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Abstract. This paper investigates a discrete-time impatient customer queue with Bernoulli-
schedule vacation interruption. The vacation times and the service times during regular busy
period and during working vacation period are assumed to follow geometric distribution. We
obtain the steady-state probabilities at arbitrary and outside observer’s observation epochs
using recursive technique. Cost analysis is carried out using particle swarm optimization.
Computational experiences with a variety of numerical results are discussed.
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1. Introduction

The interest in discrete-time queues has experienced spectacular growth with the
arrival of the digital technologies. A fundamental motive for studying discrete-time
queues is that they became more appropriate than their continuous-time counter-
parts for analyzing computer and telecommunication systems. Performance model-
ing of queueing systems with impatient customers has attracted many researchers
owing to their wide applications in real life congestion problems. Balking and reneg-
ing are two such impatient phenomena in queues; as a consequence, customers ei-
ther decide not to join the queue or depart after joining the queue without getting
service due to impatience. The lost revenues due to balking and reneging in various
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Figure 1. Inbound email contact center

industries can be enormous. A discrete-time single server queue with balking has
been examined by [3]. [1] analyzed a discrete-time multi-server queue with balking.
Queueing systems with working vacation (WV ) have been studied extensively

due to their wide applications in several areas including computer and communica-
tion systems, manufacturing and production systems. In WV queues, it is assumed
that the server remains active during the vacation period and serves the customers
generally at a slower rate. At the end of a WV , if the queue is non-empty, a reg-
ular service period begins; otherwise, the server takes another WV . This policy is
called multiple working vacation (MWV ). It was introduced by Servi and Finn [5]
in an M/M/1 queueing system. [6] considered a Geo/Geo/1 queue with MWV .
[7] analyzed an M/M/1/N queueing system with balking, reneging and WV . A
discrete-time WV queue with balking and reneging has been studied in [2].
At a service completion instant during WV period, if there are customers in the

system, the server can interrupt the vacation. This is known as WV with vacation
interruption (V I). Under the Bernoulli-schedule V I, the server may continue the
vacation with probability q or interrupt the vacation and resume regular service
period with probability 1− q, if there are customers in the system. [9] first studied
an M/M/1 queue with V I under the Bernoulli rule. An impatient customer queue
with Bernoulli-schedule V I has been analyzed in [8].
This paper focusses on a discrete-time balking and reneging queue with Bernoulli-

schedule V I. The model has potential applications in practical systems, for example
an inbound email contact center wherein the potential customers (users in different
offices, research centers, etc.) transmit emails across the network through an office
automation system such as LAN. A picture depicting the email handling scheme
is shown in Figure 1. Many communication networks are organized with complete
synchronization, as a result of which channel requests, grants and data transmis-
sions and receptions all proceed in predetermined fixed time intervals. As an email
contact center is one such communication network, email sending, preprocessing
and processing of requests are done in discrete slots. The emails received are pro-
cessed immediately when the server is idle. If the server is busy, the received emails
are placed in a queue. When the server is busy, there is a probability that requests
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may be terminated by users before arriving at the email server and if an email is
not processed within a certain duration it is lost. To keep the functioning of the
email server well and efficient, maintenance activities (MAs) such as virus scans,
disk cleaning, etc., can be done when the server is idle. MAs consume some system
resources and reduce the processing speed, but the server can still process emails
waiting in the queue (represented by dotted line in Figure 1) at a lower speed.
After processing an email during the MAs, if there are emails waiting to be pro-
cessed, the server may interrupt or continue the MAs with some probability. On
the other hand, when the MAs are completed and emails are waiting in the queue,
they are processed with regular speed. Moreover, the number of users connected to
the automation system server in different offices do not exceed a limited number.
In this scenario, the number of users, the requests terminated by users, lost emails,
the email server and the MAs correspond to finite buffer, balking, reneging, server
and WV with Bernoulli-schedule V I, respectively.
This paper presents the analysis of a discrete-time balking and reneging queue

with Bernoulli-schedule vacation interruption. The inter-arrival times of customers
and service times are assumed to be independent and geometrically distributed.
The service times during a WV period and vacation times are also assumed to be
geometrically distributed. The arriving customers may decide either to balk with a
certain probability or renege according to geometric distribution. The steady-state
probabilities are obtained through recursive technique which is easy to implement.
Various performance measures of the model such as the expected queue length, av-
erage balking rate, average reneging rate, etc., are presented. Further, a cost model
is formulated to determine the optimum service rate during regular busy period us-
ing particle swarm optimization. Finally, the parameter effect on the performance
measures of the model is demonstrated through some numerical results.
The rest of the paper is organized as follows. Section 2 presents the description

of the model. The steady-state probabilities at arbitrary and outside observer’s ob-
servation epochs are obtained in Section 3. Section 4 presents various performance
measures and cost model. Numerical results in the form of a table and graphs are
discussed in Section 5 followed by conclusions in Section 6.

