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Abstract. In today’s world, with the advancement of science and technology, data is gener-
ated at high speeds, and with the increase in the size and volume of data, we often face a
lot of extensions and redundant data and noise data that make the task of analysis difficult.
Therefore, dimension reduction of the data without losing useful information in the data is
very important to prepare the data for data mining and can increase the speed and even
accuracy of the analysis. In this research, we present a dimensional reduction method using
a copula function that reduces the dimensions of the data by identifying the relationships
between the data. The copula function provides a good pattern of dependence for comparing
multivariate distributions to better identify the relationship between data. In fact, by fitting
the appropriate copula function to the data and estimating the copula function parameter,
we measure the structural correlation of the variables and eliminate variables that are highly
structurally correlated with each other. As a result, in the method presented in this study,
using the copula function, we identify noise data and data with many common features and
remove them from the original data.
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1. Introduction

In data mining methods, dimensional reduction is very important and necessary
as one of the steps of data preprocessing, especially for big data. In classification
methods, dimensional reduction even improve the classification method and make
the analysis easier and more understandable. The dimensional reduction method
that is commonly used in data mining is the principal component analysis (PCA)
method, However, since the nature of the data changes in this method, it can not be
used to reduce the dimensions for some classification methods, such as the decision
tree, so we present a dimensional reduction method based on feature selection.
In this research, we present a feature-based method that uses detailed function

and estimation of community parameters, identifies dimensions that are highly
structurally correlated with each other and reduces data dimensions by eliminating
noise and redundant dimensions and prepares the data for analysis.
In this study, we try to show how this proposed dimensional reduction method

improves the efficiency of decision tree classification methods and simplifies the
analysis task. To do this, we first apply the dimension reduction method to the
data using copula function, and then apply the decision tree constructed with
the C4.5 pattern to the original data and the reduced data, and demonstrate the
efficiency of the dimension reduction method. In previous studies, best pattern
for the decision tree was examined, which creates a better classification of the
data [2] and the use of supervised and semi-supervised methods to improve the
performance of the decision tree method were proposed [14], In this research, we
present a feature selection method based on the measure of correlation between
dimensions to identify redundant dimensions.

2. Copula

In brief, a copula is a function that links multivariate distributions to their marginal
distributions. In other words, a copula is a multivariate distribution, the marginal
distributions of which follow a normal distribution within (0, 1).
A copula is used for various reasons. First, it is a method for measuring the free-

scale dependence. Second, it is a starting point for developing joint distributions
with known margins. In fact, a considerable number of general studies on copulas
analyze the dependence of random variables, for they allow us to distinguish be-
tween the dependence of variables and the effects of marginal distributions. This
characteristic resembles the bivariate normal distribution where there are no links
between its mean vector and its covariance matrix, both of which indicate the
distribution simultaneously [15].

2.1 Main features of a copula

Assume that C :I2→I has the following features:

1) For every u, v∈[0, 1], we will have:

C(u, 0) = C(0, v) = 0, C(u, 1) = u,C(1, v) = v.

2) For every 0≤v1<v2≤1, 0≤u1<u2≤1, we will have:

C (U2, v2)+C (U1, v1)−C (U1, v2)−C (U2, v1)≥0.
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Such function like C implied in the two above conditions is called copula function
([4]).

2.2 Sklar’s theory

Assume that H is a joint probability distribution function with marginal distribu-
tions of F and G. Then C is a copula if the following equation is true for every
x, y ∈ R,

H(x, y) = C(F (x), G(y)).

If F and G are continuous, then the copula C is unique; otherwise, C is defined as
unique on Rang(F )× Rang(G).
Conversely, if C is a copula with marginal univariate distributions F and G, then

H is a function with margins F and G.
According to the Sklar’s theory, if F and G have normal distributions, then:

H(x, y) = C(x, y).

It represents a copula of bivariate distribution with a normal marginal distribution
within (0, 1). In other words, a copula is a bivariate distribution function with
normal marginal distributions within (0, 1).
Assume that c, g, f , and h are density functions of distributions C,G, F , and H,

respectively. Based on the Sklar’s theory, the following equation is true:

h(x, y) = c(F (x), G(y)).f(x).g(y),

where c(u, v) = ∂2C(u,v)
∂u∂v [1].

