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Abstract. In this paper we introduce concepts of pseudo-triangular entropy as a supplement 

measure of uncertainty in the uncertain portfolio optimization. We first prove that logarithm 

entropy and triangular entropy for uncertain variables sometimes may fail to measure the 

uncertainty of an uncertain variable. Then, we propose a definition of pseudo-triangular entropy 

as a supplement measure to characterize the uncertainty of uncertain variables and we derive its 

mathematical properties. We also give a formula to calculate the pseudo-triangular entropy of 

uncertain variables via inverse uncertainty distribution. Moreover, we use the pseudo-triangular 

entropy to characterize portfolio risk and establish some uncertain portfolio optimization models 

based on different types of entropy. A genetic algorithm (GA) is implemented in MATLAB 

software to solve the corresponding problem. Numerical results show that pseudo-triangular 

entropy as a quantifier of portfolio risk outperforms logarithm entropy and triangular entropy in 

the uncertain portfolio optimization. 
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1. Introduction 

The financial crisis of 2007-2008 showed that unpredictable events can challenge 

conventional ideas about portfolio construction. However, we do not know in advance 

when such events will occur and how traumatic they can be, we can modify current risk 

management frameworks to better manage these rare and dangerous events. 

The prime reason for the occurrence of such anomalies lies in the conventional 

approach to applying mean-variance model which was introduced by Markowitz [13]. 

The basic assumption in the mean-variance model and many other models is that future 

returns will be independent and normally distributed. Sheikh and Qiao [17] declared that 

in many cases it can be empirically observed that returns are not normally distributed and 

under non- normality, variance becomes inefficient as the quantifier of portfolio risk.  

Entropy of random variables was first proposed by Shannon [16] in logarithm form. 

The study carried out by Philippatos and Wilson [15] was the pioneering work to 

associate entropy with a measure of risk in portfolio optimization. They argued that 

entropy is more general and better suited in portfolio optimization than variance. 
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Furthermore, Simonelli [18] showed that entropy as a measure of risk is better than 

variance in wealth allocation. 

In the mentioned literatures of investigating entropy, it is assumed that the security 

returns are random variable with probability distribution. The fundamental assumption 

for using probability theory in the portfolio optimization is that the probability 

distribution of security returns is similar to the past one and close enough to frequencies. 

However, it is difficult to ensure this assumption.  

In financial businesses, sometimes we have historical data scarcity. Thus, we ask 

domain experts to evaluate the belief degree that each event will happen. Using fuzzy set 

theory is a way to handle portfolio optimization problems with returns given by experts’ 

evaluations. Liu [9] showed that fuzzy set theory is not self-consistent in mathematics and 

may lead to wrong results in practice. The main mistake of fuzzy set theory is based on the 

wrong assumption that the belief degree of a union of events is the maximum of the belief 

degrees of the individual events no matter if they are independent or not. Furthermore, Liu 

[11] presented a counterexample to show that modeling belief degree which uses 

subjective probability may lead to counterintuitive results.  

Liu [6] first put forward the entropy of uncertain variables in logarithm form. After 

that, several scholars have been investigating entropy under uncertainty theory. Chen et al 

[3] investigated the cross-entropy to measure the divergence degree of uncertain variables 

and proposed the minimum cross-entropy principle. Chen and Dai [2] proposed the 

maximum entropy principle for uncertain variables. Moreover, Dai and Chen [5] 

presented a formula to calculate the entropy of uncertain variables. As a supplement of 

logarithm entropy, several types of entropy for uncertain variables have been investigated 

([4], [19] and [20]).  

In this paper, after providing some preliminaries about uncertainty theory in Section 2, 

a definition of pseudo-triangular entropy as a supplement measure of uncertainty and its 

mathematical properties such as translation invariance and positive linearity are presented 

in Section 3. Then in Section 4, applications of pseudo-triangular entropy in the uncertain 

portfolio optimization together with a numerical example are given. Finally, conclusions 

and suggestions are presented in Section 5. 

2. Model formulation 

Uncertainty theory is a branch of mathematics and was founded by Liu in 2007. Having 

sample scarcity, we should ask domain experts to evaluate the degree of belief in the 

occurrence of an event. Modeling belief degree which uses subjective probability or fuzzy 

set theory may lead to counterintuitive results. Therefore, we use uncertainty theory to 

model belief degree. This section comes with reviewing some necessary definitions and 

theorems in uncertainty theory.  

Definition 2.1 [8] Let Γ be a nonempty set (sometimes called universal set). A collection 

ℒ consisting of subsets of  Γ is called an algebra over Γ if the following three conditions 

hold: (a) Γ ∈ ℒ; (b) if ʌ ∈ ℒ, then ʌ𝑐 ∈ ℒ; and (c) if ʌ1, ʌ2, … , ʌ𝑛 ∈ ℒ then 

⋃ ʌ𝑖

𝑛

𝑖=1

∈ ℒ. 

The collection ℒ is called a σ − algebra over Γ if the condition (c) is replaced with 

closure under countable union, i.e., when ʌ1, ʌ2, …  ∈ ℒ, we have  

⋃ ʌ𝑖

∞

𝑖=1

∈ ℒ. 
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Definition 2.2 [8] Let Γ be a nonempty set, and let ℒ be a σ − algebra over Γ. Then 

(Γ, ℒ) is called a measurable space, and any element in ℒ is called a measurable set. 

Definition 2.3 [8] The smallest σ − algebra 𝓑 containing all open intervals is called 
the Borel algebra over the set of real numbers, and any element in 𝓑 is called a Borel set. 

Definition 2.4 [8] A function ξ  from a measurable space (Γ, ℒ)  to the set of real 

numbers is said to be measurable if 

ξ−1(B) = {ϒ ∈ Γ|ξ(ϒ) ∈ B} ∈ ℒ 

for any Borel set B of real numbers. 

Let (Γ, ℒ) be a measurable space. Each element ʌ in ℒ is called a measurable set. 

We rename measurable set as event in uncertainty theory. We also define an uncertain 

measure ℳ on the σ − algebra ℒ. That is, a number ℳ{ʌ} will be assigned to each 

event ʌ to indicate the belief degree with which we believe ʌ will happen. The uncertain 

measure ℳ must have certain mathematical properties. In order to rationally deal with 

belief degree, Liu [8] suggested the following three axioms: 

Axiom 1 (Normality) ℳ{Γ} = 1 for the universal set Γ. 

Axiom 2 (Duality) ℳ{ʌ} + ℳ{ʌc} = 1 for any event ʌ. 

