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1. Introduction

The topic of fuzzy differential equations (FDEs)has been attracting growing interest
for some time, particularly regarding fuzzy control. As a result, the subfield has
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rapidly developed in recent years. At first, definitions of fuzzy derivatives and
integrals were developed; then, the concept of FDEs was introduced, and sufficient
conditions for the existence of unique solutions to these equations were established.
Finally, algorithms for calculating approximate solutions were devised. Thus, in
order to understand fuzzy differential equations and their associated numerical
algorithms, introduction to fuzzy numbers and fuzzy calculus is necessary.
The concept of fuzzy sets which was originally introduced by Zadeh, led to the

definition of the fuzzy number and its subsequent application to both fuzzy control
[10] and approximate reasoning problems [38]. The basic arithmetic structure for
fuzzy numbers was later developed by Mizumoto and Tanaka [26, 27], Nahmias [28],
Dubios and Prade [11, 13] and Ralescu [32], all of whom defined a fuzzy number
as a location of r− levels 0 ⩽ r ⩽ 1. Additional background material can be found
in [5, 6, 9, 16–18, 20, 22, 35].
The fuzzy mapping function was introduced by Chang and Zadeh [10]. Later,

Dubois and Prade presented an elementary fuzzy calculus based on the extension
principle. Puri and Ralescu [30]then suggested two methods for the fuzzy deriva-
tive of fuzzy functions. The first method was based on the H-difference notation
and was further investigated by Kaleva [21]. The second method was derived from
the embedding technique and was analyzed by Goetschel and Voxman [18], both of
whom used the method to develop various applications. Strongly generalized differ-
entiability was introduced in [7] and studied in [8]. Indeed, the strongly generalized
derivative is defined for a larger class of fuzzy-number-valued function than the set
of functions for which the H-derivative is defined, and fuzzy differential equations
may have solutions that have a decreasing length of their support, that is, decreas-
ing uncertainty. Thus, we use strongly generalized differentiability concept in the
present paper.
The concept of integrating a fuzzy function was first introduced by Dubois and

Prade [12]. Alternative approaches were later suggested by Goetschel and Voxman
[19], Kaleva [21], among others. While Goetschel and Voxman [18] and later Mat-
loke used a Riemann integral type approach, Kaleva [21] defined the integral of a
fuzzy function using Lebesgue integration.
The notion of fuzzy differential equation was initially introduced by Kandel and

Byatt [23] and later applied to fuzzy processes and fuzzy dynamical systems. A
Fuzzy Cauchy problems have been thoroughly researched by Kaleva [21], Seikkala
[33], Ouyang and Wu [24], and Kloeden and Wu [36]. The numerical method used
for solving fuzzy differential equations are introduced in [2, 14, 25]. In addition,
several applications of FDEs to fuzzy control are presented in [31].
In this study, we concentrate on algorithms to solve FDEs that possess unique

fuzzy solutions. In Section 2, some basic definitions and results are presented. In
Section 3, the concept of fuzzy Newton finite differences is reviewed. The Adams-
Bashforth method, Adams-Moulten method and their corresponding algorithms
are introduced in Sections 4 and 5, respectively. We prove convergence of this
methods in Section 6. In addition, we demonstrate these methods in Section 7.
Finally, concluding remarks are presented in Section 8.

2. Preliminaries

We now recall some definitions that form the foundation of this paper. We denote
R as the set of all real numbers.
The basic definition of fuzzy numbers is given in [34, 37] as follows:
A fuzzy number is a mapping u : R → [0, 1] with the following properties:

(a) u is upper semi-continuous,
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(b) u is fuzzy convex, i.e., u(λx + (1 − λ)y) ⩾ min{u(x), u(y)} for all
x, y ∈ R, λ ∈ [0, 1],
(c) u is normal, i.e.,∃x0 ∈ R for which u(x0) = 1,
(d) supp u = {x ∈ R | u(x) > 0} is the support of the u, and its closure cl(supp u)
is compact.
Let E be the set of all fuzzy number on R. The r-level set of a fuzzy number
u ∈ E, 0 ⩽ r ⩽ 1, denoted by [u]r is defined as

[u]r =

{
{x ∈ R | u(x) ⩾ r} if 0 < r ⩽ 1
cl(supp u) if r = 0

It is clear that the r-level set of a fuzzy number is a closed and bounded interval
[u(r), u(r)], where u(r) denotes the left-hand endpoint of [u]r and u(r) denotes
the right-hand [u]r. R can thus be embedded in E, because, each y ∈ R can be
regarded as a fuzzy number, with ỹ defined by

ỹ(t) =

{
1 if t = y
o if t ̸= y

It is well known that the following properties are true for all levels

[u⊕ v]r = [u]r + [v]r, [k ⊙ u]r = k[u]r

From this, we see that a fuzzy number is determined by the endpoints of the
intervals [u]r. For arbitrary u = [u(r), u(r)], v = [v(r), v(r)] and k > 0, we define
addition u⊕ v , subtraction u⊖ v and scaler multiplication k as follows:

(a) Addition:

u⊕ v = [u(r) + v(r), u(r) + v(r)]

(b) Subtraction:

u⊖ v = [u(r)− v(r), u(r)− v(r)]

(c) Scalar multiplication:

ku =

 (ku(r), ku(r)), k ⩾ 0,

(ku(r), ku(r)), k < 0.

The Hausdorff distance between fuzzy numbers[5] is given by D : E×E −→ R ⩾ 0,

D(u, v) = sup
r∈[0,1]

max{|u(r)− v(r)|, |u(r)− v(r)|},

where u = [u(r), u(r)] ,v = [v(r), v(r)] ⊂ R are utilized. Thus, D is a metric in E
and has the following properties :
(i)D(u⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ E,
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(ii)D(k ⊙ u, k ⊙ v) = |k|D(u, v), ∀k ∈ R, u, v ∈ E,
(iii)D(u⊕ v, w ⊕ e) ⩽ D(u,w) +D(v, e), ∀u, v, w, e ∈ E,
(iv)(D,E) is a complete metric space.

Definition 2.1 [5]Let E be a set of all fuzzy numbers. f is said to be a fuzzy-valued
function if f : R → E

Definition 2.2 [5] Let f : R → E be a fuzzy-valued function. If for an arbitrary,
fixed t0 ∈ R, ϵ > 0, and δ > 0 such that

|t− t0| < δ ⇒ D(f(t), f(t0)) < ϵ,

the f is said to be continuous(See [14]).

