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Abstract. Modification of Newtons method with higher-order convergence is pre- sented.The
modification of Newtons method is based on Frontinis three-order method The new method
requires two-step per iteration. Analysis of con- vergence demonstrates that the order of
convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and
performs better than classical Newtons method and other methods.
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1. Introduction

In this paper, we develop an iterative method to find a simple root a of the nonlinear
equation f(α) = 0, where f : D ⊂ R → R is a scalar function on an open interval
D. It is well known that Newtons method is one of the best iterative methods for
solving a single nonlinear equation by using

xn+1 = xn − f(xn)

f ′(xn)
, (1)

which converges quadratically in some neighborhood of α. Many iterative
methods have been developed by using various techniques including quadra-
ture formulas, Taylor series and decomposition methods. For more details, see
[3,7,9,10,11,14,17,19] and the references therein we applied Frontinis method by
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three-order, which is written as:[4,5]

xn+1 = xn − f(xn)

f ′
(
xn − f(xn)

2f ′(xn)

) (2)

Also, we can obtain an approximation for f ′(yn) [2]:

f ′(yn) ≈ Pf (xn, yn) =

[
2f(xn)− 5f(yn)

2f(xn)− f(yn)

]
f ′(xn). (3)

2. Development of Method and Convergence Analysis

Now we construct a two-step iterative method:

yn = xn − f(xn)

f ′(xn)
,

zn = yn − f(yn)

f ′
(
yn − f(yn)

2Pf (xn,yn)

) , n = 0, 1, 2, . . . (4)

We prove the following convergence theorem for our new method presented by
Equation (4).

Theorem 2.1 Let α ∈ I be a simple zero of a sufficiently differentiable function
f : I → R for an open interval I. If x0 is sufficiently close to α, then the three-step
iterative method Equation (4) has Six-order convergence and satisfies the following
error equation:

en+1 = −5

4
c3c

3
2e

6
n +O(e7n). (5)

where en = xn − α for n = 1, 2, . . . , and cn = f (n)(α)
n!f ′(α) .

Proof Since f is sufficiently differentiable, by expanding f(xn) and f ′(xn) about
α, one obtains

f(xn) = f ′(α)(en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n +O(e7n)). (6)

f ′(xn) = f ′(α)(1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n +O(e6n)). (7)

where ck = 1
k!

f (k)(α)
f ′(α) for k = 2, 3, . . . . Furthermore, with using the Maple software

we can get By expanding yn about xn, we obtain

yn =α+ c2e
2
n + (2c3 − 2c22)e

3
n

+ (3c4 − 7c2c3 + 4c32)e
4
n

+ (−10c2c4 − 6c23 + 20c3c
2
2 − 8c42)

5

+ (−17c4c3 + 28c4c
2
2 + 33c2c

2
3 − 52c3c

3
2 + 16c52)e

6
n (8)

+O(e7n).
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Expanding f(xn − f(xn)
f ′(xn)

) about xn, we get

f(yn) =f ′(α)c2e
2
n + (2c3 − 2c22)e

3
n

+ (3c4 − 7c2c3 + 5c32)e
4
n

+ (−10c2c4 − 6c23 + 24c3c
2
2 − 12c42)e

5
n

+ (−17c4c3 + 34c4c
2
2 + 37c2c

2
3 − 73c3c

3
2 + 28c52)e

6
n (9)

+O(e7n).

Expanding f ′(y) = Pf (xn, yn) about xn, we get

Pf (xn, yn) =f ′(α)(1 + (−c3 + c22))e
2
n

+ (−2c4 + 2c2c3 − (1/2)c32)e
3
n

+ (2c3c
2
2 + 2c2c4 − (7/4)c42)e

4
n

+ (−2c4c3 + (7/2)c4c
2
2 + 12c2c

2
3 − (41/2)c3c

3
2 + (63/8)c52)e

5
n (10)

+O(e6n).

