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Abstract. In most of the real-life applications we deal with the problem of transporting
some special fruits, as banana, which has particular production and distribution processes.
In this paper we restrict our attention to formulating and solving a new bi-criterion problem
on a network in which in addition to minimizing the traversing costs, admissibility of the
quality level of fruits is a main objective. However, the fruits are possibly stored at some
intermediate node for practical purposes. We call the new model the best shipping pattern
problem with intermediate storage. Here, it is assumed that both arc costs and times are crisp
numbers. The main contribution of this model is an actual interpretation of the given fuzzy
trapezoidal number, as the quality of delivered commodities. Since the presented problem has
a fuzzy structure, the Bellman and Zadeh’s max-min criterion can be used to treat it as a
crisp single-objective problem, which is easily solvable. An illustrative example is solved, to
explain the presented details.
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1. Introduction

Many real optimization problems contained in every facet of industrial planning,
production and distribution can be modelled by network flows (see [1], for example).
However, in general, network flow models, like any mathematical programming
model, can be just projections of reality into mathematics involving simplifications
and fuzzy data. Various modifications of mathematical programming tools, such
as fuzzy (see [8]) and multi-criterion optimization (see, e.g., [11]), are considered
to provide the decision maker, who bases his/her decisions on such models, with a
larger variety of alternatives.
Since the fuzzy set theory was proposed by Zadeh in 1965 ([13]), we have been

able to handle vague or fuzzy data to real world applications. The concept of
fuzzy set theory has been found extensive applications in various fields. Originally,
Bellman and Zadeh [2] described the role of fuzzy sets in decision processes. A few
years after, the original statements of Bellman and Zadeh provide main motivation
for the use of fuzzy set theory in several research studies, such as Zimmermann
[15] who handled fuzzy linear programming with multiple objectives by assuming
a continuous membership function. Soon after, his fuzzy model was developed
into fuzzy multiobjective optimization models ([5, 9]). In particular, several fuzzy
network flow problems with multiple objective functions were later proposed in the
literature (For a more detailed discussion of such problems, the reader is referred
to, for instance, ([4]-[14]) and references therein).
In this note, we deal with the following problem which arises quite naturally in

the real world and so we will restrict our attention to formulating a new network
flow model and then, try to solve it based on the Bellman and Zadeh’s principle
([2]): Suppose that we wish to transport some special commodities, as banana,
from one city to another city through a given road network. These fruits are picked
unripe and continuation of the ripening process is done until reaching consumers.
As different fruits need different times for ripening, and their quality and taste are
changed over time and the ripening process be done during the shipping pattern
from origin to destination, so besides the total traversing cost, the quality of deliv-
ered fruits is important. On the other hand, sometimes, we need to store the fruits
at some intermediate node for improving the quality, which has additional storage
costs. Therefore, we deal with a bi-objective problem, which is to determine a path
from source to sink, so that its transportation cost is minimized and the quality of
the transported fruits is maximized, as much as possible. In other words, the prob-
lem concentrates on two criteria: total transportation cost and the total traversing
time, which must be close to a given time interval, as far as possible. We call it the
best shipping pattern problem with intermediate storage. It is assumed that both
the traversing and the storage costs of arcs in the network are crisp values, and a
fuzzy trapezoidal number ([8]) is used to describe the dependence of the quality on
both traversing and storage times. As will be noted in the next sections, this fuzzy
number, as the quality of delivered commodities, is the main contribution of the
new model. On the other hand, it is our motivation to use the Bellman-Zadeh’s
principle of decision making in the fuzzy environment to be able to solve the new
model for identifying the fuzzy decision as the best path of a given road network
discussed earlier. To this end, we shall first fuzzify the cost objective function and
then use the Bellman-Zadeh’s max-min criterion ([2]), to reformulate the problem
as a mixed integer linear programming problem.
The rest of the paper is organized as follows: In the next Section, some basic

concepts on fuzzy sets are reviewed. We describe and formulate a new best shipping
pattern problem with intermediate storage, as a bi-objective optimization model
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in third Section. Subsequently, this new problem is reformulated as a crisp single
criterion mixed integer problem, based on the fuzzy max-min criterion. The fourth
Section of the paper tries to explain the details of the proposed approach by solving
a numerical example. Finally, the last section of the paper submits our concluding
observations and further directions.

