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1. Introduction

Huang and Zhang [4] generalized the concept of metric spaces by consider- ing
vector-valued metrics (cone metrics) with values in ordered real Banach spaces.
Since then, several Fixed point theorems have been proved in the con- text of
cone metric spaces (for example, see [1-4,7]). The concept of coupled fixed point
was recently introduced by T. G. Bhaskar and V. Lakshmikan- tham [2]. Recently,
F. Sabetghadam, H. P. Masiha and A. H. Sanatpour [10] proved some coupled
fixed point theorems in cone metric spaces. In this pa- per, we unify, extend and
generalize the results in [10] with some applications to integral type.

Definition 1.1 ([4]). A cone P is a subset of a real Banach space E such that

i) P is closed, nonempty and P ̸= {0};
ii) if a, b are nonnegative real numbers and x, y ∈ P , then ax+ by ∈ P ;
iii) P ∩ (−P ) = {0}.

For a given cone P ⊆ E, the partial ordering ⩽ with respect to P is defined by
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x ⩽ y if and only if y − x ∈ P . The notation x ≪ y will stand for y − x ∈ intp,
where intP denotes the interior of P . Also, we will use x < y to indicate that x ⩽ y
and x ̸= y.
The cone P is called normal if there exist a constant M > 0 such that for every

x, yinE, if 0 ⩽ x ⩽ y; then ||x|| ⩽ M ||y||. The least positive number satisfying this
inequality is called the normal constant of P .
In this paper, we suppose that E is a real Banach space, P ⊆ E is a cone with

intP ̸= and ⩽ is partial ordering with respect to P . We also note that the relation
P + intP ⊆ intP and λintP ⊆ intP (λ > 0) always hold true.

Definition 1.2 Let X be a nonempty set and let E be a real Banach space equipped
with the partial ordering ⩽ with respect to the cone P ⊆ E. Suppose that the
mapping d : X ×X → E satisfies the following conditions [4]:

d1) 0 ⩽ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
d2) d(x, y) = d(y, x) for all x, y ∈ X;
d3) d(x, y) ⩽ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.3 Let (X, d) be a cone metric space, x ∈ X and {xn}n⩾1 be a
sequence in X [4]. Then

i) {xn}n⩾1 converges to x; denoted by limn→∞ xn = x, if for every c ∈ E with
0 ≪ c there exist a natural number N such that d(xn, x) ≪ c for all n ⩾ N ;

ii) {xn}n⩾1 is a Cauchy sequence if for every c ∈ E with 0 ≪ c there exists a
natural number N such that d(xn, xm) ≪ c for all n,m ⩾ N .

A cone metric space (X, d) is said to be complete if every Cauchy sequence in X
is convergent in X.

Definition 1.4 Let f and g be self- maps of a set X (i.e., f, g : X → X). If
w = fx = gx for some x in X, then x is a coincidence point of f and g, and w is
called a point of coincidence of f and g. Self-maps f and g are said to be weakly
compatible if they commute at their coincidence point, that is, if fx = gx for some
xinX, then fgx = gfx [6].

Definition 1.5 Let (X, d) be a cone metric space. An element (x, y)inX ×X is
said to be a coupled fixed point of the mapping F : X ×X → X if F (x, y) = x and
F (y, x) = y [10].

Recently, F. Sabetghadam, H. P. Masiha and A. H. Sanatpour [10] proved the
existence of unique coupled
xed point for the following contractive conditions in a cone metric space:

d(F (x, y), F (u, v)) ⩽ kd(x, u) + ld(y, v), (1)

where k, l are nonnegative constants with k + l < 1.

d(F (x, y), F (u, v)) ⩽ kd(F (x, y), x) + ld(F (u, v), u), (2)

where k, l are nonnegative constants with k + l < 1.

d(F (x, y), F (u, v)) ⩽ kd(F (x, y), u) + ld(F (u, v), x), (3)

where k, l are nonnegative constants with k + l < 1.
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n this research paper, we unify, extend and generalize the contractive condi-
tions (1), (2) and (3). Furthermore, we also prove some other coupled fixed point
theorems in cone metric spaces.