Definition 2.3 [5] A mapping f : R × E → E is called continuous at point
(t0, x0) ∈ R × E provided that for any fixed r ∈ [0, 1] and arbitrary ϵ > 0, there
exists an δ(ϵ, r) such that

D([f(t, x)]r, [f(t0, x0)]r) < ϵ

whenever |t − t0| < δ(ϵ, r) and D([x]r, [x0]r) < δ(ϵ, r) for all t ∈ R, x ∈ E (See
[34]).

Definition 2.4 [5] A function f : R → E is Riemann-integrable on [a, b] if there
exists IR ∈ E with the property that: ∀ϵ > 0, ∃δ > 0, such that for any division of
[a, b], d : a = x0 < . . . < xn = b, of norm v(d) < δ and for any point ξi ∈ [xi, xi+1],
i = 0, . . . n− 1,
D(

∑n−1
i=0 f(ξi).(xi+1 − xi), IR) < ϵ.

We denote IR =
∫ b
a f(x) as the fuzzy Riemann integral (see [15]).

H-derivatives refer to functions differentiated according to the Hukuhara method;
it is well-known that the H-derivative for fuzzy mappings was initially introduced
by Puri and Ralescu([30]). It is based on the notion of H-difference of sets, defined
as follows:

Definition 2.5 [5] Let x, y ∈ E. If there exists z ∈ E such that x = y ⊕ z, then
z is called the H-difference of x and y, and it is denoted by x−h y.

In this paper, the sign ”−h” always stands for H-difference, also note that x−hy ̸=
x⊖ y.
In this paper, we consider the following definition which was introduced by Bede
and Gal in ([8]).

Definition 2.6 Let f : (a, b) → E and x0 ∈ (a, b). f is strongly generalized
differential at x0 (Bede-Gal differential), if there exists an element f

′
(x0) ∈ E,

such that
(i) for all h > 0 sufficiently small, ∃f(x0 + h) −h f(x0) and ∃f(x0) −h f(x0 − h)
so that in the metric D
limh↘0

f(x0+h)−hf(x0)
h = limh↘0

f(x0)−hf(x0−h)
h = f

′
(x0)

or
(ii) for all h > 0 sufficiently small, ∃f(x0)−h f(x0 + h) and ∃f(x0 − h)−h f(x0)
so that in the metric D
limh↘0

f(x0)−hf(x0+h)
−h = limh↘0

f(x0−h)−hf(x0)
−h = f

′
(x0)

or
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(iii) for all h > 0 sufficiently small, ∃f(x0 + h)−h f(x0) and ∃f(x0 − h)−h f(x0)
so that in the metric D
limh↘0

f(x0+h)−hf(x0)
h = limh↘0

f(x0−h)−hf(x0)
−h = f

′
(x0)

or
(iv) for all h > 0 sufficiently small, ∃f(x0)−h f(x0 + h) and ∃f(x0)−h f(x0 − h)
so that in the metric D
limh↘0

f(x0)−hf(x0+h)
−h = limh↘0

f(x0)−hf(x0−h)
h = f

′
(x0)

The denominators of h and −h denote multiplication by 1
h and −1

h , respectively.

To account for the special case when f is a fuzzy-valued function, we have the
following theorem.

Theorem 2.7 Let f : R → E be a function and denote [f(t)]r = [f(t, r), f(t, r)],
for each r ∈ [0, 1]. Then
(1)If is f differentiable according to Definition 2.6 (i), then f(t, r) and f(t, r) are
differentiable functions and

[f
′
(t)]r = [f

′
(t, r), f

′

(t, r)].

(2)If is f differentiable according to Definition 2.6 (ii), then f(t, r) and f(t, r) are
differentiable functions and

[f
′
(t)]r = [f

′

(t, r), f
′
(t, r)].

Theorem 2.8 [4] Let f : R → E and let d : {a = b0 < b1 < . . . < bn = b} be
a division of the interval [a, b] such that f is (i)- or (ii)-differentiable according
to Definition 2.6 on each intervals [bi−1, bi], i = 1, ..., n, with the same kind of
differentiability on each subinterval. Then∫ b
a f

′
(x)dx =

∑
i∈I(f(bi)− f(bi−1))⊕ (−1)⊙

∑
i/∈I(f(bk−1)− f(bk)),

where
I = {i ∈ {1, ..., n} such that f is (i)-differentiable on (bi−1, bi)}(See e.g. [8]).

Lemma 2.9 For x0 ∈ R, the fuzzy differential equation y
′
= f(x, y), where

y(x0) = y0 ∈ E and f : R × E −→ E is continuous, is equivalent to one of
the following integral equations:
y(x) = y0 ⊕

∫ x
x0

f(t, y(t))dt, ∀x ∈ [x0, x1]
or
y(0) = y(x)⊕ (−1)⊙

∫ x
x0

f(t, y(t))dt, ∀x ∈ [x0, x1]

on some interval (x0, x1) ⊂ R, depending on which type of differentiability is con-
sidered, according to Definition 2.6, that is, (i) or (ii), respectively(See [8]).

The equivalence between the two equations means that any solution to one equa-
tion is a solution to the other as well.

Remark 1 In the case of strongly generalized differentiability, we have two different
integral equations for the fuzzy differential equation y

′
= f(x, y), while in the case

of H-differentiability, we have only one. The second integral equation in Lemma
(2.9) can be written in the form y(x) = y0 −h (−1)⊙

∫ x
x0

f(t, y(t))dt(See [8]).

The following theorems concern the existence of solutions to fuzzy initial-value
problems under generalized differentiability (see [8]).

Theorem 2.10 Note the following conditions.

(a) Let R0 = [x0, x0 + p] × B(y0, q), p, q > 0, y0 ∈ E, where B(y0, q) = {y ∈
E : D(y, y0) ⩽ q}, denote a closed ball in E and let f : R0 −→ E be
a continuous function such that D(0̃, f(x, y)) = ∥f(x, y)∥ ⩽ M for all
(x, y) ∈ R0

(b) Let g : [x0, x0 + p] × [0, q] −→ E, such that g(x, 0) ≡ 0, 0 ⩽ g(x, u) ⩽ M1.
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∀ ∈ [x0, x0+p], 0 ⩽ u ⩽ q, g(x, u) is non-decreasing in u, and g is such that
the initial-value problem u

′
(x) = g(x, u(x)), u(x0) = 0 only has the solution

u(x) ≡ 0 on [x0, x0 + p].
(c) If D(f(x, y), f(x, z)) ⩽ g(x,D(y, z)), ∀(x, y), (x, z) ∈ R0 and D(y, z) ⩽ q.
(d) There exists d > 0 such that for x ∈ [x0, x0 + d], the sequence yn : [x0, x0 +

d] −→ E given by y0(x) = y0, yn+1(x) = y0 −h (−1)⊙
∫ x
x0

f(t, yn)dt and is
defined for any n ∈ N .