Axiom 3 (Subadditivity) For every countable sequence of events ʌ1, ʌ2, …, we have 

ℳ{⋃ ʌ𝑖

∞

𝑖=1

} ≤ ∑ ℳ{ʌ𝑖}

∞

𝑖=1

 

Definition 2.5 [8] The set function ℳ is called an uncertain measure if it satisfies the 

normality, duality and subadditivity axioms. 

Definition 2.6 [8] Let Γ be a nonempty set, let ℒ be a σ − algebra over Γ, and let ℳ 

be an uncertain measure. Then the triplet (Γ, ℒ , ℳ) is called an uncertainty space. 

The product uncertain measure ℳ on the product σ − algebra ℒ is defined by the 

following axiom (Liu [6]). 

Axiom4 (Product) Let (Γk, ℒk , ℳk) be uncertainty spaces for K = 1,2, …. The product 

uncertain measure ℳ is an uncertain measure satisfying 

ℳ {∏ ʌ𝑘

∞

𝑘=1

} = ⋀ ℳ𝑘{ʌ𝑘}

∞

𝑘=1

 

where ʌ𝑘are arbitrarily chosen events from ℒk for K = 1,2, … , respectively. 

Definition 2.7 [8] An uncertain variable is a function ξ  from an uncertainty space 
(Γ, ℒ , ℳ) to the set of real numbers such that {ξ ∈ 𝐵} is an event for any Borel set B of 

real numbers. 

Definition 2.8 [8] The uncertainty distribution Φ of an uncertain variable ξ is defined by 

Φ(𝑥) = ℳ{ξ ≤ 𝑥} 

for any real number 𝑥. 

Definition 2.9 [10] An uncertainty distribution Φ(𝑥) is said to be regular if it is a 

continuous and strictly increasing function with respect to 𝑥 at which 0 < Φ(𝑥) < 1, 

and lim
𝑥→−∞

Φ(𝑥) = 0 , lim
𝑥→+∞

Φ(𝑥) = 1 . 
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Definition 2.10 [12] A real-valued function Φ(𝑥) on ℝ is an uncertainty distribution if 

and only if it is a monotone increasing function satisfying 

0 ≤ Φ(𝑥) ≤ 1,      Φ(𝑥) ≢ 0,       Φ(𝑥) ≢ 1. 

Φ(𝑥0) = 1     if        Φ(𝑥) = 1  for any 𝑥 > 𝑥0. 

Definition 2.11 [10] The uncertain variables ξ
1

, ξ
2

, … , ξ
𝑛

 are said to be independent if  

ℳ {⋂(ξ
𝑖

∈ 𝐵𝑖)

𝑛

𝑖=1

} = ⋀ ℳ{ξ
𝑖

∈ 𝐵𝑖}

𝑛

𝑖=1

 

for any Borel sets B1, B2, … , B𝑛 of real numbers. 

Definition 2.12 [10] An uncertain variable ξ is called normal denoted by 𝑁(𝑚 , σ) if it 

has a normal uncertainty distribution 

Φ(𝑥) =  (1 + 𝑒𝑥𝑝 (
𝜋(𝑚 − 𝑥)

√3σ
))

−1

,        𝑥 ∈ ℝ, 

where 𝑚 and σ (σ > 0) are real numbers. 

Definition 2.13 [1] An uncertain variable ξ  is called skew-normal denoted by 

𝑆𝑁(𝑚 , 𝑝, σ) if it has a skew-normal uncertainty distribution  

Φ(𝑥) =  (1 + 𝑒𝑥𝑝 (
𝜋(𝑚 − 𝑥)

√3σ
))

− 𝑝

,        𝑥 ∈ ℝ , 

where 𝑚 , σ  (σ > 0) and  𝑝 (𝑝 > 0) are real numbers. 

Parameter 𝑚  specifies distribution location, parameter σ (σ > 0)  specifies 

distribution spread and parameter 𝑝 (𝑝 > 0) specifies distribution shape. There are three 

conditions for 𝑝 as follows: 

1. If 𝑝 = 1, then an uncertain variable ξ is normal uncertainty distribution. 

2. If  𝑝 > 1 , then an uncertain variable ξ  is positive skew-normal uncertainty 

distribution. 

3. If 0 < 𝑝 < 1, then an uncertain variable ξ is negative skew-normal uncertainty 

distribution. 

 

 

Figure 1. Skew-normal uncertainty distribution.  

In order to estimate the parameter vector Θ = (𝑚, 𝑝, 𝜎), we employ the least squares 
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principle proposed by Liu [7] to minimize the sum of squares of the distance between the 

expert’s experimental data and the uncertainty distribution. Assume that the uncertainty 

distribution to be determined has a function form Φ(𝑥|Θ) with an unknown parameter 

vector Θ = (𝑚, 𝑝, 𝜎) . The optimal solution vector Θ̂ = (�̂�, �̂�, �̂�)  of 

𝑀𝑖𝑛 ∑ (Φ(𝑥|Θ) − 𝛼𝑖)2𝑛
𝑖=1  is called the least squares estimate of the parameter vector 

Θ = (𝑚, 𝑝, 𝜎). In the following example we show how the optimal solution vector Θ̂ =
(�̂�, �̂�, �̂�) is obtained. 

Example 2.1 Suppose that we invite a stock market expert to evaluate the belief degree 

about a specific stock return for the next month. We assume a consultation process is as 

follows: 

Question 1: What is your evaluation about the maximum return for the next month? 

Answer 1: I am 100% sure that the stock return is less than +5%. This means the belief 

degree of “the stock return is less than +5%” is 1. (An expert’s experimental data (5, 1) is 

acquired) 

Question 2: What is your evaluation about the minimum return for the next month? 

Answer 2: I am 0% sure that the stock return is less than -5%. This means the belief 

degree of “the stock return is less than -5%” is 0. (An expert’s experimental data (-5, 0) is 

acquired) 

Question 3: To what degree do you think that the stock return for the next month is less 

than -1%? 

Answer 3: I am 10% sure that the stock return is less than -1%. This means the belief 

degree of “the stock return is less than -1%” is 0.1. (An expert’s experimental data (-1, 

0.1) is acquired) 

Question 4: To what degree do you think that the stock return for the next month is less 

than 0%? 

Answer 4: I am 28% sure that the stock return is less than 0%. This means the belief 

degree of “the stock return is less than 0%” is 0.28. (An expert’s experimental data (0, 

0.28) is acquired) 

Question 5: To what degree do you think that the stock return for the next month is less 

than 0.14%? 

Answer 5: I am 30% sure that the stock return is less than 0.14%. This means the belief 

degree of “the stock return is less than 0.14%” is 0.30. (An expert’s experimental data 

(0.14, 0.30) is acquired) 

Question 6: To what degree do you think that the stock return for the next month is less 

than 1%? 

