q1θ

3
2 + q2θ

3
1) + λprθ1θ2µ1µ2(q1θ

2
2 + q2θ

2
1)(p1µ2 + p2µ1)

+λr2θ21θ
2
2(q1θ2 + q2θ1)(p1µ

2
2 + p2µ

2
1)

A6 = λ2pqµ2
1A2 + λ2r2θ21θ

2
2(p1µ

2
2 + p2µ

2
1)

A7 = A6(p1µ
2
2 + p2µ

2
1) + λrθ1θ2A4(p1µ

3
2 + p2µ

3
1)

A8 = µ1µ2A3A4 − λ2rqU1A2 − λ2r2θ1θ2A3(p1µ
2
2 + p2µ

2
1)

A9 = (R+ θ1)(R+ θ2)(T + µ1)(T + µ2)

A10 = R(q1θ2 + q2θ1) + θ1θ2

A11 = T (p1θ2 + p2θ1) + µ1µ2

A12 = qU1(A2A6 +A5A4) + rθ1θ2A3A7

A13 = qU1U2 + rθ1θ2A3(p1µ
2
2 + p2µ

2
1)

λ′ = λrθ1θ2
A3

Model (3): In this model the vacation time distribution is Erlang-k with parameter
θ.
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Q = µ1µ2(θ−λpq)−λrθ(p1µ2+p2µ2µ1)
µ1µ2(θ−λq(p−r))

U(z) = [p(z−1)(T+µ1)(T+µ2)(kθ+R)k+q(p−r)l((kθ+R)k−(kθ)k)]Q
p[z(T+µ1)(T+µ2)(kθ+R)k−l((1−q)(kθ+R)k+q(kθ)k)]

Lq = U ′(1) = λ2r{qU1Y0+2krθ(θ−λq(p−r))(p1µ2
2+p2µ2

2)}
2kU2µ1µ2(θ−λq(p−r))

VLq = U ′′(1) + U ′(1)− [U ′(1)]2

= 2λ2rθ(θ−λq(p−r))Y7−3λ4r2θ(qU1Y0+2krθ(θ−λq(p−r))(p1µ2
2+p2µ2

1)
2

12k2U2
2µ

2
1+µ2

2θ(θ−λq(p−r))2

Wq =
Lq

λ′ = λ{qU1Y0+2krθ(θ−λq(p−r))(p1µ2
2+p2µ2

1)}
2kU2µ1µ2θ

VWq
= U ′′(1)

λ′2 − (U
′(1)
λ′ )2

= 2(θ−λq(p−r))Y10−3λ2rθ(qU1Y0+2krθ(θ−λq(p−r))(p1µ2
2+p2µ2

1))
2

12rk2θ3µ2
2µ

2
1U

2
2

Lqb =
λ2r{2krθ(θ−λpq)(p1µ2

2+p2µ2
1)+λpqY0(p1µ2+p2µ1)}

2kU2µ1µµ2(θ−λq(p−r))

Lqv = λ2r{qY0(µ1µ2−λr(p1µ2+p2µ1))+2λkr2qθ(p1µ2
2+p2µ2

1)}
2kU2µ1µ2U2(θ−λq(p−r))

ρ = λrθ(p1θµ2+p2µµ1)
µ1µ2(θ−λq(p−r))

L = Lq + ρ

= λ2r{qU1Y0+2krθ(θ−λq(p−r))(p1µ2
2+p2µ2

1)}+2kU2λrθ(p1µ2+p2µ1)
2kU2µ1µ2(θ−λq(p−r))

M = L
λ′ =

λqU1Y0+2λkrθ(θ−λq(p−r))(p1µ2
2+p2µ2

1)+2kU2θ(p1µ2+p2µ1)
2kU2µ1µ2θ

where

U ′′(1) = λ2rY3

6k2U2
2µ

2
1µ

2
2θ[θ−λq(p−r)]

l = µ1µ2 + T (p1µ2 + p2µ1)

Y0 = (k + 1)pµ1µ2 + 2krθ(p1µ2 + p2µ1)

Y1 = p2q(k + 1)µ2
1µ

2
2 + 2kr2θ2(p1µ

2
2 + p2µ

2
1) + 2pqrkθµ1µ2)

Y2 = −λp2µ2
1µ

2
2(k + 1)(k + 2)− 3k(k + 1)λprθ(p1µ2 + p2µ1 − 6λk2r2θ2(p1µ

2
2 + p2µ

2
1))

Y3 = λY1(p1µ
2
2 + p2µ

2
1) + 2U2krθ(p1µ

3
2 + p2µ

3
1)

Y7 = qU1U8 + 6krθY9(θ − λq(p− r))

Y8 = 3Y0(λ
2Y1 + kθU2µ1µ2)− 2U2Y2

Y9 = λY3 + kθU2µ1µ2(p1µ
2
2 + p2µ

2
1)

Y10 = qU1(3λ
2Y0Y1 − 2U2Y2) + 6λkrθY3(θ − λq(p− r))

λ′ = λrθ
θ−λq(p−r) .
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Model (4): For M/M/1 queue with compulsory server vacation, p = r = q =
1, p1 = 1, p2 = 0, µ1 = µ.

