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Abstract. In this paper, we present a new numerical technique based on Block-pulse functions
to solve two-dimensional Volterra-Fredholm integral equations of the second kind. To produce
Block-pulse functions, the orthogonal Legendre polynomials is used. Furthermore, operational
matrix is applied to convert two-dimensional Volterra-Fredholm integral equations to a linear
algebraic system. The convergence analysis of the new method is discussed. Finally, some
numerical examples are given to confirm the applicability and efficiency of the new method
for solving two-dimensional Volterra-Fredholm integral equations of the second kind.
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1. Introduction

In this paper, we consider two-dimensional Volterra-Fredholm integral equations
(TDVFIE) of the second kind in the form

Fat) :g(x,t)—i—/ox/o k(z,ty, ) F(y, )dsdy, @ € [0,1), (1)

where f(z,t) € L*() is an unknown function, the function g(z,t) € L*(Q2), ker-
nel k(z,t,y,s) € L*(Q x Q) are given and Q = [0,1) x [0,1). Two-dimensional
Volterra-Fredholm integral equations arise in many phenomena in physics and en-
gineering fields [8, 21]. The existence and uniqueness of the solution for the two-
dimensional integral equation (1) are discussed in [13, 18]. Many integral equations
are usually difficult to solve analytically. So, we obtain an approximate solution for
them. In recent years, significant progress has been made in numerical analysis for
linear two-dimensional mixed Volterra-Fredholm integral equations [12]. Further-
more, efficient numerical methods are given for the nonlinear integral equations
and especially for two-dimensional models in [9, 17]. Also, the collocation and dis-
cretization method [6], the particular trapezoidal Nystrom method [11] and the
Adomian decomposition method [7] are applied for solving two-dimensional linear
and nonlinear integral equations.

In this study, we use two-dimensional Block-pulse functions based on Legendre
polynomials to solve (1). Also, we compute the operational matrix of integration
and then approximate known and unknown functions in integral equations (1) by
Block-pulse functions. Therefore, we get a linear system.

The rest of this paper is organized as follows. In Section 2, two-dimensional
Block-pulse functions based on Legendre polynomials are introduced. The opera-
tional matrix of integration have been constructed in Section 3. The new method
is presented in Section 4 which will convert the integral equation into a linear alge-
braic system. Convergence analysis for the proposed method is provided in Section
5. Some numerical results are reported to show the applicability and reliability of
our method in Section 6. Finally, concluding remarks are drawn in Section 7.

2. Two-dimensional block-pulse functions

We define two-dimensional Block-pulse functions based on Legendre polynomials
on () as

Li(2Nz — 2i + 1)L;(2Nt —2j + 1), ST <ae< 4, L <t< L
0, otherwise

Yij(z,t) = {

where : = 1,2,.... N, j =0,1,.... M — 1, N and M are positive integers. Here L;
and L; are the well-known Legendre polynomials of order ¢ and j, respectively,
which are defined on the interval [—1,1] and can be determined by the following
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formulae:

Lo(CL‘) = 1,
Li(z) ==z,
2m+1 m
Ln1(x) = m 1 zLm(2) — mLm 1(z), m=12,..

Some properties of two-dimensional Block-pulse functions (2) are as follows:

e Disjointness:

otherwise

2(x i=i,j=j
Vig(@, )i (z,t) = {0. (@ 1), =T (3)

e Orthogonality:

/ / Yij(x, t) Yy (x, t)dedt = {fo fo 2 (x,t)dzdt, i=7, j.:j’, "

otherwise

Let

U(z,t) = [Y1o(z,t) ... -1y (@, t) .. Ynolz,t) ... wN(Mfl)(xat)}T- (5)

Hence, it is clear that

%O(x,t) 0 0
0 2 (z,t) ... 0
o, )T (o 1) — | U1 (,1) ) (6)
0 e 0 Xy @D ]

3. Operational matrix

The integration of Block-pulse functions based on Legendre polynomials should be
expandable into Block-pulse functions with the coefficient matrix P. Take

U(z) = [$10(@) - Yru—n)(@) - no(@) . Y-y (@)]

where 1;;(x) are one-dimensional of Block-pulse functions based on Legendre poly-
nomials [15]. Then, we get

/Oz U(y)dy = P¥(x),
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where P is an operational matrix as follows [15]:

SUU...U
0SU...U
p=100S5...U
_OOOOS_NMXNM
and
[100...0]
. 000...0
U——1000...0
N D
000...0]
1 1 00.. 0 0 0 7
-1 1
— 0 =0.. 0
313
0 — 0= .. 0 0 0
s 1| 55
2N : D :
0 000 -1 0 L
oM — 3 . oM — 3
(0 000... 0 g 0 [