If the conditions (a) through (d) hold, then the fuzzy initial-value problem{
y′ = f(x, y),
y(x0) = y0

has two solutions, (i)-differentiable and the other one (ii)-differentiable , according
to Definition 2.6:
y, y : [x0, x0 + r] −→ B(y0, q) where r = min{p, q

M , q
M1

, d} and the successive
iterations

y0(x) = y0, yn+1(x) = y0 ⊕
∫ x

x0

f(t, yn(t))dt, (1)

and

y0(x) = y0, yn+1(x) = y0 −h (−1)⊙
∫ x

x0

f(t, yn(t))dt, (2)

converge to the two solutions, respectively.

Theorem 2.11 Note the following conditions.

(a) Let R0 = [x0, x0 + p] × B(y0, q), p, q > 0, y0 ∈ E, where B(y0, q) = {y ∈
E : D(y, y0) ⩽ q}, denote a closed ball in E and let f : R0 −→ E be
a continuous function such that D(0̃, f(x, y)) = ∥f(x, y)∥ ⩽ M for all
(x, y) ∈ R0

(b) Let g : [x0, x0 + p] × [0, q] −→ E, such that g(x, 0) ≡ 0, 0 ⩽ g(x, u) ⩽ M1.
∀ ∈ [x0, x0+p], 0 ⩽ u ⩽ q, g(x, u) is non-decreasing in u, and g is such that
the initial-value problem u

′
(x) = g(x, u(x)), u(x0) = 0 only has the solution

u(x) ≡ 0 on [x0, x0 + p].
(c) If D(f(x, y), f(x, z)) ⩽ g(x,D(y, z)), ∀(x, y), (x, z) ∈ R0 and D(y, z) ⩽ q.
(d) There exists d > 0 such that for x ∈ [x0, x0 + d], the sequence yn : [x0, x0 +

d] −→ E given by y0(x) = y0, yn+1(x) = y0 −h (−1)⊙
∫ x
x0

f(t, yn)dt and is
defined for any n ∈ N .

If the conditions (a) through (d) hold, then the fuzzy initial-value problem{
y′ = f(x, y),
y(x0) = y0

has two solutions, (i)-differentiable and the other one (ii)-differentiable , according
to Definition 2.6:
y, y : [x0, x0 + r] −→ B(y0, q) where r = min{p, q

M , q
M1

, d} and the successive
iterations

y0(x) = y0, yn+1(x) = y0 ⊕
∫ x

x0

f(t, yn(t))dt, (3)

and

y0(x) = y0, yn+1(x) = y0 −h (−1)⊙
∫ x

x0

f(t, yn(t))dt, (4)
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converge to the two solutions, respectively.

According to Theorem 2.11, we restrict our attention to functions that are (i)-
or (ii)-differentiable on their domain except for a finite number of points (See [8]).
The following results address fuzzy differential equations with triangular data. We
recall that for a < b < c and a, b, c ∈ R, the triangular fuzzy number u = (a, b, c)
determined by a, b, c is given such that u(r) = a+ (b− c)r and u(r) = c− (c− b)r
are the endpoints of the r-level sets, for all r ∈ [0, 1]. Here u(r) = u(r) = b and
it is denoted by [u]1. The set of triangular fuzzy numbers will be denoted by
E. The following Lemma 2.12gives a sufficient condition for the existence of the
H-difference between two triangular fuzzy numbers.

Lemma 2.12 (See [8]) Let u, v ∈ E be such that u(1)− u(0) > 0, u(0)− u(1) > 0,
and len(v) = (v(0)− v(0)) ⩽ min{u(1)− u(0), u(0)− u(1)}. Then the H-difference
u⊖ v exists.

The following corollary gives a simple sufficient condition for the existence of
fuzzy differential equations under strongly generalized differentiability.

Corollary 2.13 Let f : R0 −→ E where R0 = [x0, x0 + p] × (B(y0, q) ∩ E),
and y0 ∈ E such that y(0, 1)− y(0, 0) and y(0, 0)− y(0, 1). Let m = min{y(0, 1)−
y(0, 0), y(0, 0) − y(0, 1)}. Under assumptions (a)-(c) of Theorem (2.11), the fuzzy
initial-value problem {

y′ = f(x, y),
y(x0) = y0

has two solutions y, y : [x0, x0 + r] −→ B(y0, q) where r = min{p, q
M , q

M , m
2M }, and

the successive iterations in (3) and (4) converge to these two solutions, respectively.

3. Fuzzy Newton Finite Differences

It often occurs that interpolation data are not sets of real numbers but are ranges
of values whose distribution within the range may not be probabilistic but known
possibilistically or qualitatively. For this reason, Allahviranloo and Hajjari in [3]
suggest fuzzy Newton finite difference formula as follows:
For a given partition ∆ : {a = x0 < x1 < . . . < xn = b}, where every xi has

an associated fuzzy number fi ∈ E, we find a polynomial p : R → E, such that
p(xi) = fi for all i = 0, 1, . . . , n. Representing p(x) using r−cuts, we can write

[p(x)]r = [p(x; r), p(x; r)] = {z ∈ R : z = p(x; r), p(xi; r) ∈ [fi]r, r ∈ [0, 1]}.

The fuzzy polynomial such as the Newton forward-difference formula is written in
the r−cuts form as

[p(x)]r =

j+t∑
ν=j

(θν )[∆
νfj ]r, r ∈ [0, 1], 0 ⩽ j ⩽ t ⩽ j + t ⩽ n, (5)

where θ = x−x0

h , h = xn−x0

n . The upper limit p(x; r) of the interval [p(x)]r is the
solution of the optimization problem

max p(x; r), s.t. fi(r) ⩽ p(xi; r) ⩽ fi(r)
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and, similarly, the lower limit p(x; r) of the interval [p(x)]r is the solution of the
optimization problem

min p(x; r), s.t. fi(r) ⩽ p(xi; r) ⩽ fi(r).