Answer 6: I am 33% sure that the stock return is less than 1%. This means the belief 

degree of “the stock return is less than 1%” is 0.33. (An expert’s experimental data (1, 

0.33) is acquired) 

Question 7: To what degree do you think that the stock return for the next month is less 

than 1.5%? 

Answer 7: I am 47% sure that the stock return is less than 1.5%. This means the belief 

degree of “the stock return is less than 1.5%” is 0.47. (An expert’s experimental data (1.5, 

0.47) is acquired) 

Question 8: To what degree do you think that the stock return for the next month is less 

than 1.7%? 

Answer 8: I am 50% sure that the stock return is less than 1.7%. This means the belief 

degree of “the stock return is less than 1.7%” is 0.50. (An expert’s experimental data (1.7, 
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0.5) is acquired) 

Question 9: To what degree do you think that the stock return for the next month is less 

than 2%? 

Answer 9: I am 59% sure that the stock return is less than 2%. This means the belief 

degree of “the stock return is less than 2%” is 0.59. (An expert’s experimental data (2, 

0.59) is acquired) 

Question 10: To what degree do you think that the stock return for the next month is less 

than 3.4%? 

Answer 10: I am 66% sure that the stock return is less than 3.4%. This means the belief 

degree of “the stock return is less than 3.4%” is 0.66. (An expert’s experimental data (3.4, 

0.66) is acquired) 

Question 11: Is there another evaluation for the stock return? If yes, what is it? 

Answer 11: yes. I am 87% sure that the stock return is less than 4.6%. This means the 

belief degree of “the stock return is less than 4.6%” is 0.87 (An expert’s experimental data 

(4.6, 0.87) is acquired) 

By using the questionnaire survey, eleven expert’s experimental data of the specific stock 

return for the next month are acquired as follows:  

(𝒙 , 𝜶) = (−5, 0), (−1, 0.1), (0, 0.28), (0.14, 0.3), (1, 0.33),  

(1.5, 0.47), (1.7, 0.5), (2, 0.59), (3.4, 0.66), (4.6, 0.87), (5, 1). 

By implementing “nls” function in R software the optimal solution vector Θ̂ = (�̂�, �̂�, �̂�) 

is obtained (2.1803, 0.8009, 0.3966). 

Theorem 2.1 [10] A function Φ−1(𝑟) ∶ (0,1) → ℝ is an inverse uncertainty distribution 

if and only if it is a continuous and strictly increasing function with respect to 𝑟. 

Example 2.2 [10] Let 𝜉~𝑁(𝑚 , 𝜎), then the inverse uncertainty distribution of normal 

uncertain variable ξ  is 

Φ−1(𝑟) = 𝑚 +
√3σ

𝜋
ln (

𝑟

1 − 𝑟
) ,        0 < 𝑟 < 1. 

Theorem 2.2 [1] Let 𝜉~ 𝑆𝑁(𝑚 , 𝑝, 𝜎) , then the inverse uncertainty distribution of 

skew-normal uncertain variable ξ  is 

Φ−1(𝑟) = 𝑚 +
√3σ

𝜋
 ln (

𝑟
1
𝑝

1 − 𝑟
1
𝑝

)       ;       0 <  𝑟 < 1. (1) 

Theorem 2.3 [10] Let ξ
1

, ξ
2

, … , ξ
𝑛

 be independent uncertain variables with regular 

uncertainty distributions Φ1,Φ2, … ,Φ𝑛 , respectively. If 𝑓(ξ
1

, ξ
2

, … , ξ
𝑛

)  is strictly 

increasing with respect to  ξ
1

, ξ
2

, … , ξ
𝑚

 and strictly decreasing with respect to 

ξ
𝑚+1

, ξ
𝑚+2

, … , ξ
𝑛

, then  

ξ = 𝑓(ξ
1

, ξ
2

, … , ξ
𝑛

) 

has an inverse uncertainty distribution  

Ψ−1(𝑟) = 𝑓 (Φ1
−1(𝑟), … ,Φ𝑚

−1(𝑟) ,Φ𝑚+1
−1 (1 − 𝑟), … ,Φ𝑛

−1(1 − 𝑟)). 

Theorem 2.4 [14] Let ξ be an uncertain variable with regular uncertainty distribution 

Φ(𝑥). If the expected value of ξ exists, then 
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𝐸[ξ] = ∫ Φ−1(𝑟)
1

0

𝑑𝑟. 

where Φ−1(𝑟) is the inverse uncertainty function of ξ with respect to 𝑟. 

Theorem 2.5 [1] Let  ξ
𝑖
~ 𝑆𝑁(𝑚𝑖 , 𝑝𝑖 , 𝜎𝑖)  ; ∀𝑖 = 1,2, … , 𝑛, then the expected value of 

skew-normal uncertain variable ξ
i
 is 

𝐸[𝜉𝑖] = 𝑚𝑖 −
√3𝜎𝑖

𝜋𝑝𝑖
−

√3𝜎𝑖

𝜋
∫ 𝑙𝑛 (1 − 𝑟

1
𝑝𝑖) 𝑑𝑟

1

0

. (2) 

3. Pseudo-triangular entropy 

In this section, we introduce concepts of pseudo-triangular entropy for uncertain variable. 

Moreover, we derive some mathematical properties of pseudo-triangular entropy and a 

formula to calculate it via inverse uncertainty distribution. We first recall concepts of 

logarithm entropy and triangular entropy. 

Definition 3.1 [6] Suppose that ξ is an uncertain variable with uncertainty distribution Φ. 

Then, the logarithm entropy of ξ is defined by  

𝐻[ξ] = ∫ 𝐿(Φ(𝑥))
+∞

−∞

d𝑥 

where 𝐿(𝑠) = −(s)ln(𝑠) − (1 − 𝑠) ln(1 − 𝑠). 
Theorem 3.1 [5] Let ξ be an uncertain variable with uncertainty distribution Φ. Then, the 

logarithm entropy of ξ is 

𝐻[ξ] = ∫ Φ−1(𝑟)ln(
𝑟

1 − 𝑟
)

1

0

d𝑟. 

Definition 3.2 [19] Suppose that ξ is an uncertain variable with uncertainty distribution 

Φ. Then, the triangular entropy of ξ is defined by  

𝐻[ξ] = ∫ 𝑇(Φ(𝑥))
+∞

−∞

d𝑥 

 where 𝑇(𝑠) = {
𝑠,               if  0 ≤ s ≤

1

2

1 − 𝑠,         if  
1

2
< 𝑠 ≤ 1 .