Definition 1.6 Let P be a cone [11]. A non-decreasing mapping φ : P → P is
called a φ-mapping if

φ1) φ(0) = 0 and o < φ(ω) for ω ∈ P − {0};
φ2) ω − φ(ω) ∈ int(P ) for every ω ∈ int(P );
φ3) limn→∞ φn(ω) = 0 for every ω ∈ P − {0};
φ4) φ(cu) ⩽ cφ(u), where c > 0.

Definition 1.7 Let P be a cone and let {ωn} be a sequence in P . One says that
ωn → 0 if for every ϵ ∈ P with 0 ≪ ϵ there exists N > 0 such that ωn ≪ ϵ for all
n ⩾ N [11].

Definition 1.8 For a non-decreasing mapping T : P → P , we define the following
conditions which will be used in the sequel [11]:

T1) For every ωn ∈ P , ωn → 0 if and only if Tωn → 0;
T2) For every ω1, ω2 ∈ P , T (αω1 + βω2) ⩽ αT (ω1) + βT (ω2), α, β ⩾ 0.

2. Main Results

We will now consider the following theorems.

Theorem 2.1 Let (X, d) be a complete cone metric space. Suppose that the map-
ping F : X ×X → X satisfies the following contractive condition

T (d(f(x, y), F (u, v))) ⩽ φ(T (j)), (4)

for all x, y, u, v ∈ X, where

j ∈
{
d(x, u) + d(y, v)

2
, d(F (x, y), x), d(F (u, v), u),

d(F (x, y), u), d(F (u, v), x)

2
,

d(F (x, y), x), d(F (u, v), u)

2

}

φ : P → P is a nondecreasing mapping satisfying (φ1)− (φ4), and T : P → P is a
nondecreasing mapping satisfying (T1) − (T3). Then F has a unique coupled fixed
point.

Proof Choose x0, y0 ∈ X and set

x1 = F (x0, y0), y1 = F (y0, x0), . . . , xn+1 = F (xn, yn), yn+1 = F (yn, xn).
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By (4), we have that

T (d(xn, xn+1)) = T (d(F (xn−1, yn−1), F (xn, yn)))

⩽ φ(T (
d(xn−1, xn) + d(yn−1, yn)

2
, d(F (xn−1, yn−1), xn−1),

d(F (xn, yn), xn),
d(F (xn−1, yn−1), xn) + d(F (xn, yn), xn−1)

2
,

d(F (xn−1, yn−1), xn−1) + d(F (xn, yn), xn)

2
)).

= φ(T (
d(xn−1, xn) + d(yn−1, yn)

2
, d(xn, xn−1),

d(xn+1, xn),
d(xn+1, xn−1)

2
,
d(xn, xn−1) + d(xn+1, xn)

2
)).

Similarly,

T (d(yn, yn+1)) ⩽ φ(T (
d(F (yn−1, yn), d(xn−1, xn)

2
), d(yn, yn−1), d(yn+1, yn),

d(yn+1, yn−1)

2
,
d(yn, yn−1) + d(yn+1, yn)

2
)).

Set dn = d(xn, xn+1) + d(yn, yn+1) then we must first show that

T (dn) ⩽ φ(T (dxn, xn−1) + d(yn, yn−1)), (5)

= φ(T (dn−1)),

⩽ φn(T (d0)), ∀n ⩾ 1.

It is sufficient to consider the following cases. ■

Case 1. If j = d(xn, xn−1) + s(yn, yn−1),

T (dn) = T (d(xn, xn+1) + d(yn, yn+1)) ⩽ φ(T (d(xn, xn−1) + d(yn, yn−1))).

This implies that T (dn) ⩽ φ(T (dn−1)) ⩽ φn(T (d0)) and (5) is satisfied.
Case 2. If j = d(xn, xn−1 + d(yn, yn−1), then

T (dn) = T (d(xn, xn+1) + d(yn, yn+1)) ⩽ φ(T (d(xn, xn−1) + d(yn, yn−1))).

