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Abstract. The Fibonacci lengths of the finite p-groups have been studied by R. Dikici and
co-authors since 1992. All of the considered groups are of exponent p, and the lengths depend
on the celebrated Wall number k(p). The study of p-groups of nilpotency class 3 and exponent
p has been done in 2004 by R. Dikici as well. In this paper we study all of the p-groups of
nilpotency class 3 and exponent p2?. This completes the study of Fibonacci length of all p-
groups of order p*, proving that the Fibonacci length is k(p?).
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1. Introduction

Let s = (s;) be the 2-step Fibonacci sequence of numbers defined by sop = 0,
s1 =1, 8; = s;_2 + 8;_1, for i > 2. We may extend the sequence backwards to
obtain a bi-infinite sequence. The fundamental period or Wall number (see [10]) of
this sequence is denoted by k(s, p™), where the sequence reduced modulo p”, for a
positive integer n and a prime p. Since now on, we denote k(s,p™) by k(p").

A 2-step general Fibonacci sequence in a finite non-abelian 2-generated group
G = (a,b) is defined by zg = a, 11 = b, 7; = 2,2}, for i > 2 and the integers m
and [. If m =1 = 1, the least period of this sequence is called the Fibonacci length
of G and denoted by k(G). Since 1990, the Fibonacci length has been studied and
calculated for certain classes of finite groups. For instance, see [2], [3], [8], and [7].

There are only five classes of p-groups of order p* and nilpotency class 3 (see
[9]), i.e; the groups
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H = <a’bacvd|ap =W =c=d"=1, [avb] = [a7C] = [a7d] = 1,[b,d] = 1,[c,d] :b>7 p# 3,
K ={a,b,cla® =b> =3 =1, [a,b] = 1,[a,c] = b,[c,b" | = a3,
Lo = {(a,b,claP? = = 1,cP = a?, [a,b] = a”, [a,c] = b, [b,c] = 1)

where a = 0, 1, or a non-residue modulo p.

The first group is of exponent p and studied by R. Dikici [4]. Other remained
groups are of exponent p?. First of all we attempt to give a power-commutator
presentation for the groups (see Johnson [6]) and by investigating their nilpotency
class we will go to the computation of Fibonacci length.

THEOREM 1.1 MainSuppose that p is a prime and p # 2, and let G be a p-group
of nilpotency class 8 and of order p* which is of exponent p*. Then k(G) = k(p?).

2. The Group K

Let G = K. Since a3 is a non-identity element of [G,G’], it is clear that G has
nilpotency class 3. Hence [G,G’] < Z(G). Therefore a® is a central element. The
following series is a central series for G such that G;_1/G; are cyclic of order p:

1=G4 <G3<Ga <G <G =G,
where
Gs = <a3>7G2 - <a3vb>aG1 - <a37b7 C>'

Hence a power-commutator presentation of G may be given as follows:

3 3

G= (v’ =y’ =2 =1Lw’ =, [py] = [z,2] = [r,0] = L[,y = 2, [w,y] = L [w, 2] = )
Note that in the new presentation, the group G be generated by w and z. Moreover

x is a central element. Also, each element of G can be uniquely represented as

% z¢w?, where a, b, ¢ reduced modulo 3 and d reduced modulo 9. First we give

some elementary results.

LEMMA 2.1 For every positive integers m and n,
(i) w™z" = m(ngl)ym”z”wm.

Proof Since x is a central element of G, then (i) may be proved by the induction
method. To prove (ii) we may use (i) and the relation [w,y] = 1.
|

LEMMA 2.2 let 2%2¢w® and z% y® 2w? be elements of G. Then
’ / ’ ’ ’ ’ / c/+1 ’ / / ’
(%P 2ew) (29 ¥ 2 w?) = gt +eb'Fede +d(*] )yb+b +de! et dd

Proof By using Lemma 2.1, we have:
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(maybzcwd)(x y Z wd) ybzcwdybz wd
— ybzcyb ,wdzc wd

/ /41 ’

+a'gbyeyb 245 )ych " ww?

c+1 ’

_ a+a +d( )ybzcyb +dc’ c d+d

’ /41 ’ / / / / U
pota +d( N )ybIC(b +dc )yb +dc 2C5C wd+d

’ ¢/ +1 ’ / ’ ’ ’ ’
_ gata +d(“ 1) +e(b'+de )yb+b +de jete, dtd

LEMMA 2.3 Let z6aybz°w? and x%y" 2w be elements of G and m and 1 be
positive integers. Then