 

Theorem 3.2 [19] Let ξ be an uncertain variable with uncertainty distribution Φ. Then, 

the triangular entropy of ξ is 

H[ξ] = ∫ Φ−1(𝑟)
1

1
2

d𝑟 − ∫ Φ−1(𝑟)

1
2

0

d𝑟. 

Definition 3.3 Suppose that ξ is an uncertain variable with uncertainty distribution Φ. 

Then, the pseudo-triangular entropy of ξ is defined by  

𝐻[ξ] = ∫ 𝐶(Φ(𝑥))
+∞

−∞

d𝑥 

where 𝐶(𝑠) = {
(𝑠)2,              if  0 ≤ 𝑠 ≤

1

2

(1 − 𝑠)2,       if  
1

2
< 𝑠 ≤ 1.
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Figure 2. The function C(s). 

Theorem 3.3 Suppose that ξ is an uncertainty variable with regular uncertainty 

distribution Φ. Then  

𝐻[ξ] = − ∫ Φ−1(𝑟)𝐶 ′(𝑟)
1

0

d𝑟 

where 𝐶(𝑟) = {
(𝑟)2,               if  0 ≤ 𝑟 ≤

1

2

(1 − 𝑟)2,        if  
1

2
< 𝑟 ≤ 1.

   

Proof It is clear that 𝐶(𝑟) is a derivable function whose derivative has the form 

𝐶′(𝑟) = {
2(𝑟),                     if  0 ≤ 𝑟 ≤

1

2

−2(1 − 𝑟),          if 
1

2
< 𝑟 ≤ 1.

  

Since,   

𝐶(Φ(𝑥)) = ∫ 𝐶′(𝑟)
Φ(𝑥)

0

d𝑟 = − ∫ 𝐶′(𝑟)
1

Φ(𝑥)

d𝑟 

we have 

H[ξ] = ∫ 𝐶(Φ(𝑥))
+∞

−∞

d𝑥 = ∫ ∫ 𝐶 ′(𝑟)
Φ(𝑥)

0

0

−∞

d𝑟 d𝑥 − ∫ ∫ 𝐶 ′(𝑟)
1

Φ(𝑥)

+∞

0

d𝑟 d𝑥. 

It follows from Fubini theorem that 

 H[ξ] = ∫ ∫ 𝐶 ′(𝑟)
0

Φ−1(𝑟)

d𝑥 d𝑟 − ∫ ∫ 𝐶 ′(𝑟)d𝑥
Φ−1(𝑟)

0

d𝑟
1

Φ(0)

Φ(0)

0

 

           = − ∫ Φ−1(𝑟)𝐶 ′(𝑟)
Φ(0)

0

d𝑟 − ∫ Φ−1(𝑟)𝐶 ′(𝑟)
1

Φ(0)

d𝑟 

           = − ∫ Φ−1(𝑟)𝐶 ′(𝑟)
1

0

d𝑟. 

The theorem is verified.                                                               ◼ 
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Theorem 3.4 Suppose that ξ is an uncertainty variable with regular uncertainty 

distribution Φ. Then, the pseudo-triangular entropy of ξ is 

H[ξ] = ∫ 2(1 − 𝑟)Φ−1(𝑟)
1

1
2

d𝑟 − ∫ 2(𝑟)Φ
−1(𝑟)

1
2

0

d𝑟. (3) 

Proof According to Theorem 8 we have 

 𝐻[ξ] = − ∫ Φ−1(𝑟)𝐶 ′(𝑟)
1

0

d𝑟 

          = − (∫ 2(𝑟) Φ−1(𝑟)

1
2

0

d𝑟 + (∫ −2(1 − 𝑟)Φ−1(𝑟)
1

1
2

d𝑟)) 

          = ∫ 2(1 − 𝑟)Φ−1(𝑟)
1

1
2

d𝑟 − ∫ 2(𝑟)Φ
−1(𝑟)

1
2

0

d𝑟. 

The theorem is proved.                                                                ◼ 

Now, we prove entropy for uncertain variables in forms of logarithm function and 

triangular function sometimes may fail to measure the uncertainty of an uncertain 

variable.  

Suppose that the uncertain variable ξ∗ has an uncertainty distribution  

Φ∗(𝑥) =
1

π
arctan(𝑥) +

1

2
 ;   𝑥 ∈ 𝑅 

and inverse uncertainty distribution  

Φ∗
−1(𝑟) = tan (𝜋 (𝑟 −

1

2
))  ;  0 < 𝑟 < 1. 

According to Theorem 6, the logarithm entropy of  ξ
∗
 is obtained as follows: 

 
𝐻[ξ

∗
] = ∫ Φ∗

−1(𝑟)ln(
𝑟

1 − 𝑟
)

1

0

d𝑟 = ∫ tan (𝜋 (𝑟 −
1

2
)) ln(

𝑟

1 − 𝑟
)

1

0

d𝑟 

 
= ∫ tan (𝜋 (𝑟 −

1

2
)) ln(𝑟)

1

0

d𝑟 − ∫ tan (𝜋 (𝑟 −
1

2
)) ln(1 − 𝑟)

1

0

d𝑟 

 
= ∫ tan (𝜋 (𝑟 −

1

2
)) ln(𝑟)

1

0

d𝑟 − ∫ tan (𝜋 (
1

2
− 𝑟)) ln(𝑟)

1

0

d𝑟 

 
= 2 (∫ tan (𝜋 (𝑟 −

1

2
)) ln(𝑟) 𝑑𝑟

1

0

) 

 
≥ ∫ 𝑡𝑎𝑛 (𝜋 (𝑟 −

1

2
)) ln(𝑟) 𝑑𝑟 = ∞.

1

0

 

 

According to theorem 7, the triangular entropy of ξ
∗
is obtained as follows: 
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𝐻[ξ

∗
] = ∫ Φ∗

−1(𝑟)
1

1
2

d𝑟 − ∫ Φ∗
−1(𝑟)

1
2

0

d𝑟 

 
            = ∫ tan (𝜋 (𝑟 −

1

2
))

1

1
2

d𝑟 − ∫ tan (𝜋 (𝑟 −
1

2
))

1
2

0

d𝑟 

     ≥ ∫ tan (𝜋 (𝑟 −
1

2
))

1

1
2

d𝑟 ≥ ∫ sin (𝜋 (𝑟 −
1

2
)) tan (𝜋 (𝑟 −

1

2
))

1

1
2

d𝑟 = ∞. 

Thus, logarithm entropy and triangular entropy for the uncertain variable ξ
∗
with the 

uncertainty distribution Φ∗(𝑥) are infinite and they fail to measure the uncertainty of an 

uncertain variable  ξ
∗

with the uncertainty distribution  Φ∗(𝑥) . Now, we prove 

pseudo-triangular entropy for the uncertain variable ξ
∗
with the uncertainty distribution 

Φ∗(𝑥) is finite. 