So that T (dn) ⩽ φ(T (dn−1)) ⩽ φn(t(d0)) and (5) is proved.
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Case 3. If j = d(xn+1,xn−1)
2 + d(yn+1,yn−1)

2 , then

T (d(xn, xn+1) + d(yn, yn+1)) ⩽ φ(T (
d(xn+1, xn−1)

2
+

d(yn+1, yn−1)

2
))

⩽ φ(T (
d(xn+1, xn) + d(xn, xn−1)

2
+

d(yn+1, yn) + d(yn, yn−1)

2
)) (6)

⩽ φ(T (
d(xn, xn−1) + d(yn, yn−1)

2
))+

(T
d(xn+1, xn) + d(yn+1, yn)

2
).

Then from (6) and (φ4), we have

t(dn) ⩽ φ(T (dn−1)) ⩽ φn(T (d0)). (7)

Hence (5) is satisfied.

Case 4. If j = d(xn,xn−1)+d(xn+1,xn)
2 + d(yn,yn−1)+d(yn+1,yn)

2 , then

T (d(xn, xn+1) + d(yn, yn+1)) ⩽ φ(T (
d(xn, xn−1) + d(xn+1, xn)

2

+
d(yn, yn−1) + d(yn+1, yn)

2
))

⩽ φ(T (
d(xn, xn−1) + d(yn, yn−1)

2
(8)

+ T (
d(xn+1, xn) + d(yn+1, yn)

2
)+

Then from (8) and (φ4), we have

T (dn) ⩽ φ(T (dn−1)), (9)

⩽ φn(T (d0)), ∀n ⩾ 1.

Hence (5) is satisfied.
If d0 = 0, then (x0, y0) is a coupled fixed point of F. Now, let d0 > 0, for each

n ⩾ m. by (9) and φ1, we have:

T (d(xn, xm) + d(yn, ym)) ⩽ T (d(xn, xn−1) + d(yn, yn−1) + d(xn−1, xn−2)

+ d(yn−1, yn−2) + · · ·+ d(xm+1, xm)

+ d(ym+1, ym))

⩽ φ(T (dn−1 + dn−2 + · · ·+ dm))

< T (dn−1 + T (dn−2) + · · ·+ T (dm)

⩽ φn−1(T (d0)) + φn−2(T (d0))

+ φn−3(T (d0)) + · · ·+ φm(T (d0)).
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which implies that {xn} and {yn} are Cauchy sequences in X, and there exist
x∗, y∗ ∈ X such that limn→∞ xn = x∗ and limn→∞ yn = y∗. Let c ∈ E with
0 ≪ c. For every n ∈ N there exists N ∈ N such that T (d(xn, x

∗)) ≪ c
2 and

T (d(yn, y
∗)) ≪ c

2 for all n ⩾ N . Thus by (2.1)

T (d(F (x∗, y∗), x∗)) ⩽ T (d(xN , F (x∗, y∗)) + d(xN , X∗))

= T (d(F (xN−1, yN−1), F (x∗, y∗)) + d(xN , x∗))

⩽ φ(T (
d(xN−1, x

∗) + d(yN−1, y
∗)

2
, d(F (xN−1, yN−1), xN−1),

d(F (xN−1, yN−1), xN−1) + d(F (x∗, y∗), x∗)

2
+ d(xN , x∗)))

= φ(T (
d(xN−1, x

∗) + d(yN−1, y
∗)

2
, d(xN , xN−1),

d(F (x∗, y∗), x∗),
d(xN , x∗) + d(F (x∗, y∗), xN−1)

2
,

d(xN , xN−1) + d(F (x∗, y∗), x∗)

2
+ d(xN , x∗))).

Case 1∗. If j = d(xN−1,x∗)+d(yN−1,y∗)
2 + d(xN , x∗). Then, we have that:

T (d(F (x∗, y∗), x∗) ⩽ φ(T (
d(xN−1, x

∗) + d(yN−1, y
∗)

2
+ d(xN , x∗))). (10)

choose

T (d(xN−1, x
∗)) ≪ c

2
,

T (d(yN−1, y
∗)) ≪ c

2
,

and

T (d(xN , x∗)) ≪ c

2
.

Then, by (φ1) and (10), we have

T (d(F (x∗, y∗), x∗)) ≪ c.