Substituting Equation (8), Equation (9), and Equation (10), into the second for-
mula of Equation (4), using Taylors expansion, and simplifying, we have

xn+1 = α− (5/4)c3c
3
2e

6
n +O(e7n). (11)

Thus, we have

en+1 = −(5/4)c3c
3
2e

6
n +O(e7n). (12)

This means the method defined by Equation (4) is of six-order. That completes
the proof. ■

Remark 1 The order of convergence of the iterative method Equation (4) is 6.
This method requires two evaluations of the function, namely, f(xn) and f(yn)

and two evaluations of first derivatives f ′(xn), f
′
(
yn − f(yn)

2Pf (xn,yn)

)
. We take into

account the definition of efficiency index [6,8] as p1/w, where p is the order of the
method and w is the number of function evaluations per iteration required by the
method. If we suppose that all the evaluations have the same cost, we have that
the efficiency index of the method Equation (4) is

√
6 = 1.5650.

3. Numerical Examples

In this section, the obtained theoretical results are confirmed by numerical exper-
iments and compared with Algorithms 1 and 2 presented recently by Noor et al.
[12] and Algorithm 3: [1] whose order of convergence of these methods is nine and
with the existing three-step methods in [18] some nonlinear equations and compare
them with XIA1, XIA2 and XIA3, whose order of convergence of these methods is
eight Algorithm 1:
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yn = xn − f(xn)

f ′(xn)
,

zn = yn − 2f(yn)f
′(yn)

2(f ′(yn))2 − f(yn)Pf (xn, yn)
,

xn+1 = zn −
[
f ′(xn) + f ′(yn)

3f ′(yn)− f ′(xn)

]
f(zn)

f ′(xn)
. n = 0, 1, 2, . . .

Algorithm 2:

yn = xn − f(xn)

f ′(xn)
,

zn = yn − 2f(yn)f
′(yn)

2(f ′(yn))2 − f(yn)Pf (xn, yn)
,

xn+1 = zn −
[

2f ′(xn)
2

f ′(xn)2 − 4f ′(xn)f ′(yn) + f ′(yn)2

]
f(zn)

f ′(xn)
. n = 0, 1, 2, . . .

Algorithm 3:

yn = xn − f(xn)

f ′(xn)
,

zn = yn − 2f(yn)f
′(yn)

2(f ′(yn))2 − f(yn)Pf (xn, yn)
,

xn+1 = zn − f(zn)
f(zn)−f(yn)

zn−yn
+ zn−yn

zn−xn

[
f(zn)−f(xn)

zn−xn
− f ′(xn)

] . n = 0, 1, 2, . . .

where Pf (xn, yn) = f ′′(yn)

Pf (xn, yn) =
2

yn − xn

(
2f ′(yn) + f ′(xn)−

3f(yn)− f(xn)

yn − xn

)
.

XIA1:

yn = xn − f(xn)

f ′(xn)
,

zn = xn − f(xn)

f ′(xn)
− f(xn)− f(yn)

f(xn)− 2f(yn)
,

xn+1 = zn − f(zn)

f ′(zn)

[
1/2 +

5f(xn)
2 + 8f(xn)f(yn) + 2f(yn)

2

5f(xn)2 − 12f(xn)f(yn)
(1/2 +

f(zn)

f(yn)
)

]
.
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XIA2:

yn = xn − f(xn)

f ′(xn)
,

zn = xn − f(xn)

f ′(xn)
− f(xn)− f(yn)

f(xn)− 2f(yn)
,

xn+1 = zn − f(zn)

f ′(zn)

[
5f(xn)

2 − 2f(xn)f(yn) + f(yn)
2

5f(xn)2 − 12f(xn)f(yn)
+ (1 + 4

f(yn)

f(xn)
)(
f(zn)

f(yn)
)

]
.

XIA3:

yn = xn − f(xn)

f ′(xn)
,

zn = xn − f(xn)

f ′(xn)
− 4f(xn)

2 − 5f(xn)f(yn)− f(yn)
2

4f(xn)2 − 9f(xn)f(yn)
,

xn+1 = zn − f(zn)

f ′(zn)

[
1 + 4

f(zn)

f(xn)

] [
8f(yn)

4f(xn)− 11f(yn)
+ 1 +

f(zn)

f(yn)

]
.