(i) (29" zCwd)m —xma+(’"’) +(5)(3

D mmDmem) ¢ Zdymb-‘r(m)Cd me,ymd
z? y ’

1) (x%yz°w z® y 2% w
()(avc)( d)l b”’d”
where
1 -1 2m —1
a":ma+<?>bc+<rg> <C—; >d+(m )né( mn )c2d
l N /d+1 (-1)(20-1)
/ /! ! 12 g
+la+<2>bc+<2>( 5 >d+6 ced
/+1
+ mlch +m <;) e d + mPledd + md (lc 2+ )
"o m / l /gt /
b =mb+ 5 cd + 10" + 5 cd + mldc
" =me+1d
d'=md+1d.
Proof (i) By induction on m. (ii) By using (i) and Lemma 2.2. [ |

Now by using Lemma 2.2, we can obtain Fibonacci sequence in the group G. We
shall use vector notation to calculate the sequence and define an infinite sequence
r; = (aj, bi, ¢, d;) via the 2-step recurrence and initial data ro = (0,0,0,1) which
corresponds to w, and r; = (0,0, 1,0) which corresponds to z.

PROPOSITION 2.4 For the group G, K(G) = k(9) = 24.

Proof We obtain the following loop (Note that a;, b;, ¢; reduced modulo 3 and d;
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reduced modulo 9):
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ro = (0 0,0, 1), re — (1, 1,2 5), 12 = (1, 1,0,8), rg = (2, 1, 1,4),
= (0,0,1,0), r7 = (1,0,1,8), ris = (1,2,2,0), 7119=(0,1,2,1),
=(1,1,1,1), rg = (2,0,0,4), ria = (2,1,2,8), =(2,1,0,5),
rs = (2,1,2,1), rg = (0,0,1,3), ri5 = (2,0,1,8), 191 =(1,2,2,6),
T4 = (07 1707 2)7 10 = (O 17 1 )7 16 = (1 0707 7)7 To2 = (07 17272)7
=(1,2,2,3), =(1,1,2,1), ri7 = (0,0,1,6), =(0,0,1,8).
and ro4 = (0,0,0,1), r95 = (0,0,1,0). Hence k(G) = k(9) = 24. [ ]
3. The Group L,
The Case o = 0 : Let G = L, where a = 0. Then G = {(a,b,claP? = b = P =

1,[a,b] = a?, [a,c] = b, [b,c] = 1). By the relations of group, a? € [G, G’|. Therefore,
G has nilpotency class 3 and [G,G'] < Z(G). Hence a” is a central element of G.
A power-commutator presentation of G may be given as follows:

G=(z,y,z,wlal =y? =2 =1L wP =z, [z,y] = [z,2] = [z,w] =1,

[Zay] =1, [wvy] =7, [waz] = y>

The Case o = 1 : Let G = L,, where o = 1. Then G = (a,b,cla’? = W’ =
1,c? = aP,a,b] = daP,[a,c] = b,[b,c] = 1). We may show that G has the following
power-commutator presentation:

[z,w] =1,

G=(z,y,z,wla? =y? =12 =wP =z, [z,y] = [z,2] =

[z,y] =1, [wvy] =7, [waz] = y>

The case where « is a non-residue modulo p: Let G = L,, where « is a
non-residue modulo p. Then G = (a,b,claP? = b = 1,¢ = a®?, [a,b] = aP,[a,c] =
b, [b,c] = 1). We may show that G has the following power-commutator presenta-
tion:

[x,w] =1,

[Zvy] =1, [w7y] =7, [waz] = y>

Note that in the new presentations, the group G is generated by w and z. Moreover,
x is a central element. Also, each element of G can be uniquely represented as

ybzcwd, where in the first case a, b, ¢ reduced modulo p and d reduced modulo
p? and in the second and third cases a and b reduced modulo p and ¢ and d reduced
modulo p?. From now on we suppose that G = L, where o = 0, 1, or a non-residue
modulo p. First we prove some elementary results.

