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Abstract. In this paper, we consider the variational homotopy perturbation method (VHPM)
to obtain an approximate series solution for the generalized Fisher’s equation which converges
to the exact solution in the region of convergence. Comparisons are made among the vari-
ational iteration method (VIM), the exact solutions and the proposed method. The results
reveal that the proposed method is very effective and simple and can be applied for other
nonlinear problems in mathematical.
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1. Introduction

In this paper, we consider the generalized Fisher’s equation

ut = uxx + u (1− uα), (1)

where ut = ∂u
∂t , uxx = ∂2u

∂x2 . Fisher proposed equation of ut = uxx + u (1 − u) as
a model for the propagation of a mutantgene, with u denoting the density of an
advantageous. This equation is encountered in chemical kinetics and population
dynamics which includes problems such as nonlinear evolution of a population in a
one-dimensional habitat and neutron population in a nuclear reaction and branch-
ing. Moreover, the same equation occurs in logistic population growth models,
flame propagation, neurophysiology, autocatalytic chemical reactions, and branch-
ing Brownian motion processes [1]. In this work, we solve the generalized Fisher’s
equation via VHPM.
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2. Variational Homotopy Perturbation Method

To convey the basic idea of the variational homotopy perturbation method, we
consider the following general differential equation

Lu+Nu = g(x), (2)

where L is a linear operator, N is a nonlinear operator and g(x) is an inhomoge-
neous term. According to variational iteration method [2–4, 6–11], we can construct
a correct functional as follows:

un+1(x) = un(x) +

∫ x

0
λ(τ) {Lun +Nũn − g(τ)} dτ, (3)

where λ(τ) is a Lagrange multiplier [2–4, 6–11] which can be identified optimally via
the variational iteration method. The subscripts n denote the n th approximation,
ũn is considered as a restricted variation. That is, δũn = 0 and (3) is called a
correct functional. Now, we apply the homotopy perturbation method;

∞∑
i=0

piui = u0 + p

∫ x

0
λ(τ)

{
N

( ∞∑
i=0

piui

)}
dτ −

∫ x

0
λ(τ)g(τ) dτ, (4)

which is the variational homotopy perturbation method and is formulated by the
coupling of variational iteration method and Adomian’s polynomials.
The embedding parameter p ∈ (0, 1] can be considered as an expanding parameter
[12–18]. The homotopy perturbation method uses the homotopy parameter p as an
expanding parameter [12–18] to obtain

f =
∞∑
i=0

piui = u0 + p u1 + p2u2 + · · · . (5)

If p → 1, then (5) becomes the approximate solution of the form

u = lim
p→1

f = u0 + u1 + u2 + · · · . (6)

A comparison of like powers of p gives solutions of various orders.

3. Implementation of VHPM

At first, in this section we consider special case of the generalized Fisher’s equation
and then take into account a general form.

Case 1 : We consider the generalized Fisher’s equation (1) with fixed value
α = 3 as follows:

ut = uxx + u (1− u3), (7)
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subject to the initial condition u0(x, t) = ϕ2(x), where ϕ(x) = 1

(1+e
3√
10

x
)
1
3

.

To solve Eq. (7) by means of VHPM, we consider

L(u) = ut, (8)

N(u) = −uxx − u+ u4, (9)

where L is a linear and N is a nonlinear operator. According to the variational
iteration method [2–4, 6–11], we can construct a correct functional as follows:

un+1(x, t) = un(x, t) +

∫ t

0
λ(τ)

{
unτ

− ũnxx
− ũn(1− ũ3n)

}
dτ, (10)

where ũn is considered as a restricted variation. Making the above functional sta-
tionary, the Lagrange multiplier can be determined as λ = −1, which yields the
following iteration formula:

un+1(x, t) = un(x, t)−
∫ t

0

{
unτ

− unxx
− un(1− u3n)

}
dτ. (11)

Applying the variational homotopy perturbation method, we have:

u0 + p u1 + p2u2 + · · · = ϕ2(x) + p

∫ t

0
(u0xx

+ p u1xx
+ p2u2xx

+ · · · ) dτ

+ p

∫ t

0
(u0 + p u1 + p2u2 + · · · ) dτ

− p

∫ t

0
(u0 + p u1 + p2u2 + · · · )4 dτ. (12)