The important application of a copula is to present an appropriate method
for generating distributions of correlated random multivariate variables and of-
fer a solution to the problem of density estimation conversion. To show the
problem of reversible transforms of m-dimensional random continuous variables
X1, . . . , Xm based on their distribution function into m normal independent vari-
ables U1 = F1(X1), . . . , Fm(Xm), it should be assumed that f(x1, . . . , xm) and
c(u1, . . . , um) are the density probability function of x1, . . . , xmand the join density
function of U1, . . . , Um, respectively. Since the estimation the density probability
function f(x1, . . . , xm) can be a nonparametric form (i.e. an unknown distribution),
the density probability function c(u1, . . . , um) is estimated for U1, . . . , Um instead
of x1, . . . , xm in this case to simplify the density estimation problem. It is then
simulated to obtain the random samples x1, . . . , xm through the inverse transform
Xi = F−1(Ui).
The scalar field theory indicates that there is a unique m-dimensional copula

in [0, 1]m with standard normal marginal distributions U1, . . . , Um, whereas Nelson
stated that every distribution function F with margins F1, . . . , Fm could be written
as follows [11]:

∀(X1, . . . , Xm) ∈ Rm, F (X1, . . . , Xm) = C(F1(X1), . . . , Fm(Xm)).

To evaluate a copula selected with an estimated parameter and avoid defining any
hypotheses on Fi(Xi), the empirical distribution function of a marginal distribution
Fi(Xi) can be employed to transform m samples of X into m samples of U [1, 3,
5, 11].
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2.3 Gaussian copula

The difference between a Gaussian copula and a joint normal distribution is that
the Gaussian copula allows us to have different types of a distribution function for
a joint distribution. However, according to the probability theory, the multivariate
normal distribution is the generalization of a one-dimensional normal distribution.
The standard multivariate Gaussian copula is defined as below:

c(Φ(X1), . . . ,Φ(Xm)) =
1

|Σ|
1

2

exp

(
−1

2
XT (Σ−1 − I)X

)
,

where Φ(xi) is the standard distribution of fi(xi), whereas Xi∼N(0, 1) and Σ are
the correlation matrices. As a result, c(u1, . . . , um) is called the Gaussian copula,
and the joint density is obtained from the following equation:

c(u1, . . . , um) =
1

|Σ|
1

2

exp

[
−1

2
ξT (Σ−1 − I)ξ

]
,

where ui = Φ(xi) and ξ = (Φ−1(u1), . . . ,Φ
−1(um))T [8, 9].

2.4 Copula estimation

There are several methods for estimating a copula:

(1) Maximum Likelihood Estimation (MLE): This method is often considered
difficult to use, for there are many parameters to estimate.

(2) Pseudo-MLE: There are two types of pseudo-MLE, i.e. parametric pseudo-
MLE and semi-parametric pseudo-MLE. They are used more often than
MLE. In pseudo-MLE, the margins are estimated through the cumulative
distribution function, and the copula is then estimated through MLE.

2.5 Maximum likelihood estimation

Consider Y = (Y1, . . . , Ym) a random diagram. Assume that
FY1

(·|θ1), . . . , FYm
(·|θm) is a parametric model for marginal distribution functions

and that cY (·|θC) is a parametric model for copula Y . The following equation is
true:

fY (y) = fY (y1, . . . , ym) = cY (FY1
(y1), . . . , FYm

(ym))
m∏
j=1

fYj
(yj).

Assume that an instance of IID is Y1:n = (Y1, . . . , Yn). The likelihood logarithm is
then obtained

logL(θ1, . . . , θm, θC) = log

n∏
i=1

fY (yi)

=
n∑

i=1

(log[cY (FY1
(yi,1|θ1), . . . FYm

(yi,m|θm)|θC)]
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+ log(fY1
(yi,1|θ1)) + · · ·+ log(fYm

(yi,m|θm))).

ML estimators θ̂1, . . . , θ̂2, θ̂C are obtained from the maximization of the above
equation based on θ1, . . . , θm, θC .
This method has a few setbacks:

(1) There are too many parameters to estimate, especially for large values of
m. As a result, optimization can be difficult.

(2) If any of the univariate parametric distributions FYi
(·|θi) are defined incor-

rectly, bias can emerge in univariate distributions and the copula [4].

2.6 Pseudo-MLE

Pseudo-MLE helps solve the above mentioned MLE problems. This method has
two steps:

(1) The marginal distribution functions are first estimated to define F̂Yj
, for

j = 1, . . . ,m. For this purpose, the following two methods can be adopted:

• The empirical distribution function is defined as below for y1,i, . . . , yn,j :

F̂Yi
(y) =

∑n
i=1 I{yi,j≤y}

n+ 1
.