2. Model Description

We consider a finite buffer discrete-time single server queue with balking, reneging
and Bernoulli-schedule vacation interruption under the early arrival system (EAS).
Assume that the time axis is slotted into intervals of equal length with the length
of a slot being unity and it is marked as 0,1,2,. . . , t,. . . The potential arrivals occur
in (t, t+) and a potential departure takes place in (t−, t). We assume that the
capacity of the system is N .
The inter-arrival times A of customers are independent and geometrically dis-

tributed with probability mass function (p.m.f.) an = Pr(A = n) = λ̄n−1λ, n ≥
1, 0 < λ < 1, where for any real number x ∈ [0, 1], x̄ = 1 − x. On arrival, if a
customer finds i other customers in the system then he either decides to join the
queue with a probability bi or balks with a probability b̄i = 1 − bi. Furthermore,
we assume that 0 < bi+1 ≤ bi ≤ 1, 1 ≤ i ≤ N − 1, b0 = 1 and bN = 0. After joining
the queue each customer will wait a certain length of time, say T, for service to
begin before they get impatient and leave the queue without receiving service. This
time T is assumed to follow geometric distribution with parameter α. The average
reneging rate of a customer is given by (i− 1)α, 1 ≤ i ≤ N .
The server is allowed to take WV whenever the system becomes empty. During

WV the server renders service at a different rate. At the instants of a service
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completion during WV , the server may continue the vacation with probability q or
interrupt the vacation and resume regular service period with probability q̄ (if there
is at least one customer in the queue). On the other hand, on return from a WV if
the system is non-empty, it switches to regular busy period; otherwise another WV
commences. The regular service times, service times duringWV and vacation times
are assumed to be independent and geometrically distributed with parameters µ, η
and ϕ, respectively. The customers are served according to first-come first-served
(FCFS) service discipline.

3. Analysis of the Model

In this section, we present the analytic analysis of the model. At steady-state, let
πi,0(0 ≤ i ≤ N) represent the probability of i customers in the system and the
server in WV and πi,1(1 ≤ i ≤ N) be the probability of i customers in the system
and the server in regular busy period. To obtain the system length distribution at
steady-state, we first develop the following system of difference equations:

π0,0 =
(
λ̄+ λη

)
π0,0 + s1(η)π1,0 + t2(η)π2,0 + s1(µ)π1,1 + t2(µ)π2,1, (1)

π1,0 = ϕ̄u1(η)π1,0 + ϕ̄λη̄π0,0 + ϕ̄w2(η)π2,0 + ϕ̄f3(η)π3,0, (2)

πi,0 = ϕ̄ui(η)πi,0 + ϕ̄mi−1(η)πi−1,0 + ϕ̄wi+1(η)πi+1,0 + ϕ̄fi+2(η)πi+2,0,

2 ≤ i ≤ N − 2, (3)

πN−1,0 = ϕ̄uN−1(η)πN−1,0 + ϕ̄mN−2(η)πN−2,0 + ϕ̄wN (η)πN,0, (4)

πN,0 = ϕ̄uN (η)πN,0 + ϕ̄mN−1(η)πN−1,0, (5)

π1,1 = r1(µ)π1,1 + s2(µ)π2,1 + t3(µ)π3,1 + ϕr1(η)π1,0 + ϕλη̄π0,0 + ϕs2(η)π2,0

+ϕt3(η)π3,0 + ϕ̄v1(η)π1,0 + ϕ̄z2(η)π2,0 + ϕ̄g3(η)π3,0, , (6)

πi,1 = ri(µ)πi,1 + si+1(µ)πi+1,1 +mi−1(µ)πi−1,1 + ti+2(µ)πi+2,1 + ϕri(η)πi,0

+ϕmi−1(η)πi−1,0 + ϕsi+1(η)πi+1,0 + ϕti+2(η)πi+2,0 + ϕ̄vi(η)πi,0

+ϕ̄zi+1(η)πi+1,0 + ϕ̄gi+2(η)πi+2,0, 2 ≤ i ≤ N − 2, (7)