From the numerical stability of mentioned algorithm, we have 0 ≤ θ < 1. Then for
the even n:

(θν ) < 0, 2k + 2 = ν ⩾ 2,

k = 0, 1, . . . , n2 − 1

(θν ) > 0, ν = 0, 2k + 1 = ν ⩾ 2,

(6)

and for the odd n:
(θν ) < 0, 2k + 2 = ν ⩾ 2,

k = 0, 1, . . . , [n2 ]− 1

(θν ) > 0, ν = 0, 2k + 1 = ν ⩾ 2,

(7)

The r−level sets of ∆νfj in (5) are as follow

[∆νfj ]r = [∆νfj(r) , ∆νfj(r)], r ∈ [0, 1], 0 ⩽ ν ⩽ n. (8)

From Eqs. (6, 7) and algebraic operations of fuzzy intervals, for the even n = j+ t:

p(x; r) = fj(r) +
∑n

2
−1

ν=0 (
θ

2ν + 1)∆
2ν+1fj(r) +

∑n

2

ν=1(
θ
2ν )∆

2νfj(r),

p(x; r) = fj(r) +
∑n

2
−1

ν=0 (
θ

2ν + 1)∆
2ν+1fj(r) +

∑n

2

ν=1(
θ
2ν )∆

2νfj(r),

and for the odd n = j + t:

p(x; r) = fj(r) +
∑[n

2
]

ν=1(
θ

2ν + 1)∆
2ν+1fj(r) +

∑[n
2
]

ν=1(
θ
2ν )∆

2νfj(r),

p(x; r) = fj(r) +
∑[n

2
]

ν=1(
θ

2ν + 1)∆
2ν+1fj(r) +

∑[n
2
]

ν=1(
θ
2ν )∆

2νfj(r),

where

∆2νfj(r) =
∑ν

m=0(
2ν
2m )fj+2m(r)−

∑ν−1
m=0(

2ν
2m+ 1)fj+2m+1(r),

∆2νfj(r) =
∑ν

m=0(
2ν
2m )fj+2m(r)−

∑ν−1
m=0(

2ν
2m+ 1)fj+2m+1(r), 0 ⩽ ν ⩽ n

2 ,

and

∆2ν+1fj(r) =
∑[ 2ν+1

2
]

m=0 ( 2ν + 1
2m+ 1)fj+2m+1(r)−

∑[ 2ν+1

2
]

m=0 ( 2ν + 1
2m )fj+2m(r),

∆2ν+1fj(r) =
∑[ 2ν+1

2
]

m=0 ( 2ν + 1
2m+ 1)fj+2m+1(r)−

∑[ 2ν+1

2
]

m=0 ( 2ν + 1
2m )fj+2m(r), 0 ⩽ ν ⩽ [n2 ].

For more information see [3].
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Proposition 3.1 (see [3]). The [p(x)]r = [p(x; r), p(x; r)] are the r−level sets of
fuzzy-valued polynomial.

Theorem 3.2 (see [3]). Let p(x) be the interpolation of fuzzy function f for in-

terpolation points and suppose that the f (n+1) and f (n+1) exist and bounded on
[x0, xn] then

limh→0 p(x, h; r) = f(x; r),

limh→0 p(x, h; r) = f(x; r).

Theorem 3.3 (see [3]). If |xi| ̸= |xj |, 0 ≤ i ̸= j ≤ n then the fuzzy Newton finite
difference interpolation problem is unique.

4. Adams-Bashforth Methods

For solving the fuzzy initial-value problem by Adams-Bashforth m + 1-step
Method, let tn = t0 + nh, h = T−t0

N , 1 ⩽ n ⩽ N and the fuzzy initial values be
y(tn−m) = α(n − m) , ..., y(tn) = α(n), where the fuzzy numbers are in r−cut
form.
According to Lemma (2.9) and Theorem (2.7) we have:

y(tn+1) = y(tn)⊕
∫ tn+1

tn

f(t, y(t))dt

or

y(tn+1) = y(tn)−h (−1)⊙
∫ tn+1

tn

f(t, y(t))dt.

If on an interval we expect a solution with increasing support, then we find a
(i)-differentiable solution. If on an interval we expect a solution with decreasing
support, then we find a (ii)-differentiable solution. Such that

[y(tn+1)]r = [y
n+1

(r), yn+1(r)],

[y(tn)]r = [y
n
(r), yn(r)],

and y
n+1

(r) = y
n
(r) +

∫ tn+1

tn
f(t, r)dt

yn+1(r) = yn(r) +
∫ tn+1

tn
f(t, r)dt.

or y
n+1

(r) = y
n
(r) +

∫ tn+1

tn
f(t, r)dt

yn+1(r) = yn(r) +
∫ tn+1

tn
f(t, r)dt.
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Also let

f(t, r) ≃ p(t, r)

f(t, r) ≃ p(t, r)

by using the fuzzy Newton finite differences presented in Section 3, such that
t = tn + θh, dt = hdθ. The following results will be obtained:

p(t; r) =
∑m

k=0(−1)k( −θ
k )∆kfn−k(r)

p(t; r) =
∑m

k=0(−1)k( −θ
k )∆kfn−k(r).

(9)

For k = 2ν

∆kfn−k(r) =
∑ν

m=0(
2ν
2m )fn−k+2m(r)−

∑ν−1
m=0(

2ν
2m+ 1)fn−k+2m+1(r),

∆kfn−k(r) =
∑ν

m=0(
2ν
2m )fn−k+2m(r)−

∑ν−1
m=0(

2ν
2m+ 1)fn−k+2m+1(r),

(10)

and for k = 2ν + 1

∆kfn−k(r) =
∑[ 2ν+1

2
]

m=0 ( 2ν + 1
2m+ 1)fn−k+2m+1(r)−

∑[ 2ν+1

2
]

m=0 ( 2ν + 1
2m )fn−k+2m(r),

∆2ν+1fj(r) =
∑[ 2ν+1

2
]

m=0 ( 2ν + 1
2m+ 1)fn−k+2m+1(r)−

∑[ 2ν+1

2
]

m=0 ( 2ν + 1
2m )fn−k+2m(r).