• A parametric model is developed with θ̂j obtained from the univariate
conventional MLE.

(2) The parameters of copula θC are obtained by maximizing the following
expression:

n∑
i=1

log[cY (F̂Y1
(yi,1), . . . , F̂Ym

(yi,m)|θC ].

It should be noted that the above expression is obtained directly from the like-
lihood logarithm only by using marginal distributions in Step 1 and using the
parameters of θC that were not estimated [4].

3. New method

This study proposes a novel method for dimensionality reduction of multidimen-
sional data. This method uses the copula theory to estimate an unlimited multi-
variate copula distribution in specific types of marginal distributions of random
variables showing data dimensions. A copula-based model presents a complete and
unscaled description of dependence. Estimating the copula parameters can facili-
tate the use of this model to compare the dependence of random variables. This
dependence is then employed to identify the additional values and noisy data in
order to cleanse the original data.
This method consists of two steps:

Step 1: In this step, pseudo-MLE (explained in the previous subsection) is adopted
to link the univariate marginal distributions to their joint multivariate
distribution function. After that, the copula parameters are estimated to
place the dimensions with strong correlation in a smaller set. If ρ of a
copula is greater than 0.7 for two random continuous variables X1 and X2,
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these variables are strongly correlated; thus, they are placed in the subset
of interest.

Step 2: In the second step, the dimensions of this subset are analyzed to delete
the dimensions that are the linear combinations of the subset dimensions.
Finally, the greatest value of ρ is selected from the subset, and the rest
of the dimensions are deleted, for the other dimensions behave like the
selected dimension and can be used as additional dimensions.
Step1:

Xi, Xj

if ρ ≥ 0.7 then Xi, Xj ∈ Si

otherwise Xi, Xj ∈Reduced variables set.
Step2: if ∀Xi ∈ Si , Xi is Linear dependent then Xi ∈ Reduced variables

set.

Finally, we select the variable that had the highest correlation with the other
variables in set Si and place it in the reduced set with the other variables.

4. Investigation and comparison of the decision tree constructed using the
dimensional method based on the copula function

In this section, we examine the decision tree classification method after reducing
the size of the data. First we reduce the dimensions of the data using the method
presented based on copula function, and then we compare the decision tree method
for the reduced data with the decision tree for the original data [7, 12].
To compare the classification methods, we use the accuracy criterion and make

the training and testing set in a ratio of 80 to 20 and we make the decision tree by
C4.5 criterion [6, 10, 13].
Dataset 1: Covid-19
A series of data on Covid-19 related to mortality and morbidity indices

and the number of samples taken from individuals relative to the population
of countries on different continents with 10 different variables is available in
https://www.kaggle.com/.
The variables are as follows:
{continent, total confirmed, total deaths, total recovered, active cases, seri-

ous or critical,
total cases per 1m population,
total deaths per 1m population, total tests, total tests per 1m population}
Now we use the dimensional reduction method:

(1) First, by fitting the Gaussian copula function to the data set, we obtain
the set of highly depended variables as follows:
{rotal confirmed, total deaths, total recovered, active cases, total tests},
{total cases per 1m population, total deaths per 1m population}.

(2) We now check that this set of variables are linearly independent:
According to the software output, these variables are linearly indepen-

dent. As a result, the reduced dimensions are as follows:
{serious or critical, total cases per 1m population, total tests, to-

tal tests per 1m population}.

Figure 1 shows that for reduced data the correlation of the variables decreases, ie
the redundant dimensions that were highly interdependent were removed.
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Figure 1. Empirical distribution function for full data and reduced data.

Table 1. Accuracy for both cases.

Full data Reduced data
accuracy 0.5862 0.6207

Now we use the decision tree method using the C4.5 criterion for all data and
reduced data and accuracy parameter for both cases is according to Table 1.

5. Conclusion

As shown in Figure 1, we found that the new dimension reduction method elim-
inated highly correlated data as noise and redundant data and reduced the data
size, which improved the speed of analysis. According to Table 1, I saw that in the
decision tree method, the accuracy parameter is also greater than the full data for
the reduced data.
As a result, the copula function-based dimensional reduction method, which re-

duces data dimensions by identifying and eliminating redundant variables, is an
effective and efficient method that reduces data dimensions well and increases the
efficiency of the decision tree method. This method can also be used for other
classification methods in data mining.
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