πN−1,1 = rN−1(µ)πN−1,1 + sN (µ)πN,1 +mN−2(µ)πN−2,1 + ϕrN−1(η)πN−1,0

+ϕmN−2(η)πN−2,0 + ϕsN (η)πN,0 + ϕ̄vN−1(η)πN−1,0 + ϕ̄zN (η)πN,0, (8)

πN,1 = rN (µ)πN,1 +mN−1(µ)πN−1,1 + ϕrN (η)πN,0 + ϕmN−1(η)πN−1,0, (9)
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where

ui(x) = λ̄x̄(i− 1)α+ λb̄ix̄(i− 1)α+ λbiqx(i− 1)α+ λbix̄(i− 1)α, i = 1, . . . , N,

vi(x) = λbiq̄x(i− 1)α, i = 1, . . . , N,

ri(x) = ui(x) + vi(x), i = 1, . . . , N,

wi(x) = λ̄qx(i− 1)α+ λb̄iqx(i− 1)α+ λ̄x̄(i− 1)α+ λb̄ix̄(i− 1)α+ λbiqx(i− 1)α,

i = 1, . . . , N − 1,

zi(x) = λ̄q̄x(i− 1)α+ λb̄iq̄x(i− 1)α+ λbiq̄x(i− 1)α, i = 1, . . . , N − 1,

si(x) = wi(x) + zi(x), i = 1 . . . N − 1,

fi(x) = λb̄iqx(i− 1)α+ λ̄qx(i− 1)α, i = 3, . . . , N,

gi(x) = λb̄iq̄x(i− 1)α+ λ̄q̄x(i− 1)α, i = 3, . . . , N,

ti(x) = fi(x) + gi(x), i = 3 . . . N,

mi(x) = λbix̄(i− 1)α, i = 1, . . . , N − 1.

The steady-state probabilities πi,j , j = 0, 1; j ≤ i ≤ N can be obtained by solving
the system of equations (2) to (9) recursively as below.
Define ξN = 1. From (5), we get πN−1,0 in terms of πN,0 as

πN−1,0 = ξN−1πN,0, (10)

where ξN−1 =
1− ϕ̄uN (η)

ϕ̄mN−1(η)
.

Using (10) in (4), we obtain

πN−2,0 = ξN−2πN,0, (11)

where ξN−2 =

(
1− ϕ̄uN−1(η)

ϕ̄mN−2(η)

)
ξN−1 −

(
wN (η)

mN−2(η)

)
ξN .

The probabilities πi,0, 1 ≤ i ≤ N − 3 are obtained from (3) as

πi,0 = ξiπN,0, i = N − 3, . . . , 1, (12)

where ξi =

(
1− ϕ̄ui+1(η)

ϕ̄mi(η)

)
ξi+1 −

(
fi+3(η)

mi(η)

)
ξi+3 −

(
wi+2(η)

mi(η)

)
ξi+2.

Equation (2) yields π0,0 as

π0,0 = ξ0πN,0, (13)

where ξ0 =

(
1− ϕ̄u1(η)

ϕ̄λη̄

)
ξ1 −

(
f3(η)

λη̄

)
ξ3 −

(
w2(η)

λη̄

)
ξ2.

Define ζN = 1 and γN = 0. From (9), we get πN−1,1 in terms of πN,1 and πN,0 as

πN−1,1 = ζN−1πN,1 + γN−1πN,0, (14)

where ζN−1 =
1− rN (µ)

mN−1(µ)
and γN−1 = − ϕ

mN−1(µ)
(mN−1(η)ξN−1 + rN (η)).
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Using (14) in (8) yields πN−2,1 as

πN−2,1 = ζN−2πN,1 + γN−2πN,0, (15)

where ζN−2 =

(
1− rN−1(µ)

mN−2(µ)

)
ζN−1 −

(
sN (µ)

mN−2(µ)

)
and

γN−2 =

(
1− rN−1(µ)

mN−2(µ)

)
γN−1 −

(
ϕmN−2(η)

mN−2(µ)

)
ξN−2 −(

ϕrN−1(η) + ϕ̄vN−1(η)

mN−2(µ)

)
ξN−1 −

(
ϕsN (η) + ϕ̄zN (η)

mN−2(µ)

)
.