Comparing the coefficient of like powers of p, we have:

u0(x, t) = ϕ2(x),

u1(x, t) =
7

5
ϕ5(x) e

3√
10

x t,

u2(x, t) =
49

50
ϕ8(x) e

3√
10

x
(
2e

3√
10

x − 3
) t2

2!
,

u3(x, t) = −343

500
ϕ11(x) e

3√
10

x
(
−9 + 27e

3√
10

x − 4e
6√
10

x
) t3

3!
,
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Thus the components which constitute u(x, t) are written like this

u(x, t) = u0 + u1 + u2 + u3 + · · · = ϕ2(x)

+
7

5
ϕ5(x) e

3√
10

x t

+
49

50
ϕ8(x) e

3√
10

x
(
2e

3√
10

x − 3
) t2

2!

− 343

500
ϕ11(x) e

3√
10

x
(
−9 + 27 e

3√
10

x − 4 e
6√
10

x
) t3

3!
+ · · · ,

The exact solution by Wang [5] is given by

u(x, t) =

{
1

2
tanh

[
− 3

2
√
10

(
x− 7√

10
t

)]
+

1

2

} 2

3

. (13)

Case 2 : Now, we consider the generalized Fisher’s equation

ut = uxx + u (1− uα), (14)

subject to the initial condition

u(x, 0) = ϕ2(x;α), where ϕ(x;α) = 1(
1+e

α√
2α+4

x
) 1

α
.

To solve Eq. (14) by means of VHPM, we consider

L(u) = ut, (15)

N(u) = −uxx − u+ uα+1, (16)

where L is a linear and N is a nonlinear operator. According to the variational
iteration method [2–4, 6–11], we can construct a correct functional as follows:

un+1(x, t) = un(x, t) +

∫ t

0
λ(τ) {unτ

− ũnxx
− ũn(1− ũαn)} dτ, (17)

where ũn is considered as a restricted variation. Making the above functional sta-
tionary, the Lagrange multiplier can be determined as λ = −1, which yields the
following iteration formula:

un+1(x, t) = un(x, t)−
∫ t

0
{unτ

− unxx
− un(1− uαn)} dτ. (18)
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Applying the variational homotopy perturbation method, we have:

u0 + p u1 + p2u2 + · · · = ϕ2(x;α) + p

∫ t

0
(u0xx

+ p u1xx
+ p2u2xx

+ · · · ) dτ

+ p

∫ t

0
(u0 + p u1 + p2u2 + · · · ) dτ

− p

∫ t

0
(u0 + p u1 + p2u2 + · · · )α+1 dτ. (19)

Comparing the coefficient of like powers of p, we have:

u0(x, t) = ϕ2(x;α),

u1(x, t) =
α+ 4

α+ 2
ϕ2+α(x;α) e

α√
2α+4

x t,

u2(x, t) =
1

2

(α+ 4)2

(α+ 2)2
ϕ2+2α(x;α) e

α√
2α+4

x
(
2e

α√
2α+4

x − α
) t2

2!
,

u3(x, t) = −1

4

(α+ 4)3

(α+ 2)3
ϕ2+3α(x;α) e

α√
2α+4

x
(
−α2 +

(
6α+ α2

)
e

α√
2α+4

x − 4e
2α√
2α+4

x
) t3

3!
,

...

Thus the components which constitute u(x, t) are written like this

u(x, t) = u0 + u1 + u2 + · · · = ϕ2(x;α)

+
α+ 4

α+ 2
ϕ2+α(x;α) e

α√
2α+4

x t

+
1

2

(α+ 4)2

(α+ 2)2
ϕ2+2α(x;α) e

α√
2α+4

x
(
2 e

α√
2α+4

x − α
) t2

2!

+ · · · ,

The exact solution by Wang [5] is given by

u(x, t) =

{
1

2
tanh

[
− α

2
√
2α+ 4

(
x− α+ 4√

2α+ 4
t

)]
+

1

2

} 2

3

. (20)

For later numerical computation, we let the expression

φn =

n∑
i=0

ui(x, t), (21)

to denote the n-term approximation to u(x,t).

