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1. Introduction

In the analysis of PDEs, conservation laws have a considerable function in exam-
ining the existence and uniqueness of solutions and their stability and extension
[4, 19]. Generally, the principal laws in physics, which determine discrete quantities
of an isolated system stay stable over time, called conservation laws. These laws
are achieved in various ways, including: Noether’s method, the multiplier method
and the scaling method, etc [1, 4, 18, 19]. To obtain these local laws for the stud-
ied PDE, there exist some restrictions in using Noether’s theorem. At first, this
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method limited to variational systems. On the other hand, to use this method, the
system’s Lagrangian must be self-adjoint.
The scaling method was first introduced by Hereman and Poole [19]. This method
is based on scaling symmetries. Also, densities are linear combinations of these
symmetries and systems that lack these symmetries, lack this kind of conservation
laws [14]. Another method is the multiplier method. This method is compatible
with the tools of variable calculus and linear algebra [2, 19]. In this technique, by
finding a collection of non-singular local multipliers, new and higher order conser-
vation laws are provided. In fact, due to a homotopy integral formula, a one-to-one
correspondence arises among the multipliers and these laws. That is, each multi-
plier leads to the conserved flow using a homotopy formula. We pursue our aim as
follows. By applying Lie symmetry generators on the multipliers, new multipliers
are constructed for some PDEs, and eventually these multipliers induce other con-
servation laws.
In this paper, we deal with finding the conservation laws for the Hunter-Saxton(HS)
equation. HS equation is a substantial nonlinear hyperbolic PDE in practical sci-
ences. Undoubtedly, the history of this equation goes back to Hunter and Saxton
for the theoretical modeling of nematic liquid crystals [8]. If the molecules in the
fluid crystal are at first all arranged in a line, and some of them are then a lit-
tle shaken, this perturbation in orientation will spread along the crystal, and the
Hunter-Saxton equation explains some aspects of such orientation waves. The HS
equation is

(ut + uux)x =
1

2
u2x. (1)

In recent years, many studies have been done on exact solutions, conservation laws
and numerical methods to find the solutions of this equation. For example, the
conservation laws of HS equation are obtained by using multipliers [22]. Also, it is
proven that the HS equation has a notable property [9], namely it can be derived
from two additional variational principals and one of them is the high-frequency
limit of the variational principle for the Camassa-Holm equation, which is com-
pletely integrable [6]. On the other hand, it has infinitely many conserved quantities
and a Lax pair [10]. The bi-variational property indicates that the HS equation is
a completely integrable bi-Hamiltonian system and may be embedded in the Harry
Dym hierarchy [9, 13]. Some explicit representations of the algebro-geometric so-
lutions for the HS equation are obtained in [7] and continuous semigroup of weak
and dissipative solutions are stated in [5]. Moreover, studies on symmetries and
conservation laws of this equation have been done in [15, 20]. The novelty of this
work is due to the fact that by using Lie symmetries, we have obtained new mul-
tipliers for HS equation, which has led to the discovery of new conservation laws
for this equation.
This article is set as follows. Section 2, is dedicated to recalling the principal defi-
nitions and theorems that are helpful in the after sections. In Section 3, the conver-
sation laws of the HS equation are calculated using the multiplier method. Section
4 deals with the application of Lie symmetries to generate new multipliers of the
conversation laws.

2. Preliminaries

AssumeR{x, u(n)} represents a system of partial differential equations in which u =
(u1, · · · , uq) is denoted the dependent variable and x = (x1, · · · , xp) is independent
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variable. Also, u(n) indicating n’th order partial derivative. Then, a conversation
law is a divergence expression as

DivP =

p∑
i=1

DiPi, (2)

which is satisfied for all solutions of PDE. Here Pi(x, u
(r)) implied the fluxes for

the conservation law of equation with the r-order derivative. In dynamical systems,
for each u = u(x, t) as the solution of the assumed system, (2) is equal to zero,
namely Pi’s must be unchanged for all solutions of the given PDE. Furthermore,
the characteristic form of this notion is determined as

DivP = Q. R(x, t, u(n)). (3)

Here Q is called characteristic of conservation laws. The characteristics are unique
(up to equivalence). In dynamic issues, the time variable t can be separated from
other spatial variables x = (x1, . . . , xp). Therefore, (3) is rewritten as

DtT+DivX = 0. (4)

Here, T and X denote the conserved density and the corresponding flux, respec-
tively. Also, Dt and Div are the total time derivative and the total divergence,
respectively. Generally, if the equation can be written in evolutionary form, we will
be allowed to use (4).