2. Preliminary

In this section, some basic definitions from fuzzy set theory are reviewed ([8]).

Definition 2.1 If X is a collection of objects denoted generically by x, then a fuzzy
set Ã in X is a set of ordered pairs:

Ã =
{
(x, µÃ(x))|x ∈ X

}
µÃ(x) is called the membership function or grade of membership of x in Ã that

maps X to the unit interval [0, 1]. The support of a fuzzy set Ã is the crisp set of
all x ∈ X such that µÃ > 0, and is denote by supp(Ã).

Definition 2.2 A fuzzy subset Ã of R with membership mapping µ : R → [0, 1] is
called fuzzy number if its support is an interval [a, b] and there exist real numbers
s, t with a ⩽ s ⩽ t ⩽ b and such that:

(1) µ(x) = 1 with s ⩽ x ⩽ t
(2) µ(x) ⩽ µ(y) with a ⩽ x ⩽ y ⩽ s
(3) µ(x) ⩾ µ(y) with t ⩽ x ⩽ y ⩽ b
(4) µ(x) is upper semi-continuous.

3. A new problem

Let G = (N,A) be a directed network defined by a set N of n nodes and a set
A of m directed arcs ([1]). Each arc (i, j) ∈ A has an associated cost cij and
time tij , as crisp numbers, that denote the cost and time per unit flow on that
arc, respectively. Network G has two distinguished nodes O and D, called Origin
and Destination, respectively. A directed path P from node i to node j in G is an
alternating sequence of nodes and arcs started at i and terminated in j. To simplify
the notation, we represent a path only by its nodes. Every path has its own transit
cost and time; the transit cost and time of a directed path is defined as the sum of
costs and times of its constituent arcs, respectively. As mentioned earlier, we wish to
transport some especial commodities, which their quality changes over time, from
the origin to the destination. For practical purposes, the fruits are possibly stored
at some intermediate node k with storage time of τk (note that τk is a variable
which must be determined) and c̄k as the cost of storage per unit time, which are
also crisp numbers. To tackle this issue, we use a fuzzy trapezoidal number ([8])
T̃ = ⟨l, u, v, L⟩, as defined below, to illustrate the quality of a commodity based on
the total transit time.

µ(TP ) =


TP−l
u−l , l ⩽ TP ⩽ u;

1, u ⩽ TP ⩽ v;
L−TP

L−v , v ⩽ TP ⩽ L;

0, Otherwise.

(1)
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To interpret the role of µ(TP ), we remind the example of transporting especial

quality

time
l L

1

u v TP

µ(TP )

Figure 1.: Membership function of T̃

fruits as banana. These types of fruits are picked unripe, and the continuation of
the ripening process is done until reaching consumers. The quality of transported
fruits changes continually with time, this quality is monotonically increasing from
l to u, is constant, as the highest level, between u and v, and is monotonically
decreasing from v to L.
As shown in 1 and Figure 1, if the total time of a path P is TP =

∑
(i,j)∈P tij +∑

k∈P τk, then µ(TP ), as the membership degree of TP , shows the quality of the
delivered commodity, sent through P . Therefore, in order to maximizing the quality
of delivered commodity, TP must be close to the interval [u, v], as far as possible.
On the other hand, minimizing the total traversing cost is an important objective,
which should be included in the analysis of the model. Using these notations we
can now formulate the following best shipping pattern problem with intermediate
storage:

min C(x, τ) =
∑

(i,j)∈A

cijxij +

n∑
k=1

c̄kτk

max µ(T (x, τ)) = µ(
∑

(i,j)∈A

tijxij +

n∑
k=1

τk)

s.t. ∑
(i,j)∈A

xij +
∑

(j,i)∈A

xji =

1, i = O;
0, i ̸= O,D; i ∈ N
−1, i = D.

0 ⩽ τk ⩽ M
n∑

k=1

xik

xij ∈ {0, 1}, ∀i, j ∈ N.