According to Theorem 9, we have 

 

H[ξ
∗
] = ∫ 2(1 − 𝑟) Φ∗

−1(𝑟)
1

1
2

d𝑟 − ∫ 2(𝑟) Φ∗
−1(𝑟)

1
2

0

d𝑟 

 

           = ∫ 2(1 − 𝑟) tan (𝜋 (𝑟 −
1

2
))

1

1
2

d𝑟 − ∫ 2(𝑟) tan (𝜋 (𝑟 −
1

2
))

1
2

0

d𝑟 

 

           = ∫ 2(𝑟) tan (𝜋 (
1

2
− 𝑟))

1
2

0

d𝑟 − ∫ 2(𝑟) tan (𝜋 (𝑟 −
1

2
))

1
2

0

d𝑟 

 

           = − ∫ 2(𝑟) tan (𝜋 (𝑟 −
1

2
))

1
2

0

d𝑟 − ∫ 2(𝑟) tan (𝜋 (𝑟 −
1

2
))

1
2

0

d𝑟 

 

           = 2 (− ∫ 2(𝑟) tan (𝜋 (𝑟 −
1

2
))

1
2

0

d𝑟) 

 

          ≤ 2 (− ∫ 𝑠𝑖𝑛 (𝜋 (𝑟 −
1

2
)) 𝑑𝑟

1
2

0

) = 2(
1

𝜋
) =

2

𝜋
< ∞. 

Example 3.1 Let ξ~𝑁(𝑚, 𝑝, σ), then the pseudo-triangular entropy has a closed form for 

𝑝 = 1 which can be derived as follows: 

 

H[ξ] = ∫ 2(1 − 𝑟)Φ−1(𝑟)
1

1
2

d𝑟 − ∫ 2(𝑟) Φ−1(𝑟)

1
2

0

d𝑟 

 

         = ∫ 2(1 − 𝑟) (𝑚 +
√3σ

𝜋
ln (

r

1 − r
))

1

1
2

d𝑟 − ∫ 2(𝑟) (𝑚 +
√3σ

𝜋
ln (

𝑟

1 − 𝑟
))

1
2

0

d𝑟 

 
         = (𝑚 +

2√3ln2

𝜋
σ −

3

4
𝑚 −

√3

2𝜋
σ −

√3ln2

𝜋
σ) − (

1

4
m +

4√3

8π
σ −

√3ln2

𝜋
σ) 

 
         =

(2ln2 − 1)√3

π
σ. 
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Theorem 3.5 (Translation invariance) Let ξ be an uncertain variable, and 𝑐 be a real 

number. Then, 

𝐻[ξ + 𝑐] = 𝐻[ξ]. 

Proof Suppose that ξ has an uncertainty distribution Φ, i.e. Φ(𝑥) = M{ξ ≤ 𝑥}. Then, 

the uncertain variable ξ + 𝑐  has an uncertain distribution (𝑥) = 𝜇{ξ + 𝑐 ≤ 𝑥} =
𝜇{ξ ≤ 𝑥 − 𝑐} = Φ(𝑥 − 𝑐). By the definition of pseudo-triangular entropy we have 

𝐻[ξ + 𝑐] = ∫ 𝐶((𝑥))
+∞

−∞

𝑑𝑥 = ∫ 𝐶(Φ(𝑥 − 𝑐))
+∞

−∞

𝑑𝑥 = ∫ 𝐶(Φ(𝑥))𝑑𝑥
+∞

−∞

= 𝐻[ξ]. 

Theorem 3.6 Let 𝑓: ℜ𝑛 → ℜ be strictly monotone function, and ξ
1

, ξ
2

, … , ξ
𝑛

 be 

independent uncertain variable with uncertainty distributions Φ1,Φ2, … ,Φ𝑛 , 

respectively. Then, the pseudo-triangular entropy of uncertain variable 𝜉 =
𝑓(ξ

1
, ξ

2
, … , ξ

𝑛
) is  

H[ξ] = |∫ 2(1 − 𝑟)𝑓 (Φ1
−1(𝑟), … ,Φ𝑛

−1(𝑟))
1

1
2

d𝑟

− ∫ 2(𝑟)𝑓 (Φ1
−1(𝑟), … ,Φ𝑛

−1(𝑟))

1
2

0

d𝑟|. 

Proof 

Case I Suppose 𝑓 is an increasing function. Then, ξ has an inverse uncertainty 

distribution 

Φ−1(𝑟) = 𝑓 (Φ1
−1(𝑟), … ,Φ𝑛

−1(𝑟)) 

by Theorem 3. It follows from Theorem 9 that 

H[ξ] = ∫ 2(1 − 𝑟)𝑓 (Φ1
−1(𝑟), … ,Φ𝑛

−1(𝑟))
1

1
2

d𝑟

− ∫ 2(𝑟)𝑓 (Φ1
−1(𝑟), … ,Φ𝑛

−1(𝑟))

1
2

0

d𝑟. 

Case II Suppose 𝑓 is a decreasing function. Then, 𝜉 has an inverse uncertainty 

distribution 

Φ−1(𝑟) = 𝑓 (Φ1
−1(1 − 𝑟), … , Φ𝑛

−1(1 − 𝑟)) 

by Theorem 3. It follows from Theorem 9 that 

 
H[ξ] = ∫ 2(1 − 𝑟)𝑓 (Φ1

−1(1 − 𝑟), … ,Φ𝑛
−1(1 − 𝑟))

1

1
2

d𝑟

− ∫ 2(𝑟)𝑓 (Φ1
−1(1 − 𝑟), … ,Φ𝑛

−1(1 − 𝑟))

1
2

0

d𝑟 

 
          = − ∫ 2(𝑟)𝑓 (Φ1

−1(𝑟), … ,Φ𝑛
−1(𝑟))

0

1
2

d𝑟

+ ∫ 2(1 − 𝑟)𝑓 (Φ1
−1(𝑟), … ,Φ𝑛

−1(𝑟))

1
2

1

d𝑟 
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         = ∫ 2(𝑟)𝑓 (Φ1
−1(𝑟), … ,Φ𝑛

−1(𝑟))

1
2

0

d𝑟

− ∫ 2(1 − 𝑟)𝑓 (Φ1
−1(𝑟), … ,Φ𝑛

−1(𝑟))
1

1
2

d𝑟. 

Thus, we have 

H[ξ] = |∫ 2(1 − 𝑟)𝑓 (Φ1
−1(𝑟), … ,Φ𝑛

−1(𝑟))
1

1
2

d𝑟

− ∫ 2(𝑟)𝑓 (Φ1
−1(𝑟), … ,Φ𝑛

−1(𝑟))

1
2

0

d𝑟|. 