From (7), we have

πi,1 = ζiπN,1 + γiπN,0, i = N − 3, . . . , 1, (16)

where

ζi =

(
1− ri+1(µ)

mi(µ)

)
ζi+1 −

(
si+2(µ)

mi(µ)

)
ζi+2 −

(
ti+3(µ)

mi(µ)

)
ζi+3,

γi =

(
1− ri+1(µ)

mi(µ)

)
γi+1 −

(
si+2(µ)

mi(µ)

)
γi+2 −

(
ti+3(µ)

mi(µ)

)
γi+3 −

(
ϕri+1(η) + ϕ̄vi+1(η)

mi(µ)

)
ξi+1

−
(
ϕmi(η)

mi(µ)

)
ξi −

(
ϕsi+2(η) + ϕ̄zi+2(η)

mi(µ)

)
ξi+2 −

(
ϕti+3(η) + ϕ̄gi+3(η)

mi(µ)

)
ξi+3.

From (6), πN,1 can be expressed in terms of πN,0 as

πN,1 = kπN,0, (17)

where

k =
(
s2(µ)γ2 + t3(µ)γ3 + (ϕr1(η) + ϕ̄v1(η))ξ1 + ϕλη̄ξ0 + (ϕs2(η) + ϕ̄z2(η))ξ2

+(ϕt3(η) + ϕ̄g3(η))ξ3 − (1− r1(µ))γ1
)
/ ((1− r1(µ))ζ1 − s2(µ)ζ2 + t3(µ)ζ3) .

Using (17) in (14) to (16) yields πi,1(1 ≤ i ≤ N − 1) in terms of πN,0. Finally,

the only unknown πN,0 is obtained from the normalization condition
∑N

i=0 πi,0 +∑N
i=1 πi,1 = 1 as

πN,0 =

(
N∑
i=0

ξi +
N∑
i=1

(kζi + γi)

)−1

.

3.1 Outside Observer’s Distribution

In EAS, since an outside observer’s observation epoch falls in a time interval after a
potential arrival and before a potential departure, the probabilities πo

i,j(j = 0, 1; j ≤
i ≤ N) that the outside observer finds i customers in the system and server in state
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j are given by

πo
0,0 = λ̄π0,0,

πo
i,0 = (1− λbi)πi,0 + λbi−1πi−1,0, 1 ≤ i ≤ N − 1,

πo
i,0 = πN,0 + λbN−1πN−1,0,

πo
1,1 = (1− λb1)π1,1,

πo
i,1 = (1− λbi)πi,1 + λbi−1πi−1,1, 2 ≤ i ≤ N − 1,

πo
N,1 = πN,1 + λbN−1πN−1,1.

This completes the evaluation of the steady-state probabilities at various epochs.

4. Performance Measures and Cost Model

Once the steady-state probabilities are obtained, one can evaluate various perfor-
mance measures of the model. The average system length at an arbitrary epoch
(Ls) and at an outside observer’s observation epoch (Lo

s) are given by

Ls =
N∑
i=1

i(πi,0 + πi,1); Lo
s =

N∑
i=1

i(πo
i,0 + πo

i,1).

The probability that the server is in working vacation (Pwv) and the probability of
the server in regular busy period (Pb) are given by

Pwv =

N∑
i=0

πi,0; Pb =

N∑
i=1

πi,1.

The average balking rate (B.R.), the average reneging rate (R.R.) and the average
rate of loosing a customer (L.R.) are given as

B.R. =

N∑
i=1

λb̄i(πi,0 + πi,1); R.R. =

N∑
i=1

(i− 1)α(πi,0 + πi,1); L.R. = B.R.+R.R.

We develop a total expected cost function with an objective to determine an opti-
mum regular service rate (µ∗) and the optimum expected cost (F (µ∗)). Let
Cµ ≡ cost per unit time during regular busy period,
Cη ≡ cost per unit time during working vacation period,
Cls ≡ cost per unit time when a customer joins the queue and waits for service,
Clr ≡ cost per unit time when a customer balks or reneges.

Using the definitions of each cost element listed above, the total expected cost
function per unit time is given by

F (µ) = Cµµ+ Cηη + ClsL
o
s + Clr L.R.