All computations were done using Matlab. We use the following stopping criteria
for computer programs: |xn+1 − xn| < ε, |f(xn+1)| < ε and so, when the stopping
criterion is satisfied, xn+1 is taken as the exact root a computed. For numerical
illustrations in this section we used the fixed stopping criterion ε = 10−15, where
ε represents tolerance. We present some numerical test results with the following
functions:

f1(x) = x3 + 4x2 − 15, x∗ = 1.93198055660636,

f2(x) = xex
2 − sin2(x) + 3cos(x) + 5, x∗ = −1.207647827130919,

f3(x) = 10xe−x2 − 1, x∗ = 1.67963061042845,

f5(x) = sin2(x)− x2 + 1, x∗ = 1.4044916482153411,

f4(x) = x5 + x4 + 4x2 − 15, x∗ = 1.347,

where x∗ is the exact root. The absolute values of the function (|f(xn)|) and (|xn−
xn−1|), are shown in Table 1.
The computational results presented in Table 1 shows that in almost all of cases,

the presented methods converge more rapidly than Algorithm 1, Algorithm 2 and
Algorithm 3. This means that the new methods have better efficiency in com-
puting process than Algorithm 1, Algorithm 2 and Algorithm 3 as the compared
other methods, and furthermore, the formula Equation (4) produces the sixth-order
methods. For most of the functions we tested, the obtained methods behave at least
equal performance compared to the other known methods of the same order.
The computational results presented in Table 1 shows that in almost all of cases,

the presented methods converge more rapidly than XIA1, XIA2, and XIA3. This
means that the new methods have better efficiency in computing process than
XIA1, XIA2, and XIA3 as the compared other methods, and furthermore, the
formula Equation (4) produces the sixth-order methods. For most of the functions
we tested, the obtained methods behave at least equal performance compared to
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Table 1. Comparison of iterative methods.

Function Method |xk − xk−1| f(xk)

f1(x), x0 = 2

Matinfar 0 1.776356839400251e-015
XIA1 2.489597032973023e-007 3.552713678800501e-015
XIA2 2.489597035193469e-007 3.552713678800501e-015
XIA3 2.489597035193469e-007 3.552713678800501e-015

f2(x), x0 = −1

Matinfar 0 2.664535259100376e-015
XIA1 6.661338147750939e-016 1.509903313490213e-014
XIA2 1.798561299892754e-014 2.664535259100376e-015
XIA3 1.798561299892754e-014 3.632649736573512e-013

f3(x), x0 = 1.5

Matinfar 0 2.664535259100376e-015
XIA1 0 2.220446049250313e-016
XIA2 0 2.220446049250313e-016
XIA3 0 2.220446049250313e-016

f4(x), x0 = 1.5

Matinfar 0 2.220446049250313e-016
XIA1 0 3.330669073875470e-016
XIA2 2.220446049250313e-016 4.440892098500626e-016
XIA3 2.220446049250313e-016 4.440892098500626e-016

f5(x), x0 = 1.2

Matinfar 0 1.776356839400251e-015
XIA1 4.280989683049796e-004 1.776356839400251e-015
XIA2 4.280989683049796e-004 1.776356839400251e-015
XIA3 4.280989683049796e-004 1.776356839400251e-015

the other known methods of the same order. All numerical tests have been written
in Matlab. The numerical results imply that our three-step method has a good
performance, and despite being simple and requiring a small number of calculations
compared to other existing methods, delivers good numerical results.

4. Conclusions

In this work we presented an approach which can be used to constructing of six-
thorder iterative methods that do not require the computation of second or higher
derivatives. Also, we proposed a new two-step iterative method for solving nonlin-
ear equations. We showed that the new two-step iterative method has sixth-order
convergence. Numerical examples also show that the numerical results of our new
two-step method, in equal iterations, improve the results of other existing three-
step methods with Ninth-order and Eight-order convergence.
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