On Coneigenvalues of a Complex Square Matrix

M. Ghasemi Kamalvand*
Department of Mathematics, Lorestan university, Khorramabad, Iran

Abstract

In this paper, we show that a matrix $A \in M_{n}(\mathbf{C})$ that has n coneigenvectors, where coneigenvalues associated with them are distinct, is condiagonalizable. And also show that if all coneigenvalues of conjugate-normal matrix A be real, then it is symmetric.

Received:15 May 2013, Revised:05 August 2013, Accepted:29 September 2013.

Keywords: Coneigenvalue, Coneigenvector, Coninvariant, Consimilarity, Cojugate-Normal, Condiagonalizable

Index to information contained in this paper

1 Introduction

2 Similarity and diagonalizable
3 Coneigenvalue and coneigenvector
4 Condiagonalizable
5 Coneigenvalue and conjugate-normal matrix
6 Conclusion

1. Introduction

In section 2 of this paper, we recall some definitions and propositions of similarity transformation. In sections 3 and 4 we present definitions and propositions that are need for consimilarity transformation, and recall coneigenvalue and coneigenvector definitions of matrices, and prove that if $\left|\mu_{1}\right|,\left|\mu_{2}\right|, \ldots,\left|\mu_{k}\right|$ are distinct coneigenvalues of $A \in M_{n}(\mathbf{C})$, then $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(k)}\right\}$ is a linearly independent set, where $\left|\mu_{i}\right|$ is a coneigenvalue associated with coneigenvector $x^{(i)}, \quad i=1,2, \ldots, k$. this proposition imply that if a matrix $A \in M_{n}(\mathbf{C})$ has n distinct coneigenvalue associated with coneigenvectors, then A is condiagonalizable. Also show that if all coneigenvalues of conjugate-normal matrix A be real, then it is symmetric.

[^0]
2. Similarity and diagonalizable

Recall that a matrix $B \in M_{n}(\mathbf{C})$ is said to be similar to a matrix $A \in M_{n}(\mathbf{C})$ if there exists a nonsingular matrix $S \in M_{n}(\mathbf{C})$ such that $B=S^{-1} A S$. Also recall that, if the matrix $A \in M_{n}(\mathbf{C})$, is similar to a diagonal matrix, then A is said to be diagonalizable.

Since diagonal matrices are especially simple and have very nice properties, it is of interest to know for which $A \in M_{n}(\mathbf{C})$, there is a diagonal matrix in the similarity equivalence class of A , that is, which matrices are similar to diagonal matrices.

Theorem 2.1 Let $A \in M_{n}(\mathbf{C})$, Then A is diagonalizable if and only if there is a set of n linearly independent vectors, each of which is an eigenvector of A.

Lemma 2.2 Suppose that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are eigenvalues of $A \in M_{n}(\mathbf{C})$, no two of which are the same, and suppose that $x^{(i)}$ is an eigenvector associated with $\lambda_{i}, i=1, \ldots, k$. Then $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(k)}\right\}$ is a linearly independent set.

Theorem 2.3 If $A \in M_{n}(\mathbf{C})$, has n distinct eigenvalues, then A is diagonalizable.
For the proofs of these properties, we refer the reader to [2].
In the next section we are going to construct consimilarity from similarity (see [1], [3], [4] and [5]) .

3. Coneigenvalue and coneigenvector

The most important quantities related to similarity transformations of a matrix are its eigenvalues and eigenvectors. Now, that we deal with consimilarity transformations (The transformation $A \longrightarrow S^{-1} A \bar{S}$ is called a consimilarity transformation by the consimilarity nonsingular matrix S), we should instead speak of 'con'-analogues of these quantities. Recall that:

Definition 3.1 matrices $A, B \in M_{n}(\mathbf{C})$ are said to be consimilar if $B=S^{-1} A \bar{S}$ for a nonsingular matrix S.

In this section we recall coneigenvalue defination of a matrix, that for a matrix $A \in M_{n}(\mathbf{C})$ exist only n coneigenvalue. The coneigenvalues of A are preserved by any consimilarity transformation.

To give an exact definition, we introduce the matrices

$$
A_{L}=\bar{A} A \quad \text { and } \quad A_{R}=A \bar{A}=\overline{A_{L}}
$$

Although the products $A B$ and $B A$ need not be similar in general, A_{L} is always similar to A_{R} (see [[2], p. 246, Problem 9 in Section 4.6]). Therefore in the subsequent discussion of their spectral properties, it will be sufficient to refer to one of them, say, A_{L}. The spectrum of A_{L} has two remarkable properties:

1. It is symmetric with respect to the real axis. Moreover, the eigenvalues λ and $\bar{\lambda}$ are of the same multiplicity.
2. The negative eigenvalues of A_{L} (if any) are necessarily of even algebraic multiplicity.