Case 2∗. If j = d(xN , xN−1) + d(xN , x∗), Then

T (d(F (x∗, y∗), x∗)) ⩽ φ(T (d(xN , xN−1) + d(xN , x∗) + d(xN , x∗)))

⩽ φ(T (d(xN , x∗) + d(x∗, xN−1) + d(xN , x∗))) (11)

choose

T (d(xN , x∗)) ≪ c

4
,
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and

T (d(xN−1, x
∗)) ≪ c

2
.

Hence, by (φ1) and (11), we obtain

T (d(F (x∗, y∗), x∗)) ≪ c.

Case 3∗. If j = d(xN ,x∗)+d(F (x∗,y∗),xN−1)
2 + d(xN , x∗), we have that

T (d(F (x∗, y∗), x∗)) ⩽ φ(T (
d(xN , x∗) + d(F (x∗, y∗), xN−1)

2
+ d(xN , x∗))),

⩽ φ(T (
d(xN , x∗) + d(F (x∗, y∗), x∗) + d(x∗, xN−1)

2
+ d(xN , x∗))),

⩽ φ(T (
d(xN , x∗) + d(x∗, xN−1)

2
+ d(xN , x∗))),

+ T (
d(F (x∗, y∗), x∗)

2
). (12)

By (φ4) and (12), we have

T (d(F (x∗, y∗), x∗)) ⩽ φ(T (d(xN , x∗) + d(x∗, xN−1))

+ 2d(xN , x∗))). (13)

choose

T (d(xN , x∗)) ≪ c

4
,

and

T (d(x∗, xN−1)) ≪
c

4
.

Then, by (φ1) and (13), we have

T (d(F (x∗, y∗), x∗)) ≪ c.

Case 4∗. If j = d(xN ,xN−1)+d(F (x∗,y∗),x∗)
2 + d(xN , x∗), we have that

T (d(F (x∗, y∗), x∗)) ⩽ φ(T (
d(xN , xN−1) + d(F (x∗, y∗), x∗)

2
+ d(xN , x∗))),

⩽ φ(T (
d(xN , x∗) + d(x∗, xN−1) + d(F (x∗, y∗), x∗)

2
+ d(xN , x∗))),

⩽ φ(T (
d(xN , x∗) + d(x∗, xN−1)

2
+ d(xN , x∗))),

+ T (
d(F (x∗, y∗), x∗)

2
). (14)
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By (φ4) and (14), we have

T (d(F (x∗, y∗), x∗)) ⩽ φ(T (d(xN , x∗) + d(x∗, xN−1))

+ 2d(xN , x∗))). (15)

choose

T (d(xN , x∗)) ≪ c

4
,

and

T (d(x∗, xN−1)) ≪
c

4
.

Then, by (φ1) and (15), we have

T (d(F (x∗, y∗), x∗)) ≪ c.

In all cases, T (d(F (x∗, y∗), x∗)) = 0 or equivalently F (x∗, y∗) = x∗. Similarly,
we can show that F (y∗, x∗) = y∗. Hence, we have shown that (x∗, y∗) is a coupled
fixed point of F .
Next, we show that (x∗, y∗) is a unique coupled fixed point of F . Assume that

(x′, y′) is another coupled Fixed point of F , then by Case 1-4, we have that

T (d(x′, x∗)) = T (d(F (x′, y′), F (x∗, y∗)))

⩽ φ(T (d(F (x′, y′), x′) + d(F (x∗, y∗), x∗)))

= φ(T (d(x′, x′) + d(x∗, x∗)) = 0.

Hence, x′ = x∗. We can similarly show that y′ = y∗, hence (x′, y′) = (x∗, y∗).
Theorem 2.1 lead to the following Corollaries:

Corollary 2.2 Let (X, d) be a complete cone metric space. Suppose that the
mapping F : X ×X → X satisfies the following contractive condition

T (d(F (x, y), F (u, v))) ⩽ φ(T (j)), (16)

for all x, y, u, v ∈ X, where

j ∈
{

d(x,u)+d(y,v)
2 , d(F (x, y), x), d(F (u, v), u), d(F (x,y),u)+d(F (u,v),x)

2

}
, φ : P → P

is a nondecreasing mapping satisfying (φ1)−(φ4) and T : P → P is a nondecreasing
mapping satisfying (T1)− (T2). Then F has a unique coupled fixed point.