Q = θµ−λ(θ+µ)
θµ

U(z) = [θ+λ(1−z)][µ+λ(1−z)](z−1)Q
z[θ+λ(1−z)][µ+λ(1−z)]−θµ

Lq = U ′(1) = λ2[µ2+θ2+θµ]
θµ[θµ−λ(θ+µ)]

VLq = U ′′(1) + U ′(1)− [U ′(1)]2

= λ2{λ2[µ2+θ2+θµ]2+[θµ−λ(θ+µ)][2λµ3+θ(2λ+µ)(µ2+θ2+θµ)]
θ2µ2[θµ−λ(θ+µ)]2

Wq =
Lq

λ′ = λ[(µ2+θ2+θµ)]
θµ[θµ−λ(θ+µ)]

VWq
= U ′′(1)

λ′2 − (U
′(1)
λ′ )2

= λ2[µ2+θ2+θµ]+2λ[θµ−λ(θ+µ)][θ3+µ3+θµ(θ+µ)]
θ2µ2[θµ−λ(θ+µ)]2

Lqb =
λ2(θ2+λµ)

θµ[θµ−λ(θ+µ)]

Lqv = λ2(θ−λ+µ)
θ[θµ−λ(θ+µ)]

ρ = λ
µ

L = Lq + ρ

= λ2[µ2+θ2+θµ]
θµ[θµ−λ(θ+µ)] +

λ
µ

M = L
g

= λ[µ2+θ2+θµ]
θµ[θµ−λ(θ+µ)] +

l
µ

where

U ′′(1) = 2λ2{λ2[µ2+θ2+θµ]2+λ[θµ−λ(θ+µ)][θ3+µ3+θµ(θ+µ)]}
θ2µ2[θµ−λ(θ+µ)]2

λ′ = λ.

7. The Numerical Study

In this section, some numerical examples are given to show the effect of the prob-
ability q on Lq,VLq,Lqb, Lqv, L,Wq, VWq, ρ and M for the model analyzed in this
paper with taking some particular distributions to service times and vacation time.
Model with negative exponential service times and vacation time is called model 1
(M − 1), model with negative exponential service times and hyper exponential va-
cation time is called model 2 (M − 2) and model with negative exponential service
times and Erlangian vacation time is called model 3 (M − 3). Here the parameters
r = 0.3, p = 0.7, p1 = 0.4, p2 = 0.6, k = 5, λ = 2.0, µ1 = 2.5, µ2 = 1.5, q1 = 0.3, q2 =
0.7, θ = 3.0, θ1 = 5.0 and θ2 = 4.0 are fixed. Figures 1 − 5 represent the functions
of Lq, Lqb, Lqv, L, Wq, with respect to the probability q (for model 1, 2 and 3).
All functions are found to be increasing functions with small variations. Table 6
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presents the variance values of Lq and Wq with respect to probability q (for model
1, 2 and 3). Table 7 presents the values of ρ and M with respect to probability q
(for model 1, 2 and 3). The table values shows that as q increases the variances
also increase but after certain point the variation is too large. Where as in the case
of ρ and M the variations are steadily increasing

Figure 1. q versus mean number of customers in the queue

Figure 2. q versus mean number of customers in the queue when the server is busy

Figure 3. q versus mean number of customers in the queue when the server is on vacation
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Figure 4. q versus mean number of customers in the system

Figure 5. q versus expected waiting time in the queue

Table 1. Variance of the number customers in the queue, variance

of the waiting time in the queue of M − 1, M − 2 and M − 3

q VLq VWq

M − 1 M − 2 M − 3 M − 1 M − 2 M − 3

0.1 0.4852 0.4222 0.4483 0.6676 0.5657 0.5941
0.2 0.6679 0.5153 0.5819 0.9292 0.6919 0.7648
0.3 0.9076 0.6267 0.7553 1.2596 0.8395 0.9806
0.4 1.2278 0.7610 0.9847 1.6855 1.0135 1.2590
0.5 1.6655 0.9244 1.2954 2.2485 1.2208 1.6274
0.6 2.2812 1.1255 1.7285 3.0160 1.4707 2.1299
0.7 3.1792 1.3758 2.3549 4.1037 1.7759 2.8424
0.8 4.5530 1.6920 3.3053 5.7246 2.1545 3.9049
0.9 6.7945 2.0984 4.8433 8.3086 2.6328 5.5990
1.0 10.8025 2.6315 7.5717 12.8364 3.2503 8.5682

8. Conclusion

In this paper we considered a single server queue with Bernoulli vacation. The
customers are admitted to queue using a Bernoulli process and the single server
provides two type of services. Using supplementary variable technique the proba-
bility generating functions of number of customers in the queue at different server
states are obtained. Some performance measures are calculated from the proba-
bility generating functions. Further we performed numerical analysis by assuming
particular values to the parameters.
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Table 2. Utilization factor and mean response time of M − 1,

M − 2 and M − 3

q ρ M
M − 1/M − 2 M − 3 M − 1 M − 2 M − 3

0.1 0.3452 0.3424 0.9356 0.9045 0.9210
0.2 0.3549 0.3491 1.0249 0.9552 0.9933
0.3 0.3652 0.3561 1.1301 1.0118 1.0786
0.4 0.3761 0.3633 1.2560 1.0754 1.1805
0.5 0.3877 0.3709 1.4090 1.1474 1.3044
0.6 0.4000 0.3787 1.5993 1.2296 1.4586
0.7 0.4131 0.3869 1.8423 1.3242 1.6553
0.8 0.4271 0.3955 2.1632 1.4344 1.9153
0.9 0.4421 0.4044 2.6070 1.5642 2.2746
1.0 0.4582 0.4138 3.2606 1.7196 2.8040
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