. (2)

where, the binary variable xij is one if arc (i, j) belongs to the selected path and
is zero otherwise. For some sufficiently large constant M , the second constraint of
Model 2 implies that if node k does not belong to the selected path, then its storage
time is equal to zero, i.e., τk = 0. For the sake of convenience, let us define the
set X as the set of feasible solutions to the problem 2, so we can define a feasible
solution (x, τ) ∈ X as the solution (. . . , xij , . . . , . . . , τk, . . .).

4. Problem solving

The presented problem in the previous section is a bi-objective optimization model;
for these types of models, instead of the optimal solution, the concept of efficient
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solution is defined ([5, 11]). Following definitions introduced this concept.

Definition 4.1 Let (x∗, τ∗) ∈ X be a feasible solution of the model 2. (x∗, τ∗) is
called weakly efficient, if there is no other feasible solution (x, τ) ∈ X such that
C(x, τ) < C(x∗, τ∗) and µ(T (x, τ)) > µ(T (x∗, τ∗)).

Definition 4.2 Let (x∗, τ∗) ∈ X be a feasible solution of the model 2. (x∗, τ∗) is
called efficient, if there is no other feasible solution (x, τ) ∈ X such that C(x, τ) ⩽
C(x∗, τ∗) and µ(T (x, τ)) ⩾ µ(T (x∗, τ∗)), with at least one strict inequality. If
(x∗, τ∗) is efficient, then the vector (C(x∗, τ∗), T (x∗, τ∗)) is called non-dominated
point.

It should be noted that the efficient solution is not generally unique (see [11]),
and from the geometrical point of view, efficient solutions are points of the feasible
space, but non-dominated points, as the image of the efficient solutions, are located
in the objectives space.
Now, we try to reformulate the problem 2 as a single objective optimization

problem, and solve it to find an efficient solution. Toward this end, at first we
fuzzify the cost objective function ([8]). Let C̃ denote the fuzzy form of the total
traversing cost, we define the membership function of C̃ as a linear monotonically
decreasing function that shown in 3 and Fig.2.

π(C(x, τ)) = π(
∑

(i,j)∈A

cijxij +

n∑
k=1

c̄kτk) =


1, C(x, τ) ⩽ Z0;
Z1−C(x,τ)
Z1−Z0

, Z0 < C(x, τ) < Z1;

0, Otherwise.

(3)

Where, Z0 and Z1, as constant numbers, are the lower and upper bounds of C̃,
respectively. These bounds are subjectively dependent on the decision makers sug-
gestion; nevertheless, we can use the following logical values, as alternative choices.

Z0 = min
(x,τ)∈X

(
∑

(i,j)∈A

cijxij +

n∑
k=1

c̄kτk) and Z1 = max
(x,τ)∈X

(
∑

(i,j)∈A

cijxij +

n∑
k=1

c̄kτk)

(4)
Using the above notations and the fuzzy max-min criterion ([5, 8]), suggested by

cost

1

Z1Z0 C(x, τ)

π(C(x, τ))

Figure 2.: Membership function of C̃

Bellman and Zadeh [2], we can modify the model 2 as the following model.

max
(x,τ)∈X

min {π(C(x, τ)), µ(T (x, τ))} (5)
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or

max min

π(
∑

(i,j)∈A

cijxij +

n∑
k=1

c̄kτk), µ(T (
∑

(i,j)∈A

tijxij +

n∑
k=1

τk))


s.t. ∑

(i,j)∈A

xij +
∑

(j,i)∈A

xji =

1, i = O;
0, i ̸= O,D; i ∈ N
−1, i = D.

0 ⩽ τk ⩽ M

n∑
k=1

xik

xij ∈ {0, 1}, ∀i, j ∈ N.

. (6)

By setting λ = min

π(
∑

(i,j)∈A

cijxij +
n∑

k=1

c̄kτk), µ(T (
∑

(i,j)∈A

tijxij +
n∑

k=1

τk))

,

problem 6 can be reformulated as:

max λ

s.t. λ ⩽

Z1 − C
∑

(i,j)∈A

cijxij −
n∑

k=1

c̄kτk

Z1 − Z0
(a)

λ ⩽

∑
(i,j)∈A

tijxij +
n∑

k=1

τk − l

u− l
(b)

λ ⩽

L−
∑

(i,j)∈A

tijxij −
n∑

k=1

τk

L− v
(c)

∑
(i,j)∈A

xij +
∑

(j,i)∈A

xji =

1, i = O;
0, i ̸= O,D; i ∈ N
−1, i = D.