(11)

Now, from Eqs. (9) it follows that:

∫ tn+1

tn
p(t; r)dt = h

∫ 1
0 (

∑m
k=0(−1)k( −θ

k )∆kfn−k(r))dθ

∫ tn+1

tn
p(t; r)dt = h

∫ 1
0 (

∑m
k=0(−1)k( −θ

k )∆kfn−k(r))dθ

since f is continuous and (−1)k( −θ
k ) is integrable and positive, so

∫ tn+1

tn
p(t; r)dt = h

∑m
k=0∆

kfn−k(r)
∫ 1
0 (−1)k( −θ

k )dθ

∫ tn+1

tn
p(t; r)dt = h

∑m
k=0∆

kfn−k(r)
∫ 1
0 (−1)k( −θ

k )dθ.

If we consider γk =
∫ 1
0 (−1)k( −θ

k )dθ, then:


y
n+1

(r) = y
n
(r) + h

∑m
k=0∆

kfn−k(r)γk

yn+1(r) = yn(r) + h
∑m

k=0∆
kfn−k(r)γk

(12)
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or y
n+1

(r) = y
n
(r) + h

∑m
k=0∆

kfn−k(r)γk

yn+1(r) = yn(r) + h
∑m

k=0∆
kfn−k(r)γk

(13)

4.1 Adams-Bashforth Four-Step Method

From Eqs. (12, 13) and m = 3, the following results will be obtained.
y
n+1

(r) = y
n
(r) + h

24 [55fn(r)− 59fn−1(r) + 37fn−2(r)− 9fn−3(r)]

yn+1(r) = yn(r) +
h
24 [55fn(r)− 59fn−1(r) + 39fn−2(r)− 9fn−3(r)]

(14)

or 
y
n+1

(r) = y
n
(r) + h

24 [55fn(r)− 59fn−1(r) + 39fn−2(r)− 9fn−3(r)]

yn+1(r) = yn(r) +
h
24 [55fn(r)− 59fn−1(r) + 37fn−2(r)− 9fn−3(r)]

(15)

4.2 Adams-Bashforth Three-Step Method

From Eqs.(12, 13) and m = 2, y
n+1

(r), yn+1(r) will be computed as follows:


y
n+1

(r) = y
n
(r) + h

12 [23fn(r)− 16fn−1(r) + 5fn−2(r)]

yn+1(r) = yn(r) +
h
12 [23fn(r)− 16fn−1(r) + 5fn−2(r)

(16)

or 
y
n+1

(r) = y
n
(r) + h

12 [23fn(r)− 16fn−1(r) + 5fn−2(r)

yn+1(r) = yn(r) +
h
12 [23fn(r)− 16fn−1(r) + 5fn−2(r)]

(17)

4.3 Adams-Bashforth (m + 1)-step Method Algorithm

To approximate the solution of the following fuzzy initial value problem, the posi-
tive integer N is chosen.{

y′(t) = f(t, y(t)), a ⩽ t ⩽ b,
y(a) = α.

(18)

Step 1. Consider h = b−a
N , t0 = a, w0 = α, w0 = α

Step 2. Let i = 0.
Step 3. Let ti+1 = a + (i + 1)h, then by using the Runge-Kutta method compute
wi+1, wi+1

Step 4. i = i+ 1
Step 5. If i ⩽ m− 1 go to step 3.
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Step 6. Let j = M
Step 7. For k = 0, 1, ...,m compute:

γk,∆
kfj−k(r),∆kfj−k(r), wj+1 and wj+1

Step 8. Let tj+1 = t0 + (j + 1)h
Step 9. j = j + 1
Step 10. If j ⩽ N − 1 go to step 7.
Step 11. The algorithm will terminate and [w(b, r), w(b, r)] approximates the real
values [y(b, r), y(b, r)].

5. Adams-Moulton Methods

Solving Eqs. (18) by the Adams-Moulton (m + 1)-step method is similar to that
by the Adams-Bashforth (m + 1)-step method with an extra point tn+1. Now, if

we consider γ′k =
∫ 1
0 (−1)k( 1− θ

k )dθ, then


y
n+1

(r) = y
n
(r) + h

∑m+1
k=0 ∆kfn−k+1(r)γ

′
k

yn+1(r) = yn(r) + h
∑m+1

k=0 ∆kfn−k+1(r)γ
′
k

(19)

or y
n+1

(r) = y
n
(r) + h

∑m+1
k=0 ∆kfn−k+1(r)γ

′
k

yn+1(r) = yn(r) + h
∑m+1

k=0 ∆kfn−k+1(r)γ
′
k

(20)

For k = 2ν

∆kfn−k+1(r) =
∑ν

m=0(
k
2m )fn−k+1+2m(r)−

∑ν−1
m=0(

k
2m+ 1)fn−k+2m+2(r),

∆kfn−k+1(r) =
∑ν

m=0(
k
2m )fn−k+2m+1(r)−

∑ν−1
m=0(k

2m+ 1
)fn−k+2m+2(r),

(21)

and for k = 2ν + 1

∆kfn−k+1(r) =
∑[ k

2
]

m=0(
k
2m+ 1)fn−k+2m+2(r)−

∑[ k
2
]

m=0(
2ν + 1
2m )fn−k+2m+1(r),

∆kfn−k+1(r) =
∑[ k

2
]

m=0(
k
2m+ 1)fn−k+2m+2(r)−

∑[ k
2
]

m=0(
k
2m )fn−k+2m+1(r).

(22)

5.1 Adams-Moulton Three-Step Method

From Eqs. (19, 20) and m = 2, y
n+1

(r), yn+1(r) will be computed as follows:

y
n+1

(r) = y
n
(r) + h∆0fn+1(r)γ

′
0 +∆1fn(r)γ

′
1 +∆2fn−1(r)γ

′
2 +∆3fn−2(r)γ

′
3

yn+1(r) = yn(r) + h∆0fn+1(r)γ
′
0 +∆1fn(r)γ

′
1 +∆2fn−1(r)γ

′
2 +∆3fn−2(r)γ

′
3
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or

y
n+1

(r) = y
n
(r) + h∆0fn+1(r)γ

′
0 +∆1fn(r)γ

′
1 +∆2fn−1(r)γ

′
2 +∆3fn−2(r)γ

′
3

y
n+1

(r) = y
n
(r) + h∆0fn+1(r)γ

′
0 +∆1fn(r)γ

′
1 +∆2fn−1(r)γ

′
2 +∆3fn−2(r)γ

′
3

It is obvious that by replacing γ′i, i = 1, 2, 3, the following results will be
obtained.