Corollary 2.3 Let (X, d) be a complete cone metric space. Suppose that the
mapping F : X ×X → X satisfies the following contractive condition

T (d(F (x, y), F (u, v))) ⩽ φ(T (j)), (17)

for all x, y, u, v ∈ X, where
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j ∈
{

d(x,u)+d(y,v)
2 , d(F (x, y), x), d(F (u, v), u), d(F (x,y),u)+d(F (u,v),x)

2

}
, φ : P → P

is a nondecreasing mapping satisfying (φ1)−(φ4) and T : P → P is a nondecreasing
mapping satisfying (T1)− (T2). Then F has a unique coupled fixed point.

Remark 2.4. Theorem 2.2 [10], Theorem 2.5 [10] and Theorem 2.6 [10] are
special cases of Corollary 2.3.

3. Coupled Fixed Point of Operators Satisfying Contractive Condition of
Integral Type

In 2002, Branciari [3] introduced a general contractive condition of integral type
as follows.

Theorem 3.1 Let (X, d) be a complete metric space, α ∈ (0, 1), and f : X → X
is a mapping such that for all x, y ∈ X [3],

∫ d(f(x),f(y))

0
ϕ(t)d(t) ⩽ α

∫ d(x,y)

0
ϕ(t)d(t),

where ϕ : [0,+∞) → [0,+∞) is a nonnegative-integrable mapping which is
summable (i.e., with finite integral) on each compact subset of [0,+∞) such that
for each ϵ > 0,

∫ ϵ
0 ϕ(t)dt > 0, then f has a unique fixed point a ∈ X, such that for

each x ∈ X, limn→∞ fnx = a.

In [8], F. Khojasteh et al. defined a new concept of integral with respect to a
cone and introduced the Branciari’s results in cone metric spaces.
In this paper, we study coupled fixed point of operators satisfying contractive

condition of integral type mappings in cone metric spaces. Our results is an exten-
sion of the results of F. Khojasteh et al. [8] to coupled fixed point, introduced by T.
G. Bhaskar and V. Lakshmikantham [2]. We start with some definitions, examples
and properties as introduced in [8].

Definition 3.2 Suppose that P is a normal cone in E. Let a, b ∈ E and a < b.
We define [8]

[a, b] := {x ∈ E : x = tb+ (1− t)a, where t ∈ [0, 1]}

[a, b) := {x ∈ E : x = tb+ (1− t)a, where t ∈ [0, 1)}

Definition 3.3 The set {a = x0, x1, . . . , xn = b} is called a partition for [a, b] if
and only if the sets [xi−1, xi], 1 ⩽ i ⩽ n [8], are pairwise disjoint and

[a, b] =

{
n∪

i=1

[xi−1, xi)

}
∪ {b}

Definition 3.4 Suppose that P is a normal cone in E, ϕ : [a, b] → P a map. ϕ is
said to be integrable on [a, b] with respect to cone P (or cone integrable function)
iff for all partition Q of [a, b] [8]

lim
n→∞

LCon
n (ϕ,Q) = SCon = lim

n→∞
UCon
n (ϕ,Q)
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where SCon must be unique and:

LCon
n =

n−1∑
i=0

ϕ(xi+1)||xi − xi+1|| (Cone lower summation)

and

UCon
n =

n−1∑
i=0

ϕ(xi+1)||xi − xi+1|| (Cone upper summation)

we note

SCon =

∫ b

a
ϕ(x)dP (x) =

∫ b

a
ϕdP

The set of all cone integrable functions ϕ : [a, b] → P is denoted LT ([a, b], P ).

Definition 3.5 The function ϕ : P → E is called subadditive cone integrable
function iff ∀a, b ∈ P [8] ∫ a+b

0
ϕdP ⩽

∫ a

0
ϕdP +

∫ b

0
ϕdP

Example Let E = X = R, d(x, y) = |x−y|, P = [0,+∞) and ϕ(t) = 1
t+1 ∀ t > 0.

Then ϕ is a subbaditive cone integral function.