0 ⩽ τk ⩽ M

n∑
k=1

xik

xij ∈ {0, 1}, (i, j) ∈ A

λ ⩾ 0 (7)

Constraint (7 (a)) is related to the membership function of cost and the con-
straints (7 (b)) and (7 (c)) are related to the membership function of time, which
indicate lower bounds for the quality of delivered commodity. Each of these three
constraints implies that λ ⩽ 1. It is easy to check that the model 7 can be simplified
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as follows:

max λ

s.t. (Z1 − Z0)λ+
∑

(i,j)∈A

cijxij +

n∑
k=1

c̄kτk ⩽ Z1 (a)

(u− l)λ−
∑

(i,j)∈A

tijxij −
n∑

k=1

τk ⩽ −l (b)

(L− v)λ+
∑

(i,j)∈A

tijxij +
n∑

k=1

τk ⩽ L (c)

∑
(i,j)∈A

xij +
∑

(j,i)∈A

xji =

1, i = O;
0, i ̸= O,D; i ∈ N
−1, i = D.

0 ⩽ τk ⩽ M
n∑

k=1

xik

xij ∈ {0, 1}, (i, j) ∈ A

λ ⩾ 0 (8)

It is obvious that Model 8 is a mixed integer linear programming problem and
can be solved using the well-known methods [3]. Following theorem shows that
the optimal solution of 8 is associated with an efficient solution of the bi-objective
problem 2.

Theorem 4.1 If (λ∗, x∗, τ∗) is an optimal solution of the model 8, then (x∗, τ∗) is
an efficient solution of the model 2.

Proof. Since the model 8 is a reformulated form of the model 5, we prove
the theorem using the model 5. Now let (λ∗, x∗, τ∗) be an optimal solution of 8,
so λ∗ = min{π(C(x∗, τ∗)), µ(T (x∗, τ∗))}. If (x∗, τ∗) is not efficient, so based on
Definition 4.2, there is another feasible solution as (x̄, τ̄) such that, one of the
following cases occurs:

(a) C(x̄, τ̄) < C(x∗, τ∗) and µ(T (x̄, τ̄)) ⩾ µ(T (x∗, τ∗));
(b) C(x̄, τ̄) ⩽ C(x∗, τ∗) and µ(T (x̄, τ̄)) > µ(T (x∗, τ∗)).

If case (a) is true, then

π(C(x∗, τ∗)) = Z1−C(x∗,τ∗)
Z1−Z0

< π(C(x̄, τ̄)) = Z1−C(x̄,τ̄)
Z1−Z0

and so

λ∗ = min{π(C(x∗, τ∗)), µ(T (x∗, τ∗))} ⩽ min{π(C(x̄, τ̄), µ(T (x̄, τ̄))}.

If λ∗ = π(C(x∗, τ∗)) then we will have λ∗ < min{π(C(x̄, τ̄), µ(T (x̄, τ̄))}, which

contradicts the optimality of λ∗. If λ∗ = µ(T (x∗, τ∗)) < µ(T (x̄, τ̄)), again we

have λ∗ < min{π(C(x̄, τ̄), µ(T (x̄, τ̄))}, which is a contradiction. Finally, if λ∗ =
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µ(T (x∗, τ∗)) = µ(T (x̄, τ̄)) then (x∗, τ∗) is a weakly efficient solution.

Case (b) can be deduced as a similar manner. □

5. Numerical example

In this section, in order to show how the proposed approach can be used to com-

pute a best shipping pattern, we provide a numerical illustrative example. For

the sake of exposition, we solve a small size problem and present the computa-

tional results (One can use CPLEX solver of the GAMS Software (available at

http : //gams.com/) to solve it).