y
n+1

(r) = y
n
(r) +

h

24
[9fn+1(r) + 19fn(r)− 5fn−1(r) + fn−2(r)]

yn+1(r) = yn(r) +
h

24
[9fn+1(r) + 19fn(r)− 5fn−1(r) + fn−2(r)]

or

y
n+1

(r) = yn(r) +
h

24
[9fn+1(r) + 19fn(r)− 5fn−1(r) + fn−2(r)]

y
n+1

(r) = y
n
(r) +

h

24
[9fn+1(r) + 19fn(r)− 5fn−1(r) + fn−2(r)]

y
n+1

(r) = αn+1(r), yn+1(r) = αn+1(r), . . . , yn−2
(r) = αn−2(r), yn−2(r) = αn−2(r)

5.2 Adams-Moulton Two-Step Method

From Eqs. (19-22) and m = 1, the following results will be obtained.

y
n+1

(r) = y
n
(r) +

h

12
[5f

n+1
(r) + 8fn(r)− fn−1(r)]

yn+1(r) = yn(r) +
h

12
[5fn+1(r) + 8fn(r)− fn−1(r)]

or

y
n+1

(r) = y
n
(r) +

h

12
[5fn+1(r) + 8fn(r)− fn−1(r)]

yn+1(r) = yn(r) +
h

12
[5fn+1(r) + 8fn(r)− fn−1(r)]
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5.3 Predictor-Corrector (m + 1)-step Method Algorithm

To approximate the solution of the fuzzy initial value problem in Eqs. (18), the
positive integer N is chosen.

Step 1. Let h = b−a
N , t0 = a, w0(r) = α0(r), ..., wm(r) = αm(r)

w0(r) = α0(r), ..., wm(r) = αm(r)

Step 2. Let n = m.

Step 3. For k = 0, 1, ...,m compute:

∆kfn−k(r), ∆kfn−k(r) and γk, then

w0
n+1(r) = wn(r) + h

∑m
k=0∆

kfn−k(r)γk

w0
n+1(r) = wn(r) + h

∑m
k=0∆

kfn−k(r)γk

Step 4. Let tn+1 = t0 + (n+ 1)h

Step 5. For k = 0, 1, ...,m compute:

∆kfn−k+1(r), ∆kfn−k+1(r) and γ′k , then

wn+1(r) = wn(r) + h
∑m

k=0∆
kfn−k+1(r)γ

′
k

wn+1(r) = wn(r) + h
∑m

k=0∆
kfn−k+1(r)γk

Step 6. n = n+ 1

Step 7. If n ⩽ N − 1 go to step 3.

Step 8. The algorithm will terminate and [w(b, r), w(b, r)] approximates the
real values [y(b, r), y(b, r)].

6. Convergence

Without less of generality, we investigated convergence of proposed algorithm in
case of (i)-differentiable, case (ii)-differentiable is proved in a similar way. To inte-
grate the system given in Eqs. (12), the interval [a, b] will be replaced by a set of
discrete equally spaced grid points a = to < t1 < t2 < ... < tN = b at which the ex-
act solution [Y (t, r), Y (t, r)] is approximated by some [y(t, r), y(t, r)]. The exact and

approximate solutions at tn, 0 ⩽ n ⩽ N , are denoted by Yn(r) = [Y (tn, r), Y (tn, r)],
and yn(r) = [y(tn, r), y(tn, r)], respectively. The grid points at which the solution
is calculated are from Eqs. (12)and the polygon curves

y(t, h, r) = [t0, y0(r)], [t1, y1(r)], ..., [tN , y
N
(r)],

y(t, h, r) = [t0, y0(r)], [t1, y1(r)], ..., [tN , yN (r)],
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are Adams-Bashforth approximates to Y (t, r) and Y (t, r), respectively, over the
interval a = to < t < tN = b. It is sufficient to show

lim
h−→0

y(t, h, r) = Y (t, r), lim
h−→0

y(t, h, r) = Y (t, r).

From Eqs.(12) we obtain:

y
n+1

= y
n
+ h[∆0fn(r)γ0 + ...+∆mfn−m(r)γm]

yn+1 = yn + h[∆0fn(r)γ0 + ...+∆mfn−m(r)γm],
(23)

then

y
n+1

= y
n
+ h[β0fn(r) + ...+ βmfn−m(r)− β1fn−1(r)− β3fn−3(r)− ...− βm−1fn−m+1(r)]

yn+1 = yn + h[β1fn−1(r) + ...+ β3fn−3(r) + ...+ βm−1fn−m+1(r)− β0fn(r)− β2fn−2(r)

−...− βmfn−m(r)].

(24)
For exact values, the following results will be obtained:

Y n+1 = Y n + h[β0f(tn, Y n, Y n, r) + ...+ βmf(tn−m, Y n−m, Y n−m, r)− β1f(tn−1, Y n−1, Y n−1, r)

−...− βm−1f(tn−m+1, Y n−m+1, Y n−m+1, r)] + γm+1h
m+2Y m+2(ξ),

Y n+1 = Y n + h[β1f(tn−1, Y n−1, Y n−1, r) + ...+ β3f(tn−3, Y n−3, Y n−3, r) + ...+ βm−1f(tn−m+1,

Y n−m+1, Y n−m+1, r)− β0f(tn, Y n, Y n, r)− ...− βmf(tn−m, Y n−m, Y n−m, r)] + γ′m+1h
m+2Y

m+2
(ξ)

(25)
provided that Y , Y ∈ Cm+2[t0, T ]. Let

wn+1(r) = Y n+1(r)− y
n+1

(r),

vn+1(r) = Y n+1(r)− yn+1(r),
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then

wn+1(r) = wn(r) + h[β0(fn
(r)− f(tn, Y n, Y n, r)) + ...+ βm(f

n−m
(r)− f(tn−m, Y n−m, Y n−m, r))

−...− βm−1(fn−m+1(r)− f(tn−m+1, Y n−m+1, Y n−m+1, r))] + γm+1h
m+2Y m+2(ξ)

vn+1 = vn + h[β1(fn−1(r)− f(tn−1, Y n−1, Y n−1, r)) + ...+ β3(fn−3
(r)− f(tn−3, Y n−3, Y n−3, r))+

βm−1(fn−m+1(r)− f(tn−m+1, Y n−m+1, Y n−m+1, r))− β0(fn
(r)− f(tn, Y n, Y n, r))− ...