Theorem 3.6 Let (X, d) be a cone metric space and let and P a normal cone.
Let ϕ : P → P be a nonvanishing map and a subbaditive cone integrable on each
[a, b]. Suppose that the mapping F : X ×X → X satisfies the following contractive
condition

∫ d(F (x,y),F (u,v))

0
ϕ(t)dP (t) ⩽ φ

(∫
0
j(x, y, u, v)ϕ(t)dP (t)

)
, (18)

for all x, y, u, v ∈ X, where

j(x, y, u, v) ∈ {d(x, u) + d(y, v)

2
, d(F (x, y), x), d(F (u, v), u),

d(F (x, y), u) + d(F (u, v), x)

2
,

d(F (x, y), x) + d(F (u, v), u)

2
}

φ : P → P is a nondecreasing mapping satisfying (φ1)− (φ4) and T : P → P is a
nondecreasing mapping satisfying (T1) − (T2). Then F has a unique coupled fixed
point.

Proof Theorem 3.6 is a Corollary of Theorem 2.1 when T (j(x, y, u, v)) =∫ j(x,y,u,v)
0 ϕdP . Under this case, T satisfies conditions (T1) − (T2). (T2) results
from the subbaditivity of ϕ. The condition (T1) results from the continuity of T
and its inverse in 0. In fact, in a normal cone, if wn →≪ w, then wn converges
to w. Now, since T is continuous in 0, for every sequence wn converging to 0,
T (wn) converges to T (0) = 0. Since T−1 is continuous, given any sequence T (wn)
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converging to 0, T−1(T (wn)) = wn converges to T−1(0) = 0; thus (T1) is satisfied.
■

Theorem 3.6 lead to the following Corollaries:

Corollary 3.7 Let (X, d) be a cone metric space and let and P a normal cone.
Let ϕ : P → P be a nonvanishing map and a subbaditive cone integrable on each
[a, b]. Suppose that the mapping F : X ×X → X satisfies the following contractive
condition ∫ d(F (x,y),F (u,v))

0
ϕ(t)dP (t) ⩽ φ

(∫ j(x,y,u,v)

0
ϕ(t)dP (t)

)
(19)

for all x, y, u, v ∈ X, where

j(x, y, u, v) ∈
{
d(x, u) + d(y, v)

2
, d(F (x, y), x), d(F (u, v), u),

d(F (x, y), u) + d(F (u, v), x)

2

}
, φ : P → P is a nondecreasing mapping satisfying (φ1)− (φ4) and T : P → P is
a nondecreasing mapping satisfying (T1)− (T2). Then F has a unique coupled fixed
point.

Corollary 3.8 Let (X, d) be a cone metric space and let and P a normal cone.
Let ϕ : P → P be a nonvanishing map and a subbaditive cone integrable on each
[a, b]. Suppose that the mapping F : X ×X → X satisfies the following contractive
condition ∫ d(F (x,y),F (u,v))

0
ϕ(t)dP (t) ⩽ φ

(∫ j(x,y,u,v)

0
ϕ(t)dP (t)

)
(20)

for all x, y, u, v ∈ X, where

j(x, y, u, v) ∈
{
d(x, u) + d(y, v)

2
, d(F (x, y), x), d(F (u, v), u),

d(F (x, y), u) + d(F (u, v), x)

2

}
, φ : P → P is a nondecreasing mapping satisfying (φ1)− (φ4) and T : P → P is
a nondecreasing mapping satisfying (T1)− (T2). Then F has a unique coupled fixed
point.

Remark 3.9.

(i) Corollary 2.2 gives Corollary 3.7 when T (j(x, y, u, v)) =
∫ j(x,y,u,v)
0 ϕdP and

(ii) Corollary 2.3 gives Corollary 3.8 when T (j(x, y, u, v)) =
∫ j(x,y,u,v)
0 ϕdP .

Therefore our Theorem 3.6 is Coupled fixed point of integral type version of The-
orem 2.1.

4. Conclusion

In this paper, we unified, extended and generalized some results on coupled fixed
point theorems of generalized φ- mappings with some applications to fixed points
of integral type mappings in cone metric spaces.
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