Definition 2.1 The total derivative operator is determined as

Dt =
∂

∂t
+

q∑
α=1

∑
J

uαJ,t
∂

∂uαJ
, J = (j1, ..., js), 0 ⩽ js ⩽ p, s ⩾ 0, (5)

Where,

uαJ,t =
∂uαJ
∂t

=
∂s+1uα

∂t∂xj1 · · · ∂xjs
.

Definition 2.2 The zeroth-Euler operator for uα is specified as

Euα = ∂/∂uα +
∑
s⩾1

(−1)sDj1 · · ·Djs∂/∂u
α
j1···js , α = 1, ..., q. (6)

Definition 2.3 Let x = (x, t), also g(x, u(N)(x)) and G(x, u(N−1)(x)) are scalar
and vector differentiable functions, respectively. If equality g = DivG holds, then
g is called an exact (or divergence) function.

Theorem 2.1 The exactness of g = g(x, u(M)(x)) must satisfy Eu(x,t)g = 0.

3. Computing conservation laws of HS equation

In the first step, we assume a collection of non-singular local multipliers of a specific
rank. Then we multiply these multipliers in the PDE. By applying the Euler oper-
ator on the equality of the previous step, and solving this system, we obtain local
multipliers. Then, T and X of equation (4) are found using the inverse divergence
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operator. In fact, By applying the homotopy operator, inverting the divergence is
reduced to a one-dimensional integration.

Theorem 3.1 Each of the local non-singular multipliers λ(x, u(r)) represents a
conservation law for system R(x, u(n)) whenever

Euα(λ(x, u(r)) ·R(x, u(n))) ≡ 0, (7)

holds identically. In order to find all the multipliers in the form
λ(x, t, u, ut, ux, utt, uxx) of the conservation laws for PDEs system (1), the deter-
mining equations (7) are equal to

Euα [λ(x, t, u, ut, ux, utt, uxx) · (uxt +
1

2
u2x + uuxx)] ≡ 0. (8)

Solving (8) provides a collection of local multipliers for the nontrivial conservation
laws of equation (1). we get,

λ =
1

2

1(
exp (−c1/ux)

)2 (2c5c6(−c1 + ux) exp(−c1t) + 2x(c1t+ c2)ux + (c1t
2 + 2c4

+2(c2 + 2c3)t)ut + (2c3u− 2xc1) exp(−c1/ux) + 2 exp(−c1t)c5c7(c1 + ux)
)
.

By substituting ci’s for 1 ⩽ i ⩽ 7 as the arbitrary constants, the local multipliers
are obtained as follows,

λ1 =
1

2
t2ut + xtux − x, λ2 = tut + xux, λ3 = tut + u, λ4 = ut. (9)

Each of λi induces a specified conservation law for HS equation. As a result, the
characteristic form is equivalent to

DtT+DxX ≡ λi · (uxt +
1

2
u2x + uuxx).

To computing conserved quantities T and X, It sufficient to use an integration of
a statement in multidimensional containing several functions and it’s derivatives.
That is cumbersome work. Instead, this problem can be decided using the tools of
the homotopy operator (explicit formula)[11]. This operator was introduced as a
powerful algorithmic tool in Volterra’s works.

Definition 3.1 Vector (H(x)
u(x,t)g,H

(t)
u(x,t)g) is called a 2-dimensional homotopy op-

erator and defined by

H(z)
u(x,t)g =

∫ 1

0
(

q∑
α=1

I(z)
uα(x,t)g)[λu]

dλ

λ
. (10)

Here z = x, t and I(x)
uj(x,t)g and I(t)

uj(x,t)g are respectively x-integrand and t-integrand
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that are determined by

I(x)
uj(x,t)g =

Mj
1∑

k1=1

Mj
2∑

k2=0

( k1−1∑
i1=0

k2∑
i2=0

(B(x)uji1xi2t(−Dx)
k1−i1−1(−Dt)

k2−i2

)
∂g

∂ujk1xk2t

, (11)

I(t)
uj(x,t)g =

Mj
1∑

k1=0

Mj
2∑

k2=1

( k1∑
i1=0

k2−1∑
i2=0

(B(t)uji1xi2t(−Dx)
k1−i1(−Dt)

k2−i2−1

)
∂g

∂ujk1xk2t

.