−βm(f
n−m

(r)− f(tn−m, Y n−m, Y n−m, r))]

+γ′m+1h
m+2Y

m+2
(ξ).

(26)
Suppose li, i = 1, 2, ...,m, are Lipschitz constants. If l = max{l1,..., lm} then

|wn+1(r)| ⩽ |wn(r)|+ hl[|β0|(|wn(r)|+ |vn(r)|) + ...+ |βm|(|wn−m(r)|+ |vn−m(r)|)
+...+ |βm−1|(|wn−m+1(r)|+ |vn−m+1(r)|)] + |γm+1|hm+2M

|vn+1(r)| ⩽ |vn(r)|+ hl[|β0|(|wn(r)|+ |vn(r)|) + ...+ |βm|(|wn−m(r)|+ |vn−m(r)|)

+...+ |βm−1|(|wn−m+1(r)|+ |vn−m+1(r)|)] + |γ′m+1|hm+2M.
(27)

where

M = max |Y m+2
(ξ)|

M = max |Y m+2(ξ)|.

Now let |un+1(r)| = |wn+1(r)|+ |vn+1(r)| then:

|un+1(r)| ⩽ |un(r)|+ hl[2|β0|(|un(r)|) + ...+ 2|βm|(|un−m(r)|)

+...+ 2|βm−1|(|un−m+1(r)|)] + |γm+1|hm+2(M +M).
(28)

Form (28) the differential equation (29) will be constructed as follows:

|kn+1(r)| = |kn(r)|+ hl[2|β0|(|kn(r)|) + ...+ 2|βm|(|kn−m(r)|)
+...+ 2|βm−1|(|kn−m+1(r)|)] + |γm+1|hm+2(M +M)
ki(r) ⩾ δ i = 0, 1, ...,m

(29)

such that ki, i = 0, ...,m, are the roots of differential equation (29).
Now, we prove that |ui(r)| ⩽ δ ⩽ ki(r) for all i = m+ 1, ..., s.
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From (8.22) we have:

|um+1(r)| ⩽ |um(r)|+ 2hl[|β0|um(r) + ...+ |βm|u0(r)] + |γm+1|hm+2(M +M)
⩽ |km(r)|+ 2hl[|β0|km(r) + ...+ |βm|k0(r)] + |γm+1|hm+2(M +M) = km+1(r)

(30)
so

um+1(r) ⩽ km+1(r), r ∈ [0, 1].

To obtain a solution of Eq. (29), first let ki(r) = −c(r). From Eq. (31) it follows
that:

−c(r) = −c(r)+2hl[|β0|(−c(r))+...+|βm|(−c(r))+...+|βm−1|(−c(r))]+|cm+1|hm+2(M+M)

c(r) =
|cm+1|hm+1(M +M)

2l
∑m

i=0 βi
, 0 ⩽ r ⩽ 1.

The homogeneous solution will be computed as follows:
For all r, kn = xn, let

xn+1 = xn + 2hl[|β0|xn + ...+ |β1|xn−1 + |βm|xn−m].

If m = n, we have

H(x) = xm+1 − xm − 2hl[|β0|xm + ...+ |βm−1|x1 + |βm|x0]. (31)

Now, we will show Eq. (31) has a root x > 1 as follows:

H(1) = 1− 1− 2hl

m∑
i=0

βi = −2hl

m∑
i=0

βi < 0

Let

x = 1 + 2hl
m∑
i=0

βi > 1.

From Eq. (31) we have

x−mH(x) = x− 1− 2hl[|β0|+ ...+ |βm−1|x1−m + |βm|x−m

⩾ 2hl
∑m

i=0 |βi| − 2hl
∑m

i=0 |βi| = 0.

Thus H(x) ⩾ 0 then there exists 1 < z⋆(r) < 1+2hl
∑m

i=0 |βi| such that H(z⋆) = 0.

Since 2hl
∑m

i=0 |βi| > −1, then 1 + 2hl
∑m

i=0 |βi| < e2hl
∑m

i=0 |βi|

z⋆(r) < 1 + 2hl
∑m

i=0 |βi| < e2hl
∑m

i=0 |βi|

(z⋆(r))n < e2hnl
∑m

i=0 |βi| = e2(xn−a)l
∑m

i=0 |βi|.
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Then the solution of Eq.(29) will be obtained as follows such that h = xn−x0

N .
Let kn = ((z⋆(r))n − 1)c(r).

kn(r) ⩽ |cm+1|hm+1(M+M)
2l

∑m
i=0 βi

e2(xn−a)l
∑m

i=0(|βi|−1)un(r)

⩽ |cm+1|hm+1(M+M)
2l

∑m
i=0 βi

e2(xn−a)l
∑m

i=0(|βi|−1)|vn|,|wn|

⩽ |cm+1|hm+1(M+M)
2l

∑m
i=0 βi

e2(xn−a)l
∑m

i=0 |βi|

are obtained. If h −→ 0 then vn −→ 0, wn → 0, which completes the proof of the
following theorem.

Theorem 6.1 For an arbitrary fixed r : 0 ⩽ r ⩽ 1, the Adams-Bashforth (m +
1)−step approximates of Eq.(12) converge to the exact solution Y (t, r), Y (t, r) for
Y , Y ∈ Cm+1[t0, T ].

Remark 1 The convergence order of the Adams-Bashforth (m + 1)−step method
is O(hm+1).

7. Numerical Examples

In this section, some fuzzy initial value problems will solved by suggested methods.
The results which are obtained are more exact than the results in [1, 2, 29, 39] that
are obtained by two-step method.
Example 1. Consider the initial value problem

y′(t) = y(t) + t+ 1,

with initial condition

y(0) = (0.96 + 0.04r, 1.01− 0.01r)

y(0.01) = (0.01 + (0.96 + 0.04r)e−0.01, 0.01 + (1.01− 0.01r)e−0.01),

y(0.02) = (0.02 + (0.96 + 0.04r)e−0.02, 0.02 + (1.01− 0.01r)e−0.02).