For the proofs of these properties, we refer the reader to [[2], pp. 252.253].
Definition 3.2 Let

$$
\lambda\left(A_{L}\right)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}
$$

be the spectrum of A_{L}. The coneigenvalues of A are the n scalars μ_{1}, \ldots, μ_{n} defined as follows: If $\lambda_{i} \in \lambda\left(A_{L}\right)$ does not lie on the negative real axis, then the corresponding coneigenvalue μ_{i} is defined as a square root of λ_{i} with nonnegative real part and the multiplicity of μ_{i} is set to that of λ_{i} :

$$
\mu_{i}=\lambda_{i}^{\frac{1}{2}}, R e \mu_{i} \geqslant 0
$$

With a real negative $\lambda_{i} \in \lambda\left(A_{L}\right)$, we associate two conjugate purely imaginary coneigenvalues

$$
\mu_{i}= \pm \lambda_{i}^{\frac{1}{2}}
$$

the multiplicity of each being half the multiplicity of λ_{i}.
The set $\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ is called the conspectrum of A and will be denoted by $c \lambda(A)$. For a subspace $L \in M_{n}(\mathbf{C})$ define

$$
\bar{L}=\{\bar{x} \mid x \in L\}
$$

where \bar{x} is the component-wise conjugate of the column vector x.
Definition 3.3 L is called a coninvariant subspace of A if

$$
A \bar{L} \subseteq L
$$

The fundamental fact on coninvariant subspaces is the following theorem.
ThEOREM 3.4 Every matrix $A \in M_{n}(\mathbf{C})(n \geqslant 3)$ has a one- or two-dimensional coninvariant subspace.
proof as given in [1].
Definition 3.5 Let L is a coninvariant subspace of A and $\operatorname{dimL}=1$, then every nonzero vector $x \in L$ is called a coneigenvector of A.

If matrix $A \in M_{n}(\mathbf{C})$ has a coneigenvector x, then there exist a coninvariant subspace L, where $x \in L$, and $A \bar{L} \subseteq L$. Since $\operatorname{dim} L=1$, can suppose that $L=$ $\operatorname{span}\{x\}$, this means that $A \bar{x}=\mu x$, for some $\mu \in \mathbf{C}$. in this equation μ is called coefficient associated with coneigenvector x.

Theorem 3.6 Let $A \in M_{n}(\mathbf{C})$ has a coneigenvector x, and μ is coefficient associated with x, then $|\mu|$ is a coneigenvalue of A.
Proof We know $A \bar{x}=\mu x$. But then

$$
\bar{A} A \bar{x}=\bar{A}(\mu x)=\mu \overline{A \bar{x}}=\mu \overline{\mu x}=|\mu|^{2} \bar{x}
$$

so $|\mu|$ is a coneigenvalue of A. (We say $|\mu|$ is a coneigenvalue associated with the coneigenvector x.)

4. Condiagonalizable

Like ordinary similarity, consimilarity is an equivalence relation on $M_{n}(\mathbf{C})$.
Definition 4.1 A matrix $A \in M_{n}(\mathbf{C})$ is said to be condiagonalizable if there exists a nonsingular $S \in M_{n}(\mathbf{C})$ such that $S^{-1} A \bar{S}$ is diagonal.

ThEOREM 4.2 Let $A \in M_{n}(\mathbf{C})$, Then A is condiagonalizable if and only if there is a set of n linearly independent vectors, each of which is a coneigenvector of A.

Proof If A has n linearly independent coneigenvectors

$$
\left\{x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right\}
$$

since $x^{(i)}, i=1,2, \ldots, n$ is a coneigenvector of A, then exist a coninvariant subspace L_{i}, where $x^{(i)} \in L_{i}$, and $A \overline{L_{i}} \subseteq L_{i}$. Since $\operatorname{dim} L_{i}=1$, can suppose that $L_{i}=$ $\operatorname{span}\left\{x^{(i)}\right\}$, this means that $A \overline{x^{(i)}}=\mu_{i} x^{(i)}$, for some $\mu_{i} \in \mathbf{C}$. Form a nonsingular matrix S with $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ as columns and calculate