Also M j
1 , M

j
2 are respectively the order of g in uj with respect to x and t, and

combinatorial coefficient B(x) demonstrated as

B(x) = B(i1, i2, k1, k2) =

(
i1+i2
i1

)(
k1+k2−i1−i2−1

k1−i1−1

)(
k1+k2

k1

) .

Similarly, B(t) = B(i2, i1, k2, k1) is defined in terms of cyclic permutations.

Theorem 3.2 Suppose g be an exact function, i.e., g = Div G where G =

G(x, u(M−1)(x)). Then, G = Div−1g = (H(x)
u(x,t)g,H

(t)
u(x,t)g).

The results of applying (11) for (1) are stated in the following theorem.

Theorem 3.3 Conservation laws of the HS equation obtained as follows.

case1: λ1 =
1

2
t2ut + xtux − x

Therefore, the conserved vector results as:

T =
1

4
t2uuxt +

1

12
t2u2xu+

1

6
t2u2u2x +

1

8
t2utux +

1

4
xtu2x −

1

2
xux −

1

8
t2uutx

− 1

4
tuux −

1

4
xtuu2x +

1

2
u,

X =
1

3
t2uuxut +

1

2
xtuuxt +

1

2
xtuu2x −

5

4
xuux +

1

8
t2u2t +

1

4
xtuxut −

1

2
xut −

1

4
tuut

− 1

8
t2uu2t −

1

3
tu2ux −

1

6
t2uutux +

1

2
xuux +

1

2
u2.

case2: λ2 = tut + xux
Therefore, the following conserved vector is obtained:

T =
1

2
tuuxt +

1

6
tuu2x +

1

3
tu2u2x +

1

4
tutux +

1

4
xu2x −

1

4
tuutx −

1

4
uux −

1

4
xuu2x,

X =
1

2
xuu2x +

1

2
xuuxt +

1

3
xu2u2x +

1

4
tu2t +

1

4
xutux −

1

4
uut −

1

4
tuu2t −

1

3
tu2utx

− 1

3
u2ux.

case3: λ3 = tut + u
The conserved quantities are computed:

T =
1

4
tuuxt +

1

6
tuu2x +

1

3
tu2u2x +

1

4
tutux +

1

4
uux −

1

4
uux,

X =
1

3
tuuxut +

2

3
u2ux −

1

2
uut −

1

4
tuu2t +

1

4
tu2t +

1

4
uut −

1

3
tu2utx −

2

3
u2ux.
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case4: λ4 = ut
Hence, we get,

T =
1

4
uuxt +

1

6
uu2x +

1

3
u2u2x +

1

4
uxut,

X = −1

4
uutt +

1

4
u2t −

1

3
u2utx +

1

3
uuxut.

The conservation laws obtained in the above theorem are completely new. One
reason for this is that the method of obtaining them is the multipliers method and
so far this method has not been used for HS equation. The second reason is that
these conservation laws are not equivalent to the conservation laws obtained so far
for HS equation. For example, the difference of each of the above conservation laws
with the conservation laws obtained in [15, 22] is not divergences, which indicates
that they are not equivalent.

4. Application of lie symmetries to generate new multiplier

Lie symmetries are widely used in investigating solutions, invariant solutions, sim-
ilarity reductions and also conservation laws of a PDE [3, 12, 16, 17, 21]. When a
reversible transformation convert any PDE system to another PDE system, each
conservation law of the first system transforms to new law of the other system.
If each transformation is a symmetry of PDE system, then the associated con-
servation law is a conservation law of itself. Bluman, Temurchaolo, and Anco in
[4] proposed two formulas. In continuation, instead of calculating the conservation
laws, new multipliers are obtained with a special technique. In some systems, by
applying Lie symmetries to the assumed multipliers, the another multipliers are
obtained. Eventually these new multipliers induce other conservation laws.