The theorem is proved.                                                                ◼ 

Theorem 3.7 (positive linearity) Let ξ and η be independent uncertain variables with 

uncertainty distribution Φ and  respectively. Then for any real numbers 𝑎 and b we 

have: 

𝐻[𝑎ξ + 𝑏𝜂] = |𝑎|𝐻[ξ] + |𝑏|𝐻[𝜂]. 

Proof Suppose that ξ and 𝜂 have uncertainty distributions Φ and , respectively. The 

theorem will be proved via three steps. 

Step 1. We prove 𝐻[𝑎ξ] = 𝑎𝐻[ξ]. 

If 𝑎 > 0, then the uncertain variable 𝑎ξ has an inverse uncertain distribution ϒ−1(𝑟) =

𝑎Φ−1(𝑟). 
By Theorem 9 we have 

 

H[𝑎ξ] = ∫ 2𝑎(1 − 𝑟)Φ−1(𝑟)
1

1
2

d𝑟 − ∫ 2𝑎(𝑟)Φ−1(𝑟)

1
2

0

d𝑟 

 

            = 𝑎 (∫ 2(1 − 𝑟)Φ−1(𝑟) d𝑟
1

1
2

− ∫ 2(𝑟) Φ−1(𝑟) d𝑟

1
2

0

) = 𝑎H[ξ]. 

If 𝑎 = 0, then 𝐻[𝑎ξ] = 0 = 𝑎𝐻[ξ]. 

If 𝑎 < 0, then the uncertain variable 𝑎ξ has an inverse uncertain distribution ϒ−1(𝑟) =

𝑎Φ−1(1 − 𝑟). 
By Theorem 9 we have 

 

H[𝑎ξ] = ∫ 2𝑎(1 − 𝑟)Φ−1(1 − 𝑟)
1

1
2

d𝑟 − ∫ 2𝑎(𝑟) Φ−1(1 − 𝑟)

1
2

0

d𝑟 

 

            = − ∫ 2𝑎(𝑟)Φ−1(𝑟)
0

1
2

d𝑟 + ∫ 2𝑎(1 − 𝑟) Φ−1(𝑟)

1
2

1

d𝑟 

 

           = ∫ 2𝑎(𝑟)Φ−1(𝑟)

1
2

0

d𝑟 − ∫ 2𝑎(1 − 𝑟) Φ−1(𝑟)
1

1
2

d𝑟 
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           = −𝑎 (∫ 2(1 − 𝑟)Φ−1(𝑟)
1

1
2

d𝑟 − ∫ 2(𝑟) Φ−1(𝑟)

1
2

0

d𝑟) = −𝑎H[ξ]. 

Thus, we have 𝐻[𝑎ξ] = |𝑎|𝐻[ξ]. 
 

Step 2. We prove 𝐻[ξ + 𝜂] = 𝐻[ξ] + 𝐻[𝜂]. It follows from Theorem 3 that ξ + 𝜂 has 

an inverse uncertainty distribution  

ϒ−1(𝑟) = Φ−1(𝑟) +−1(𝑟). 

It follows from Theorem 9 that  

 

𝐻[ξ + 𝜂] = ∫ 2(1 − 𝑟) (Φ−1(𝑟) +−1(𝑟))
1

1
2

d𝑟 − ∫ 2(𝑟) (Φ−1(𝑟) +−1(𝑟))

1
2

0

d𝑟 

 

                   = ∫ 2(1 − 𝑟)Φ−1(𝑟)
1

1
2

d𝑟 − ∫ 2(𝑟) Φ−1(𝑟)

1
2

0

d𝑟 + ∫ 2(1 − 𝑟)−1(𝑟)
1

1
2

d𝑟

− ∫ 2(𝑟)−1(𝑟)

1
2

0

d𝑟 

                   = 𝐻[ξ] + 𝐻[𝜂]. 

Step 3. For any real numbers 𝑎 and b, we have 

𝐻[𝑎ξ + 𝑏𝜂] = |𝑎|𝐻[ξ] + |𝑏|𝐻[𝜂]. 
The theorem is proved.                                                                ◼ 

4. Application to uncertain portfolio optimization 

Suppose that there are 𝑛 securities whose returns are uncertain variables ξ
1

, ξ
2

, … , ξ
𝑛

 

with uncertainty distributions Φ1,Φ2, … ,Φ𝑛, respectively. Let 𝑥𝑖 denote the investment 

proportion of allocation in security 𝑖, 𝑖 = 1,2, … , 𝑛. The uncertain portfolio total return 

denoted by 𝒙𝑇𝛏 = ∑ 𝑥𝑖ξ𝑖
𝑛
𝑖=1  is an uncertain variable. Let ψ  be the uncertainty 

distribution of the uncertain portfolio total return 𝒙𝑇𝛏 = ∑ 𝑥𝑖ξ𝑖
𝑛
𝑖=1 . Since 𝑥1, 𝑥2, … , 𝑥𝑛 

are non-negative, the uncertainty distribution of the uncertain portfolio total return can be 

derived as follows: 

Ψ−1(𝑟) = ∑  𝑥𝑖

𝑛

𝑖=1

Φ−1(𝑟). (4) 

To make sure that the uncertain portfolio risk is under control, we minimize entropy as 

the objective function. Moreover, we set expected value greater than some preset value 𝑐. 
The uncertain portfolio optimization model is formulated as below: 

 𝑚𝑖𝑛  𝐻[𝒙𝑇𝝃] 

(5) 

 s.t.  𝐸[𝒙𝑇𝝃] ≥ 𝐶 

 
          ∑  𝑥𝑖

𝑛

𝑖=1

= 1 

           0 ≤ 𝑥𝑖 ≤ 1,     ∀𝑖 = 1,2, … , 𝑛. 