$$
\begin{gathered}
S^{-1} A \bar{S}=S^{-1}\left[A \overline{x^{(1)}} A \overline{x^{(2)}} \ldots A \overline{x^{(n)}}\right]=S^{-1}\left[\mu_{1} x^{(1)} \mu_{2} x^{(2)} \ldots \mu_{n} x^{(n)}\right] \\
=S^{-1}\left[x^{(1)} x^{(2)} \ldots x^{(n)}\right] M=S^{-1} S M=M
\end{gathered}
$$

where

$$
M=\left(\begin{array}{ccc}
\mu_{1} & & 0 \\
& \ddots & \\
0 & & \mu_{n}
\end{array}\right)
$$

and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are coefficients associated with coneigenvectors

$$
x^{(1)}, x^{(2)}, \ldots, x^{(n)}
$$

Conversely, suppose that there is a nonsingular matrix S such that $S^{-1} A \bar{S}=M$ is diagonal. Then $A \bar{S}=S M$. This means that A times the i th column of \bar{S} (i.e., the i th column of $A \bar{S}$) is the i th diagonal entry of M times the i th column of S (i.e., the i th column of $S M$), or $A \overline{S_{i}}=\mu_{i} S_{i}$, where S_{i} is the i th column of S and μ_{i} is the i th diagonal entry of M, let $L_{i}=\operatorname{span}\left\{S_{i}\right\}$, then $A \overline{L_{i}} \subseteq L_{i}$ and $\operatorname{dim} L_{i}=1$. This result that i th column of S is an coneigenvector of A. Since S is nonsingular, there are n linearly independent coneigenvector.
LEMMA 4.3 Suppose that $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(k)}\right\}$ is a coneigenvectors set of matrix $A \in M_{n}(\mathbf{C})$, if $\left|\mu_{1}\right|,\left|\mu_{2}\right|, \ldots,\left|\mu_{k}\right|$ are coneigenvalues of A associated with $x^{(1)}, x^{(2)}, \ldots, x^{(k)}$, no two of which are the same, then $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(k)}\right\}$ is a linearly independent set.

Proof The proof is essentially by contradiction. Suppose that

$$
\left\{x^{(1)}, x^{(2)}, \ldots, x^{(k)}\right\}
$$

is actually a linearly dependent set. Then there is a nontrivial linear combination which produces the 0 vector, and in fact there is such a linear combination with the fewext nonzero coefficients. Suppose that such a minimal linear dependence relation is

$$
\begin{equation*}
\alpha_{1} x^{(1)}+\alpha_{2} x^{(2)}+\ldots+\alpha_{r} x^{(r)}=0, \quad r<k \tag{1}
\end{equation*}
$$

We have $r>1$ because all $x^{(i)} \neq 0$. We may assume for convenience (renumber if
necessary) that it involves the first r vectors. We also have

$$
\begin{gather*}
A\left(\overline{\alpha_{1} x^{(1)}+\alpha_{2} x^{(2)}+\ldots+\alpha_{r} x^{(r)}}\right)=\overline{\alpha_{1}} A \overline{x^{(1)}}+\overline{\alpha_{2}} A \overline{x^{(2)}}+\ldots+\overline{\alpha_{r}} A \overline{x^{(r)}} \\
=\overline{\alpha_{1}} \mu_{1} x^{(1)}+\overline{\alpha_{2}} \mu_{2} x^{(2)}+\ldots+\overline{\alpha_{r}} \mu_{r} x^{(r)}=0 \tag{2}
\end{gather*}
$$

another dependence relation.Now multiply the relation (1) by $\overline{\alpha_{r}} \mu_{r}$ and the relation (2) by α_{r} and subtract the first relation from the second relation to produce

$$
\left(\alpha_{1} \overline{\alpha_{r}} \mu_{r}-\alpha_{r} \overline{\alpha_{1}} \mu_{1}\right) x^{(1)}+\cdots+\left(\alpha_{r-1} \overline{\alpha_{r}} \mu_{r}-\alpha_{r} \overline{\alpha_{r-1}} \mu_{r-1}\right) x^{(r-1)}=0
$$

a third dependence relation, which has fewer nonzero coefficients than the relation (1). This last relation is nontrivial since for $i, \quad 1 \leqslant i \leqslant r-1$

$$
\alpha_{i} \overline{\alpha_{r}} \mu_{r}-\alpha_{r} \overline{\alpha_{i}} \mu_{i}=0 \Rightarrow\left|\alpha_{i}\right|\left|\overline{\alpha_{r}}\right|\left|\mu_{r}\right|=\left|\alpha_{r}\right|\left|\overline{\alpha_{i}}\right|\left|\mu_{i}\right| \Rightarrow\left|\mu_{r}\right|=\left|\mu_{i}\right|
$$

This contradicts the minireality assumption for the dependence relation (1) and completes the proof.