In what follows, we present the absolute errors between φ2V HPM and the exact
solution and the absolute errors between the 2-iterate of VIM (u2V IM

) and the
exact solution for the values of t = 0.1, x = 0(0.1)0.5 and α = 3 .
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Table 1. The numerical results forφ2V HPM
and u2V IM

in comparison with the exact solution of u.

x |u− φ2V HPM | |u− u2V IM |

0.0 1.2212e− 004 3.7695e− 005
0.1 1.2847e− 004 2.5820e− 005
0.2 1.3283e− 004 1.4565e− 005
0.3 1.3511e− 004 4.2358e− 006
0.4 1.3530e− 004 4.9027e− 006
0.5 1.3342e− 004 1.2642e− 005
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Figure 1. The exact solution (a) u(x, t) and the approximate solution (b) φ2V HPM with fixed value α = 3
at x = 0(0.1)0.5, t=0(0.1)0.5.

The numerical results reveal that the VHPM is easy to implement and reduces
the computational work to a tangible level while still maintaining a very higher
level of accuracy.
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Figure 2. The exact solution (a) u(x, t) and the 2-iterate of VIM (b) u2V IM with fixed value α = 3 at
x = 0(0.1)0.5, t=0(0.1)0.5.
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4. Conclusion

In this paper, varational homotopy perturbation method is proposed for solving
the generalized Fisher’s equation. The small amount of computation compared
to that required in other methods such as the variational iteration method and
the rapid convergence show that the method is reliable and provides a significant
improvement in solving partial differential equations over existing methods. The
computations in this paper are done by MATLAB software.

References

[1] M. Matinfar, M. Ghanbari, The application of the modified variational iteration method on the gen-
eralized Fisher’s equation, J. Appl. Math. Comput. DOI 10. 1007/s12190-008-0199-0(2008).

[2] J.H. He, Variational iteration method- A kind of non-linear analitycal technique:some examples, In-
ternational Journal of Non-Linear Mech. 34(4) (1999), 699–708.

[3] J.H. He and X.H. Wu, Variational iteration method: new development and applications, Computers
and Mathematics with Appl. vol. 54, no. 7-8, (2007), 881–894.

[4] M. Inokuti, H. Sekine and T. Mura, General use of the Lagrange multiplier in nonlinear mathematical
physics, in Variational Method in the Mechanics of Solids, Pergamon Press, New York, 1978.

[5] X.Y. Wang, Exact and explicit solitary wave solutions for the generalized Fisher equation, Phys. Lett.
A 131 (4/5) (1988) 277–279.

[6] J.H. He, Int. J. Mod. Phys. B 20 (2006) 1141.
[7] J.H. He, Non-perturbative method for strongly nonlinear problems, dissertation, de Verlag in Internt

GmbH, Berlin, 2006.
[8] J.H. He, Comput. Methods Appl. Mech. Eng. 167 (1998) 69.
[9] J.H. He, X.H. Wu, Chaos Solitons Fractals 29 (2006) 108.
[10] J.H. He, Int. J. Mod. Phys. B 20 (18) (2006) 2561.
[11] J.H. He, Generalized Variational Prinsiples in Fluids, Science Culture Publishing House of China,

Hong Kong, 2003 (in chinese).
[12] J.H. He, Some asymptotic methods for strongly nonlinear equations, International Journal of Modern

Physics B, vol. 20,no. 10, pp. 1141-1199, 2006.
[13] J.H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineer-

ing, vol. 178, no. 3-4, pp. 257-262, 1999.
[14] J.H. He, Homotopy perturbation method for solving boundary value problems, Physics Letters A,vol.

350, no. 1-2, pp. 87-88, 2006.
[15] J.H. He, Comparison of homotopy perturbation method and homotopy analysis method, Applied

Mathematics and Computation, vol. 156, no. 2, pp. 527-539, 2004.
[16] J.H. He, Homotopy perturbation method for bifurcation of nonlinear problems, International Journal

of Nonlinear Sciences and numerical Simulation, vol. 6, no. 2, pp. 207-208, 2005.
[17] J.H. He, The homotopy perturbation method nonlinear oscillators with discontinuities, Applied Math-

ematics and Computation, vol. 151, no. 1, pp. 287-292, 2004.
[18] J.H. He, A coupling method of a homotopy tachnique and a perturbation technique for nonlinear

problems, International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000.