Suppose that 𝜉1 , 𝜉2 , … , 𝜉𝑛 are independent skew-normal uncertain variables denoted 
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by 𝜉𝑖  ~ 𝑆𝑁(𝑚𝑖 , 𝑝𝑖  , 𝜎𝑖) ;   σi > 0, pi > 0, 𝑖 = 1,2, … , 𝑛. By applying Eq. (1) and Eq. (4) 

the inverse uncertainty distribution Ψ−1(𝑟)  of the uncertain portfolio total return 
∑ 𝑥𝑖ξ𝑖

𝑛
𝑖=1  is derived as follows: 

Ψ−1(𝑟) = ∑  𝑥𝑖

𝑛

𝑖=1

Φ−1(𝑟) = ∑  𝑥𝑖

𝑛

𝑖=1

(𝑚𝑖 +
√3σ𝑖

𝜋
ln (

𝑟 
1
𝑝𝑖

1 − 𝑟 
1
𝑝𝑖

)) 

where 𝑥𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛 and 𝑟 ∈ (0, 1). 
By using Eq. (1), Eq. (2) and Eq. (4) the expected value of the uncertain portfolio total 

return 𝑥𝑇𝜉 = ∑ 𝑥𝑖𝜉𝑖
𝑛
𝑖=1  is derived as follows: 

 

𝐸 [∑ 𝑥𝑖ξ𝑖

𝑛

𝑖=1

] = ∫ (∑ 𝑥𝑖

𝑛

𝑖=1

(𝑚𝑖 +
√3σ𝑖

𝜋
 ln (

𝑟
1
𝑝𝑖

1 − 𝑟
1
𝑝𝑖

))  )
1

0

𝑑𝑟 

 
                      = ∑ 𝑥𝑖

𝑛

𝑖=1

(𝑚𝑖 −
√3σ𝑖

𝜋𝑝𝑖
−

√3σ𝑖

𝜋
∫ ln (1 − 𝑟

1
𝑝𝑖) 𝑑𝑟

1

0

). 

Now, by applying Eq. (3) and Eq. (4) the pseudo-triangular entropy of the uncertain 

portfolio total return 𝒙𝑇𝛏 = ∑ 𝑥𝑖ξ𝑖
𝑛
𝑖=1  is obtained as follows: 

 

H [∑ 𝑥𝑖ξ𝑖

𝑛

𝑖=1

] = ∫ (∑ 𝑥𝑖(2 − 2𝑟)

𝑛

𝑖=1

Φ𝑖
−1(𝑟))

1

1
2

𝑑𝑟 − ∫ (∑ 𝑥𝑖(2𝑟)

𝑛

𝑖=1

Φ𝑖
−1(𝑟))

1
2

0

𝑑𝑟 

 

 = ∑ 𝑥𝑖 (∫ (2 − 2𝑟) (𝑚𝑖 +
√3σ𝑖

𝜋
ln (

𝑟 
1
𝑝𝑖

1 − 𝑟 
1
𝑝𝑖

))
1

1
2

𝑑𝑟

𝑛

𝑖=1

− ∫ (2𝑟) (𝑚𝑖 +
√3σ𝑖

𝜋
ln (

𝑟 
1
𝑝𝑖

1 − 𝑟 
1
𝑝𝑖

)) 𝑑𝑟

1
2

0

). 

Thus, Model (5) based on pseudo-triangular entropy is equivalent to the following model: 

 

𝑚𝑖𝑛 ∑ 𝑥𝑖

𝑛

𝑖=1

(∫ (2 − 2𝑟) (𝑚𝑖 +
√3σ𝑖

𝜋
ln (

𝑟 
1
𝑝𝑖

1 − 𝑟 
1
𝑝𝑖

)) 𝑑𝑟
1

1
2

− ∫ (2𝑟) (𝑚𝑖 +
√3σ𝑖

𝜋
ln (

𝑟 
1
𝑝𝑖

1 − 𝑟 
1
𝑝𝑖

)) 𝑑𝑟

1
2

0

) 

 
𝑠. 𝑡.  ∑ 𝑥𝑖

𝑛

𝑖=1

(𝑚𝑖 −
√3σ𝑖

𝜋𝑝
𝑖

−
√3σ𝑖

𝜋
∫ ln (1 − 𝑟

1

𝑝𝑖) 𝑑𝑟

1

0

) ≥ 𝐶 

 
          ∑  𝑥𝑖

𝑛

𝑖=1

= 1 

      0 ≤ 𝑥𝑖 ≤ 1  ;  ∀𝑖 = 1,2, … , 𝑛. 

Now, in order to further investigate the outperformance of pseudo-triangular entropy 
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as a quantifier of portfolio risk together with the effect of different parameters of 

skew-normal uncertainty distribution on investment allocation, let us consider the 

following example. 

Example 4.1 suppose there are four investment portfolios containing twelve securities. 

According to expert’s evaluation, the future returns are independent skew-normal 

uncertain variables which are depicted in Table 1. Moreover, the parameter 𝐶 in Model 

(5) is designated to 2 by investor. 

Table 1. Uncertain return of securities. 

Portfolio 1 Portfolio 2 

Security i 
Uncertain return  

𝜉𝑖  ~ 𝑆𝑁(𝑚𝑖 , 𝑝𝑖 , 𝜎𝑖) 
Security i 

Uncertain return 

𝜉𝑖  ~ 𝑆𝑁(𝑚𝑖 , 𝑝𝑖 , 𝜎𝑖) 

1  ξ
𝑖
~S𝑁(0.5, 0.4, 0.5) 1  ξ

𝑖
~S𝑁(3, 3, 0.4) 

2  ξ
𝑖
~S𝑁(1, 0.5, 0.6) 2  ξ

𝑖
~S𝑁(3, 2, 0.7) 

3  ξ
𝑖
~S𝑁(1.5, 1, 0.7) 3  ξ

𝑖
~S𝑁(2, 2, 0.5) 

4  ξ
𝑖
~S𝑁(2, 1.5, 0.8) 4  ξ

𝑖
~S𝑁(2, 1, 0.6) 

5  ξ
𝑖
~S𝑁(2.5, 2, 0.9) 5  ξ

𝑖
~S𝑁(1, 0.5, 0.5) 

6  ξ
𝑖
~S𝑁(3, 3, 1) 6  ξ

𝑖
~S𝑁(1, 0.4, 0.5) 

7  ξ
𝑖
~S𝑁(0.5, 3, 0.5) 7  ξ

𝑖
~S𝑁(3, 0.4, 1) 

8  ξ
𝑖
~S𝑁(1, 2, 0.6) 8  ξ

𝑖
~S𝑁(3, 0.7, 1) 

9  ξ
𝑖
~S𝑁(1.5, 1.5, 0.7) 9  ξ

𝑖
~S𝑁(2, 0.5, 1) 

10  ξ
𝑖
~S𝑁(2, 1, 0.8) 10  ξ

𝑖
~S𝑁(0.5, 3, 0.4) 

11  ξ
𝑖
~S𝑁(2.5, 0.5, 0.9) 11  ξ

𝑖
~S𝑁(3, 1, 0.5) 

12  ξ
𝑖
~S𝑁(3, 0.4, 1) 12  ξ

𝑖
~S𝑁(1, 1, 0.4) 