THEOREM 4.4 If $A \in M_{n}(\mathbf{C})$ has n coneigenvectors, where coneigenvalues associated with them are distinct, then A is condiagonalizable.
Proof Suppose that $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right\}$ is a coneigenvectors set of matrix A. This is a linearly independent set by lemma (4.3), and therefore A is condiagonalizable by theorem (4.2).

5. Coneigenvalue and conjugate-normal matrix

For a conjugate-normal matrix A, matrix

$$
\hat{A}=\left(\begin{array}{ll}
0 & A \tag{3}\\
A & 0
\end{array}\right)
$$

is normal. Conjugate-normality means that

$$
A A^{*}=\overline{A^{*} A}
$$

and normality means that

$$
A A^{*}=A^{*} A
$$

A particular example of conjugate-normal matrices are symmetric matrices.
THEOREM 5.1 Let $\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ be the coneigenvalues set of an $n \times n$ matrix A. Then

$$
\lambda(\hat{A})=\left\{\mu_{1}, \ldots, \mu_{n},-\mu_{1}, \ldots,-\mu_{n}\right\}
$$

where $\lambda(\hat{A})$ be the spectrum of \hat{A}.
Proof The assertion desired follows from two observations. First, we have $\hat{A}^{2}=$ $A_{R} \oplus A_{L}$, which implies that any eigenvalue of \hat{A} is a square root of an eigenvalue
of A_{L}. Second, the characteristic polynomial $\varphi(\lambda)$ of \hat{A} is given by.

$$
\varphi(\lambda)=\operatorname{det}\left(\lambda I_{2 n}-\hat{A}\right)=\operatorname{det}\left(\lambda^{2} I_{n}-A_{L}\right)=\operatorname{det}\left(\lambda^{2} I_{n}-A_{R}\right) .
$$

Thus, if λ is an eigenvalue of \hat{A}, then $-\lambda$ also is an eigenvalue of \hat{A}, and both of them have the same multiplicity.
Flowing theorem was proved in [[2], theorem(4.1.4)].
Theorem 5.2 Let $A \in M_{n}(\mathbf{C})$ be given. Then A is Hermitian if and only if A is normal and all the eigenvalues of A are real.

Theorem 5.3 Suppose that matrix $A \in M_{n}(\mathbf{C})$ is conjugate-normal and all the coneigenvalues of A are real, then A is symmetric.
Proof since A is a conjugate-normal matrix, then \hat{A} is normal. Now if all coneigenvalues of the matrix A are real, then all eigenvalues of \hat{A} are real (by theorem (5.1)), so \hat{A} is a hermitian matrix by theorem (5.2), i.e. $\hat{A}^{*}=\hat{A}$, this equality implies that

$$
\left(\begin{array}{ll}
0 & A \tag{4}\\
\bar{A} & 0
\end{array}\right)^{*}=\left(\begin{array}{cc}
0 & A \\
\bar{A} & 0
\end{array}\right)
$$

or

$$
\left(\begin{array}{cc}
0 & A^{T} \tag{5}\\
A^{*} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & A \\
A & 0
\end{array}\right)
$$

so $A^{T}=A$, this equality means that A is symmetric.

6. Conclusion

Properties of coneigenvalues and coneigenvectors of a matrix, which are considered in this paper, compared with the previous definition of the coneigenvalues (presented at the [2]), are more similar to the general eigenvalues and eigenvectors of a matrix.

References

[1] Fassbender H. and Ikramov Kh. D., Some observations on the Youla form and conjugate-normal matrices. - Linear Algebra Appl., 422 (2007) 29-38.
[2] Horn R.A. and Johnson C.R., Matrix Analysis. Cambridge University Press, Cambridge, 1985.
[3] Ikramov Kh. D., Conjugate-Normal Matrices and Matrix Equations in A , and A^{T}, Dokl. Akad. Nauk 412 (2007) 305-307 [Dokl. Math., 75 (2007) 55-57].
[4] Ikramov Kh. D., On the coneigenvalues and singular values of a complex square matrix, Journal of Mathematical Sciences, 141 (6) (2007) 1633-1638.
[5] Ikramov Kh.D., On the reduction of complex matrices to condensed forms by unitary congruences. - Mat. zametki, 82 (2007) 550-559.

[^0]: *Corresponding author. Email: m_ghasemi98@yahoo.com (ghasemi.m@lu.ac.ir)