Theorem 4.1 Assume a conservation law of PDE system can be written as
DiPi[u] = 0. There exist functions {Ψi[W ]}ni=1 with respect to point symmetries if
these functions satisfy

J [W ]DiPi[u] = DiΨi[W ].

Explicitly, by substituting the i-th column of the Jacobian determinant

J [W ] =
D(x1, · · · , xn)
D(z1, · · · , zn)

,

with column{P1[u], · · · , Pn[u]}, Ψi[W ] will be obtained [4].

Corollary 4.1 Such that any reversible point transformation is a symmetry of
the PDE system, then conservation law DiPi[u] = 0 provides another conservation
law DiΨi[u] = 0.

Proposition 4.2 A collection of multipliers {λ̄ν(x, u
(r))}kν=1 provides a set of new

conservation law for the PDE system Rν(x, u
(n)), if and only if this collection on

all solutions u(x) of PDE system is independent of {λν(x, u
(r))}kν=1.



7M. Jafari and S. Mahdion/ IJM2C, 13 - 02 (2023) 1-8.

Table 1. Symmetric analysis of multipliers with respect to generators X1, · · · , X7.

Xi, λj λ1 λ2 λ3 λ4

X1 tux − 1 ux 0 0
X2 λ2 λ4 λ4 0
X3 xtux xux u 0
X4 t2λ4 tλ4 tλ4 − u 0

X5
1

2
t3λ4 + t2xux − tx txux +

1

2
t2λ4

1

2
t2λ4 + x 0

X6 t2ux − t tux 1 0

X7
1

2
t2(tux − 1)

1

2
t2ux t 0

5. New conservation laws for the HS equation

The Lie point symmetries of equation (1) are calculated as follows [15],

X1 = ∂x, X2 = ∂t, X3 = x∂x + u∂t,

X4 = t∂t − u∂u, X5 = tx∂x +
1

2
t2∂t + x∂u, X6 = t∂x + ∂u,

X7 =
1

2
t2∂x + t∂u.

(12)

Symmetric analysis of multipliers with respect to generators X1, · · · ,X7 are
shown in Table 1. According to the proposition (4.2) the action of the generator
X1,X3,X4,X5,X6 and X7 generate new multipliers as

Q1 = tux − 1, Q2 = ux, Q3 = xtux,
Q4 = xux, Q5 = u, Q6 = t2λ4,

Q7 = tλ4, Q8 = tλ4 − u, Q9 =
1

2
t3λ4 + t2xux − tx,

Q10 = txux +
1

2
t2λ4, Q11 = tux, Q12 =

1

2
t2λ4 + x,

Q13 = t2ux − t, Q14 =
1

2
t2(tux − 1).

(13)

As we know, there are two types of trivial conservation laws. The first type is a
law that is equal to zero on the equation, and the second type is a law that has
total divergence. If the difference of two conservation laws is divergence, we call
them equivalent [14]. Regarding the above conservation laws, it is clear that none
of these multipliers are trivial and their two-by-two differences are also not total
divergences. Therefore, non-trivial and non-equivalent conservation laws have been
obtained As a result, these multipliers would induce new conservation laws for (1).

6. Conclusions

In this paper, the Hunter-Saxton equation, which is one of the most important
equations in fluid mechanics, was investigated. This equation is a completely in-
tegrable equation and has infinitely many conservation laws. There are several
methods to derive conservation laws. We used the multipliers method to obtain
the density coefficients. By utilizing the Euler operator, determining equations
for multipliers were computed. Also, by applying the 2-dimensional Homotopy for-
mula, higher-order conservation laws of the Hunter-Saxton equation were obtained.
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In continuation, by analyzing the action of point symmetries on the multipliers,
new conservation laws were constructed for the Hunter-Saxton equation. These
conservation laws are not trivial, nor are they equivalent. By comparing these laws
with the previous conservation laws, it can be seen that the effect of Euler operator
on the difference of these laws is non-zero. So they are not total divergence, and as
a result, the obtained conservation laws are not equivalent and are therefore new.
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