Portfolio 3 Portfolio 4 

Security i 
Uncertain return  

𝜉𝑖  ~ 𝑆𝑁(𝑚𝑖 , 𝑝𝑖 , 𝜎𝑖) 
Security i 

Uncertain return  

𝜉𝑖  ~ 𝑆𝑁(𝑚𝑖 , 𝑝𝑖 , 𝜎𝑖) 

1  ξ
𝑖
~S𝑁(4, 3, 2) 1  ξ

𝑖
~S𝑁(4, 4, 0.5) 

2  ξ
𝑖
~S𝑁(4, 3, 1) 2  ξ

𝑖
~S𝑁(4, 0.5, 1) 

3  ξ
𝑖
~S𝑁(0.5, 3, 0.3) 3  ξ

𝑖
~S𝑁(3, 4, 0.4) 

4  ξ
𝑖
~S𝑁(1.5, 2, 0.4) 4  ξ

𝑖
~S𝑁(4, 0.4, 0.2) 

5  ξ
𝑖
~S𝑁(2, 1, 0.5) 5  ξ

𝑖
~S𝑁(1, 1, 0.5) 

6  ξ
𝑖
~S𝑁(3, 1, 0.4) 6  ξ

𝑖
~S𝑁(1, 3, 1) 

7  ξ
𝑖
~S𝑁(1, 1, 0.3) 7  ξ

𝑖
~S𝑁(0.5, 1, 0.3) 

8  ξ
𝑖
~S𝑁(1, 2, 0.3) 8  ξ

𝑖
~S𝑁(0.7, 4, 0.2) 

9  ξ
𝑖
~S𝑁(4, 2, 0.5) 9  ξ

𝑖
~S𝑁(0.6, 1, 0.2) 

10  ξ
𝑖
~S𝑁(4, 2, 0.4) 10  ξ

𝑖
~S𝑁(0.3, 2, 0.4) 

11  ξ
𝑖
~S𝑁(4, 1, 0.3) 11  ξ

𝑖
~S𝑁(0.5, 0.4, 0.5) 

12  ξ
𝑖
~S𝑁(4, 3, 0.5) 12  ξ

𝑖
~S𝑁(3, 0.4, 0.4) 

To show the outperformance of pseudo-triangular entropy as a quantifier of portfolio 

risk, we consider Model (5) for logarithm entropy, triangular entropy and 

pseudo-triangular entropy. The optimal solutions are obtained by implementing GA in 

MATLAB software. Objective value and investment allocation in securities are illustrated 

in Table 2. 
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Table 2. Objective value and investment allocation in securities. 

Portfolio 1 

Entropy 
Objective 

value 
Investment allocation 

Logarithm 1.0720 
(0, 0.049, 0.053, 0.051, 0.045, 0.038, 0.559, 0.032, 0.039, 

0.049, 0.054, 0.031) 

Triangular 0.4111 
(0.02, 0, 0.026, 0.077, 0.012, 0.011, 0.643, 0.071, 0.096, 

0.033, 0.005,0.005) 

Pseudo-triangular 0.1273 
(0, 0.057, 0.045, 0.056, 0.003, 0.035, 0.614, 0.037, 0.027, 

0.052, 0.034, 0.039) 

Portfolio 2 

Entropy 
Objective 

value 
Investment allocation 

Logarithm 0.7824 
(0.366, 0.007, 0.009, 0.036, 0.004, 0.181, 0.004, 0.004, 0.001, 

0.319, 0.007, 0.062) 

Triangular 0.3654 (0.503, 0, 0, 0, 0.149, 0.187, 0, 0, 0.002, 0.098, 0, 0.059) 

Pseudo-triangular 0.0988 
(0.484, 0.003, 0.001, 0.001, 0.001, 0.146, 0.185, 0, 0.001, 

0.12, 0.002, 0.056 ) 

Portfolio 3 

Entropy 
Objective 

value 
Investment allocation 

Logarithm 0.5290 
(0.002, 0.001, 0.307, 0.268, 0.005, 0.025, 0.132, 0.147, 0.033, 

0.01, 0.06, 0.009) 

Triangular 0.2422 
(0.002, 0.046, 0.27, 0.073, 0.015, 0.021, 0.22, 0.186, 0.039, 

0.042, 0.039, 0.046) 

Pseudo-triangular 0.0680 
(0.003, 0.046, 0.275, 0.073, 0.018, 0.021, 0.223, 0.189, 0.038, 

0.038, 0.035, 0.04) 

Portfolio 4 

Entropy 
Objective 

value 
Investment allocation 

Logarithm 0.4112 
(0.019, 0.001, 0.056, 0.019, 0.01, 0.008, 0.091, 0.381, 0.325, 

0.078, 0.004, 0.007) 

Triangular 0.3288 (0.043, 0, 0, 0, 0.025, 0, 0.115, 0.393, 0.097, 0.112, 0.214, 0) 

Pseudo-triangular 0.0570 
(0.149, 0.006, 0.022, 0.037, 0.036, 0.003, 0.095, 0.349, 0.2, 

0.087, 0.009, 0.006) 

According to Table 2, the objective value for pseudo-triangular entropy has the lowest 

value in four portfolios amongst different types of entropy. Therefore, a portfolio based 

on pseudo-triangular entropy is less risky than logarithm entropy and triangular entropy. 

Furthermore, parameters 𝜎 and  𝑝 take priority over parameter 𝑚 in capital allocation. In 

other words, more capital is allocated to securities with greater parameter 𝑝 and smaller 

parameter 𝜎. 

5. Conclusion 

In this paper, concepts of pseudo-triangular entropy as a supplement measure of uncertainty in 

the uncertain portfolio optimization were proposed and its mathematical properties were 

studied. We proved that entropy for uncertain variables in forms of logarithm function and 

triangular function sometimes may fail to measure the uncertainty of an uncertain variable. 

We also presented a numerical example to show the performance of pseudo-triangular entropy 

as the quantifier of risk in the uncertain portfolio optimization problem. To solve the 
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corresponding problem, a genetic algorithm (GA) was implemented in MATLAB software 

and optimal solutions were obtained. The example illustrated that a portfolio based on 

pseudo-triangular entropy is less risky than a portfolio based on logarithm entropy and 

triangular entropy. Furthermore, allocated capital to securities with positive skew-normal 

uncertainty distribution with smaller parameter σ and greater parameter 𝑝 is more than other 

securities. 

Meanwhile, some issues remain to be discussed. The outperformance of pseudo-triangular 

entropy in comparison to logarithm entropy and triangular entropy was investigated, which 

further researches are required on possible outperformance of pseudo-triangular entropy over 

other forms of entropy. Moreover, effects of different values of parameter 𝐶 in proposed 

model on capital allocation require to be further explored. 
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