Consider the bi-objective best shipping pattern problem, defined on a network

having 8 nodes and 15 arcs, as depicted in Fig.3. We assume that nodes 1 and

8 are origin and destination nodes, respectively, and the given fuzzy trapezoidal

number T̃ = ⟨l, u, v, L⟩ is ⟨45, 59, 63, 70⟩. Also, by solving the problems of 4, it is

easy to show that:

Z0 = min
(x,τ)∈X

(
∑

(i,j)∈A

cijxij +

n∑
k=1

c̄kτk) = 23

and

Z1 = max
(x,τ)∈X

(
∑

(i,j)∈A

cijxij +

n∑
k=1

c̄kτk) = 235

Using the CPLEX solver of the GAMS software, the optimal solution of the

problem 8 is as follows:

λ∗ = 0.745

x∗12 = x∗24 = x∗46 = x∗67 = x∗78 = 1

τ∗1 = τ∗7 = 9, τ∗2 = 2

and all the other variables equal to zero.

C(x∗, τ∗) = 77, T (x∗, τ∗) = 56.

Clearly, P = 1− 2− 4− 6− 7− 8 is the best path and the quality level of the

delivered commodity on this path is µ(T (x∗, τ∗) = 56−45
59−45 = 0.786. Also, the mem-

bership degree of traversing cost is π(C(x∗, τ∗)) = 235−77
235−23 = 0.745.
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Figure 3.: Network of the numerical example

6. Conclusion

In this paper a best shipping pattern problem with intermediate storage, on a

network with crisp arc costs, crisp arc times and the total traversing time as a fuzzy

trapezoidal number, is formulated and solved. The main contribution of this model

is an actual interpretation of the given fuzzy trapezoidal number, as the quality

of delivered commodities. Since the presented problem has a fuzzy structure, the

Bellman and Zadeh’s max-min criterion, has been used to formulate the problem

as a crisp single objective model, which is easily solvable.

Authors believe that the extension of the proposed model for the networks, with

fuzzy arc costs and times, will be an important future research issue, and also the

ability to present a labeling technique will be an important future research issue.

Acknowledgment

This study is supported under research project entitled ”A searching best path

problem with imprecise total time” by Islamic Azad University, Masjed Soleiman

Branch. The first author is grateful for this financial support.

References

[1] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows, Prentice-Hall, Englewood Cliffs, NJ,
(1993).

[2] R. E. Bellman, L. A. Zadeh, Decision-making in a fuzzy environment, Manage. Sci. 17B (1970),
141–164.

[3] D. Bertsimas, J. N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, Belmont,
Massachusetts (1997).

[4] A. K. Bit, M. P. Biswal & S. S. Alam, An additive fuzzy programming model for multi objective
transportation problem, Fuzzy Set Syst. 57 (1993) 313-319.

[5] C. Kahraman, Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Devel-
opments, Springer, (2008).

[6] M. Kaur, A. Kumar, Optimal compromise solution of multi-objective minimal cost flow problems in
fuzzy environment, Appl. Math. Model. 37 (2013) 1677-1693.



252 M. Rahimian et al./ IJM2C, 06 - 03 (2016) 243-252.

[7] E. Keshavarz, E. Khorram, A fuzzy bi-criteria transportation problem, Comput. Ind. Eng. 61 (2011)
947-957.

[8] G. J. Klir, Bo Yuan, Fuzzy sets and fuzzy logic ( Theory and applications), Prentice Hall, (1995).
[9] Y.-Y. Lai and C.-L. Hwang, Fuzzy Multiple objective Decision Making: Methods and Applications,

Springer-Verlag, Berlin, (1996).
[12] S. Okada, T. Soper, A shortest path problem on a network with fuzzy arc lengths, Fuzzy Set Syst.

109 (2000) 129–140.
[11] R. E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley

& Sons, New York, (1986).
[12] P. Tapkan, L. Ozbakr, A. Baykasoglu, Solving fuzzy multiple objective generalized assignment prob-

lems directly via bees algorithm and fuzzy ranking, Expert Syst. Appl. 40 (2013) 892-898.
[13] L. A. Zadeh, Fuzzy sets, Inform. Cont. 8 (1965), 338-353.
[14] F. A. Zammori, M. Braglia, M. Frosolini, A fuzzy multi-criteria approach for critical path definition,

INT. J. Proj. Manage. 27 (2009) 278-291.
[15] H. J. Zimmermann, Fuzzy programming and linear programming with several objective functions,

Fuzzy Set Syst. 1 (1978) 45-55.