The exact solution at t = 0.1 with increasing support, i.e. (i)-differentiable, is given
by

Y1(0.1, r) = (0.1+(0.96+0.04r)e−0.1, 0.1+(1.01−0.01r)e−0.1), 0 ⩽ r ⩽ 1.

the result of the Adams-Bashforth two-step method and the Predictor-Corrector
three-step method with N = 10 has been shown in table (1) and table (2).
Also, our proposed solutions are plotted simultaneously to compare with exact

solutions. For more detail see Figures 1. and 2.

Table(1). The result of the Adams−Bashforth two− step method with N = 10
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Figure 1. Compare The result of the Adams-Bashforth two-step method with N=10 and exact
solution.

r y
1

Y1 ERROR y1 Y 1 ERROR

0.0 0.961710 0.968644 0.006934 1.020827 1.013886 0.006941
0.1 0.969225 0.972263 0.006241 1.019228 1.012981 0.006247
0.2 0.970336 0.975883 0.005547 1.017630 1.012076 0.005554
0.3 0.974649 0.979502 0.004853 1.016031 1.011171 0.004860
0.4 0.978920 0.983121 0.004159 1.014432 1.010266 0.004166
0.5 0.983275 0.986741 0.003465 1.012834 1.009362 0.003472
0.6 0.987588 0.990360 0.002772 1.011235 1.008457 0.002778
0.7 0.991901 0.993979 0.002078 1.009637 1.007552 0.002085
0.8 0.996214 0.997599 0.001384 1.008038 1.006647 0.001391
0.9 1.000528 1.001218 0.000690 1.006439 1.005742 0.000697
1.0 1.004841 1.004837 0.000004 1.004841 1.004837 0.000004

r y
1

Y1 ERROR y1 Y 1 ERROR

0.0 0.964346 0.968644 0.004297 1.018183 1.013886 0.004297
0.1 0.968395 0.972263 0.003868 1.016849 1.012981 0.003868
0.2 0.972445 0.975883 0.003438 1.015514 1.012076 0.003438
0.3 0.976494 0.979502 0.003008 1.014179 1.011171 0.003008
0.4 0.980543 0.983121 0.002578 1.012845 1.010266 0.002578
0.5 0.984592 0.986741 0.002149 1.011510 1.009362 0.002149
0.6 0.988641 0.990360 0.001719 1.010176 1.008457 0.001719
0.7 0.992690 0.993979 0.001289 1.008841 1.007552 0.001289
0.8 0.996739 0.997599 0.000859 1.007506 1.006647 0.000859
0.9 1.000788 1.001218 0.000430 1.006172 1.005742 0.0004297
1.0 1.004837 1.004837 0.000000 1.004837 1.004837 0.000000

Table(2). The result of the Predictor−Corrector three−step method with N = 10
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Figure 2. Compare The result of the Predictor-Corrector three-step method with N=10 and exact
solution.

Example 2. Consider the initial value problem

y′(t) = −y(t),

y(0) = (0.96 + 0.04r, 1.01− 0.01r)

y(0.01) = ((0.96 + 0.04r)e−0.01, (1.01− 0.01r)e−0.01),

y(0.02) = ((0.96 + 0.04r)e−0.02, (1.01− 0.01r)e−0.02),

The exact solution at t = 0.1 with decreasing support, i.e. (ii)-differentiable is given
by

Y2(0.1, r) = ((0.96 + 0.04r)e−0.1, (1.01− 0.01r)e−0.1, 0 ⩽ r ⩽ 1

Adams-Bashforth two-step method and the Predictor-Corrector three-step method
with N = 10 has been shown in table (3)and table (4). Also, our proposed solutions
are plotted simultaneously to compare with exact solutions. For more detail see
Figures 3. and 4.
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Figure 3. Compare The result of the Adams-Bashforth two-step method with N=10 and exact
solution.

r y
2

Y2 ERROR y2 Y 2 ERROR

0.0 0.861268 0.868644 0.007376 0.920408 0.913886 0.006522
0.1 0.865559 0.872263 0.006704 0.918817 0.912981 0.005836
0.2 0.869851 0.875883 0.006031 0.917226 0.912076 0.005150
0.3 0.874143 0.879502 0.005359 0.915635 0.911171 0.004464
0.4 0.878434 0.883121 0.004687 0.914044 0.910266 0.003777
0.5 0.882726 0.886741 0.004014 0.912453 0.909362 0.003091
0.6 0.887018 0.890360 0.003342 0.910862 0.908457 0.002405
0.7 0.891310 0.893979 0.002670 0.909271 0.907552 0.001719
0.8 0.895601 0.897599 0.001997 0.907680 0.906647 0.001033
0.9 0.899893 0.901218 0.001325 0.906089 0.905742 0.000347
1.0 0.904185 0.904837 0.000653 0.904498 0.904837 0.000339

Table(3). Adams−Bashforth two− step method with N = 10

r y
2

Y2 ERROR y2 Y 2 ERROR

0.0 0.864346 0.868644 0.004298 0.918183 0.913886 0.004297
0.1 0.868395 0.872263 0.003868 0.916849 0.912981 0.003868
0.2 0.872445 0.875883 0.003438 0.915514 0.912076 0.003438
0.3 0.876494 0.879502 0.003008 0.914179 0.911171 0.003008
0.4 0.880543 0.883121 0.002578 0.912845 0.910266 0.002579
0.5 0.884592 0.886741 0.002149 0.911510 0.909362 0.002148
0.6 0.888641 0.890360 0.001719 0.910176 0.908457 0.002624
0.7 0.892690 0.893979 0.001289 0.908841 0.907552 0.002194
0.8 0.896739 0.897599 0.00086 0.907506 0.906647 0.000859
0.9 0.900788 0.901218 0.00043 0.906172 0.905742 0.00043
1.0 0.904887 0.904837 0.00005 0.904837 0.904837 0.00000
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Figure 4. Compare The result of the Predictor-Corrector three-step method with N=10 and exact
solution.

Table(4). The Predictor − Corrector three− step method with N = 10

8. Conclusion

Note that the convergence order of the Euler method in the [25] is O(h). It is
shown that in proposed method, a higher order of convergence is obtained. In this
work for Adams-Bashforth (m + 1)-step method and Adams-Moulton (m + 1)-
step method are considered as predictor and corrector. It has shown a predictor-
corrector method from convergence order O(hm+1).In this paper examples are
solved by four-step method . With comparing, we observe the results which are
obtained by this method are more exact than the results in [1, 2, 29, 39] that are
obtained by two-step method.
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