We employ particle swarm optimization (PSO) to solve the above optimization
problem, as the computation of the derivatives of the total expected cost fucntion
is a non-trivial task. For a detailed algorithm of PSO, one may refer [4].
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Table 1. Optimum values for various values of η and α

α → 0.05 0.07 0.1
µ∗ 0.77157 0.74010 0.69875

F (µ∗) 115.069 112.442 109.106
L∗
s 1.40803 1.37378 1.33126

η = 0.1 Lo∗
s 1.80238 1.76828 1.72593

P ∗
wv 0.58795 0.58511 0.58154
P ∗
b 0.41205 0.41489 0.41846

L.R.∗ 0.03994 0.05101 0.06594
µ∗ 0.77816 0.75500 0.72274

F (µ∗) 97.8809 96.6992 95.1007
L∗
s 0.91357 0.90582 0.89606

η = 0.3 Lo∗
s 1.30991 1.30220 1.29248

P ∗
wv 0.67398 0.67135 0.66761
P ∗
b 0.32603 0.32865 0.33239

L.R.∗ 0.02057 0.02667 0.03532

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
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φ=0.6

Figure 2. Effect of η on L.R.

5. Numerical Results

To demonstrate the applicability of the theoretical investigations made in the pre-
vious sections, we present some numerical results. The capacity of the system is
fixed as N = 10. The balking function is taken as bi = 1 − (i/N2), 1 ≤ i ≤ N − 1
and b0 = 1, bN = 0. The cost elements are taken to be Cls = 45, Cµ = 40, Cη = 25
and Clr = 15. The parameters of the model are chosen to be λ = 0.4, µ = 0.6, η =
0.3, ϕ = 0.2, q = 0.4 and α = 0.1, unless they are considered as variables or their
values are mentioned in the respective table and graphs.
Table 1 presents the optimum values of µ, the minimum expected cost F (µ∗),

using PSO, along with the corresponding performance measures L∗
s, L

o∗
s , P ∗

wv, P
∗
b

and L.R.∗ for various values of η and α. From the table, we observe that except
P ∗
b and L.R.∗ all other optimum values decrease with the increase of α for fixed

η. Further, for fixed α, µ∗ and P ∗
wv increase with the increase of η whereas other

optimum values decrease with η.
Figure 2 displays the effect of η on the average rate of loosing a customer for
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Figure 4. ϕ versus Lo
s for different η

different values ϕ. From the figure, one may observe that the average rate of loosing
a customer decreases with the increase of η for fixed ϕ. Further, for η < µ, L.R.
decreases with the increase of ϕ and for η > µ, L.R. increases with the increase
of ϕ. Hence, a better performance of the model can be achieved by choosing the
value of η < µ.
The impact of µ on the average system length (Ls) is presented in Figure 3 for

different q. For fixed q, Ls decreases with the increase of µ which is consistent with
our intuition. On the other hand, for fixed µ, the average system length increases
with q and Ls is higher in models without V I (q = 1) and least in V I models
(q = 0) .
Figure 4 shows the effect of vacation rate (ϕ) on Lo

s for various values of η.
For η < µ, Lo

s decreases as ϕ increases. This is due to the fact that the larger
the vacation rate, the shorter the vacation duration and the probability that the
customer is served with regular service rate increases which leads to the decrease
in Lo

s. One may also note that for η = µ = 0.6, vacation rate (ϕ ) has no effect on
Lo
s. Further, for fixed ϕ, Lo

s is higher in models without WV (η=0.0).
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Figure 5. Effect of η on state probabilities

Figure 5 plots the impact of η on the state probabilities of the server for α = 0.05
and 0.1. It is observed that as η increases, the probability that the server in working
vacation (Pwv) increases whereas Pb decreases with η. Further, for fixed η, Pwv

increases with α whereas Pb decreases.

6. Conclusions

In this paper, we have carried out the analysis of a discrete-time finite buffer queue
with balking, reneging and Bernoulli-schedule vacation interruption for an early
arrival system. We have obtained the steady-state probabilities at arbitrary and
outside observer’s observation epochs. Some important performance measures of
the model such as average system length, average balking rate, average reneging
rate, etc., are obtained. Cost analysis is carried out using particle swarm optimiza-
tion. Computational experiences with a variety of numerical results are discussed
to display the effect of the system parameters on the performance measures of
the model. The present model can be generalized to a renewal input impatient
customer queue with Bernoulli-schedule vacation interruption.
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