LEMMA 3.1 For every positive integers m and n,

(ii) wmz" = 2" 2+)"y"mz’%um.
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Proof Since x is a central element of G, then (i) may be proved by the induction
method. To prove (ii) we may use (i) and the relation [z,y] = 1. [ |

LEMMA 3.2 Let 2%2¢w? and x* y* 2 w? be elements of G. Then

(abcd

2%y’ 2w (z® y "2 wd/) = xa+“/+db'+(d§1)c’ybH"*dclchrC/derd/.

Proof By using Lemma 3.1, we have:

(abcd d

2%y’ 2w )(xa yb ¢ wd ) — :Ua-i-a ybzcwdyb 2w
— ybzcxdb yb wdzc wd

_ pota b b ey d e d

’ ’ ’ d+1Y ./ ’
gata’+d ybib sep(3h)e ye

’ ’ d+1Y ’ / / ’
:L,aJra +db +( M )c yb+b +dc Zc-l—c wd-l—d )

! '’
¢ e wdwd

LEMMA 3.3 Let 2%yb2°w? and 2%y 2¢w? be elements of G and m and | be positive
integers. Then

(i) (z%yPzcwdym = gmat(3)bd+(3)e("s)+(5)ed® ymbe()ed ymeymd.

(ZZ) (I‘a’ybzcwd) (:I:a/yb/zclwd/)l — //yb//z Nwd//

2

where
a" = ma+ m bd + m 1 m
B 2 2 2 3
l l d+1 l
/ ! 3/
+la+(2>bd+<2>c< ) <3)
l d+1
+mldb'+m<2> ddd + <m ; )lc’
/! m / l ! g/ /
b" =mb+ <2>cd—|—lb + <2>cd + mldc,
" =mec+1c,
d"=md+1d.
Proof (i) By induction on m. (ii) By using (i) and Lemma 3.2. [ |

LEMMA 3.4 FEwvery element of the Fibonacci sequence in the group G may be pre-
sented by t, = xyP 25w -1 where the sequences {a, 5 and {b,}$° are defined
as follows:

bp =0, b, Z Sn—1—-iSi—18i+1, n =1,

n—1
si—1+1
ap =10, ap an—l—i <Si—1bi+1 + < ! 5 >3i+1> , n=1

=0
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Proof We use an induction method on n. It is obvious that tg = w = x%y 2%
and t; = z = xyP 25w, for, a; = by = 0. Now assume that the result holds for
n and n+ 1, where n > 0. Then

tn+2 = tntn+1
— (Ian,ybn anwsnfl) (2o + ybn+1 25+
Sn—1t8n

, 1
an+an,+l+sn—1bn+1+(&n721+ )Sn+1 bn"rbn+1+5n715n+1ZSn"FSn+1

=z Y w

_a b _sn Sn
=z~ y ZrPw
where

Sp—1 +1
a = an + apy1 + Sp—1bpg1 + < " 12 >Sn+1

n—1
si—1+1
= Sno1 (Si—lbi—H + ( ' 12 >81‘+1>

1=0

n
Si—1+1 Sp—1+1
an—i (Si—lbi+1 + ( ’ 12 >3i+1> + Sp—1bpi1 + ( " 12 >8n+1

1=0

n
si—1+1
= anflfi <3i1bi+1 + ( ! 0 >5i+1>

=0

Sp—1+1
- | <3n—lbn+1 + ( " 12 )3n+1>

n
Si—1+1 Sp—1+1
+ anfi <5i1bi+1 + < ! 9 >5i+1) + sp—1bpg1 + ( " 5 >5n+1

1=0

n
Si—1+1
= an+1fi (SilbiJrl + ( ’ 12 >5i+1>

=0

n+1
si—1+1
= 25n+1—i <5i—1bi+1 + ( ‘ 5 >5i+1>

1=0

= Anp+2,

and

V= by + bpy1 + Sp—15p41

n—1 n
= Z Sn—1-iSi—1Si+1 + Z Sn—iSi—18i+1 T Sn—18n+1
i=0 i=0
n n
= Z Sn—1-iSi—18i+1 — $—18p—18n+1 T Z Sn—iSi—18i+1 T Sn—15n+1
i=0 i=0

n
= E Sn4+18i—1Si+1
i=0

= bn+2
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From now on we shall be working modulo p?. Let & = k(p?). The following
equations hold and are easy to see:

The proofs of the Lemmas 3.5, 3.6 and 3.7 may be found in [2] and [4].
LEMMA 3.5 The following equations hold:
) k-1
(i) > si=0.
i=0
k—1
(ii) > 52 =0.
i=0
k—1
(iii) > s3 =0.
i=0
LEMMA 3.6 If p > 3, then
k=l
(’L) Z SiSi—1 = 0.
i=0

k—1 k=1
(ii) > s? (8= si-152 =0.
i=0 i=0

LEMMA 3.7 For every integers a, b, ¢, d, and e the following equations hold:

k—1

(i) > SitaSiypS—iteSi = 0.
—
- 1io1
(i) > > S_itaSi+bSi—j—dSj+eSite = 0.
i=0 j=0

LeEMMA 3.8 The following equations hold:
k—1 A
(i) > (=1)'s} =0.
i=0
.. k_l . .
(ii) Z%(—l)ls?_lsi = E (—1)is;_182 =0, p>3.
1=

Proof

k-1 ,
(i) ;}(_Dzs?—l = . 331@'-1) = ,Z()Si_(i_l) = Z%S? =

1=
(i) we may write:

k—1 k—1 k—1 '
0= Z 5= ( 1)ZS?+1 = Z(—l)l(si + si-1)
i=0 i=0 i=0
k—1 A k—1
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On the other hand,

k—1 k—1 k—1
OZZS;’:: ( z 13 _Sifl)?’
=0 1=0 Z=0
k—1
=3) (—1)'s;_1s —32 57 15i. (2)
1=0

Adding (1) and (2) we obtain

Since p > 3, (ii) follows.

Now we are ready to prove the main results.
Proof of Main Theorem. By using Lemma 3.4, it is sufficient to show that
ar = Qg4+1 = bk = bk+1 = 0. We have:

k—1 k—1 k—1
i 2
by = E Sk—1—iSi—1Si+1 = E S_(i41)Si—1Si+1 = g (—1) Si—18;41
i=0 i=0 i=0
k—1

= Z( 1)'si1(si1+ 8i)°
=0

I
—
|
—_
~—
<8
v
s.w
H
+
A

Sl 15; +2Z 1317

and the last three expressions vanish by Lemma 3.8. So by = 0. Similarly,

k
i+1
bry1 = Zsk iSi—18i+1 = ZS i8i—18i4+1 = Z( 1) s 188011
=0 1=0
k-1 k-1
i1 i1
=3 (1) sigsi+ s =Y (1) sisysi(si + sio1)

1=0

=0
k—1
=—<Z(— “sio1s; +Z 57— 151>7
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and the last two sums vanish by Lemma 3.8. On the other hand,

b
. si—1+1
ar = » Sk—1—; | Si—1bit1 + 5 Sit+1

N\

kol

-1

i
Ssi—1+1
Sk—(i+1) | Si—1 Z 8i—58j—18j+1 T 9 Si+1
Jj=0

I
i\

k=1 1 k—1
si—1+1
= Z S_(i4+1)8i—15i—jSj—15j4+1 + Z 9 S—_(i4+1)Si+1
i=0 j=0 i=0
k—1i—1 =
= 8§—i—18i—18i—5j8j—15j+1 T 5 Z(Si—l + 1)3i—13—(i+1)3i+1a
1=0 j:(] 1=0

and the first sum vanishes by Lemma 3.7(ii). For the second sum in the above
expression, we have:

k—1 k-1 k—1
(si—1 + 1)3i—13—(i+1)5i+1 = Z 8i—18i—15—(i+1)Si+1 T Z Si—15—(i+1)Si+1
i=0 i=0 i=0
k

-1 k-1
2 : i 2
8i—28;-98_;8; + (—1) Si—15;41
1=0 =0

and the first sum vanishes by Lemma 3.7(i) and the second one is equal to bk
which is zero. A similar method may be used to prove a1 = 0. This completes
the proof showing that k(G) = k(p?) for all of groups G = L, where a = 0,1, or
non-residue modulo p.

4. Conclusion

The Fibonacci lengths of the finite p-groups had been studied by R. Dikici and
co-authors since 1992. All of the considered groups were of exponent p, and the
lengths depended on the celebrated Wall number k(p). The study of p-groups of
nilpotency class 3 and exponent p had been done in 2004 by R. Dikici as well. In
this paper we studied all of the p-groups of nilpotency class 3 and exponent p?.
This completed the study of Fibonacci length of all p-groups of order p*, proving
that the Fibonacci length is k(p?).
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