4. New method

In this section, we use two-dimensional Block-pulse functions based on Legendre
polynomials (2) to solve following TDVFIF

x 1
f(x,t):g(x,t)—l—/o /O k(z,ty, ) f(y, $)dsdy, @ € [0,1). M)

We approximate known and unknown functions in (7) by two-dimensional Block-
pulse functions. Therefore, we get

N
g(.%',t) ~ Z gijwij(x,t) = GT\II(.Z',t), (8)

in which

T
G=1[910 - 91(M-1) 920 - - - G2(M-1) - - - INO - - - N(M-1)] >
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and

/N1 /jM g(x, t)ij(z, t)dtd
— - )

J+1
/ iy (s ) Pdbde

N M

gij =

\ z
2z~

Hence, we can approximate the function k(z,t,y,s), g(z,t) and f(z,t) as follows

Note that K is an NM x NM matrix and its element are obtained by

//// (z,t,y,8) V3 (2, 0)¥ ;) (y, s)dsdydtdx
//|\1/ xt%lxdt //|\I/ (y, 5 Qdyds)

where U ;) (z,t) denotes the i-th element of the ¥(x,t). By substituting these func-
tions in (7), we obtain

(10)

Ul (2, t)F = 0T (2,0)G + /l” /1 UL (2, t) KU (y, s)UT (y, s) Fdsdy

U (2, )G + ¥ (2, t) K / / (y, s )dsdy) (11)
From (6), we have

ST [ 3oy, s)dsdy 0

x 1
/0 /0 U(y, S)\I’T(y, s)dsdy = .
0 Jo fol Q/)12\/(1\471)(1/, s)dsdy
(12)
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in which

x 1 T 1
Q/u/#%@ﬁmwy:/m/ ﬁ@Ny—%+&ﬂg@N&—%+1MMy
0 0 0 0

T 1
:i/ LﬂZNy—2i+1)(/‘Lﬂ2Ns—2j+1yﬁ%w
0 0
it1

:/ L?(QNy—Qzﬁ—l)(/vM L?(2N5—2j+1)ds)dy
0 1%

T,
:Iy/‘LﬂZNy—2i+1My
0

= TRV (x),

where R; is the i-th row of operational matrix. Hence

z pl TORl\Ij(l‘) 0
/ / U(y, s)¥" (y,s)dsdy = =R (13)
00 0 Y1 Ry (z)

Finally, by subsuiting (13) in (11), we have
Ul (2, t)F = U1 (2,)G + VT (2,t) K RF,
or

(I - KR)F = G.

5. Convergence analysis

In this section, we show that our method to solve two-dimensional Volterra-
Fredholm integral equations of the second kind (1) is convergent. By two-
dimensional Block-pulse functions based on Legendre polynomials, the unknown
function f(x,t) € L? (Q) can be approximated by

(ﬂxJﬁ3§: fisij(z,t) = O (z, 1) F, (14)

where the vector F' € RV*M is given by

F={fio-- fine—1) fo0 - - foqu—1y --- fnvo - fN(Mq)]T, (15)
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and the Block-pulse coefficients are computed by

Jit+1

/ " flx, t)i(x, t)dtdx

fij =
[ / " )P
Theorem 5.1 Let
N M-1
fNM Z, t Z fzﬂz)z] Z, t
i=1 j=0
be the approximated solution of (1) on
-1 T
Q == { t X T g
war = (@, 1) N STSN M

Then,

/ / ~ fam(z, t))Zdtdx

achieves its minimum value. Moreover, we have

N M-1

1 1
/0 /0 f2(x,t)dtdl‘ = Z Z fZJ||¢ZJ x, t ”2

i=1 j=0

Proof See [16].

(16)

Now, we get the main result of convergence analysis in the following theorem. We
will show that the error of approximate solution is bounded for two-dimensional
Volterra-Fredholm integral equations based on two-dimensional Block-pulse func-

tions of Legendre polynomials.

Theorem 5.2 Let fyar(z,t) be the approzimate solution for the two-dimensional
Volterra-Fredholm integral equation (7). Then, there exists a positive constant L

such that

Il f(z,t) = fnnr(z,t)]]2 < L

Proof We define the representation error between f(x,t) and its expansion,

fyam(z,t), as follows:

Elj(xvt) fl]¢lj(x t) f(ilf t)v 12177N7 .7:0717
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By the mean-value theorem for integrals, we obtain

9+1
||E1]H§ :/ / E2 :U t dtdz

Jit+1

M 2
/ / fijij(z,t) — f(x,t)) dtdz

j+1

= (fmbij( (v, B) /1 /JM dtdr — (a, ) € Qnm

(ﬁjwu< )~ fla )" (7

Now, (16) and mean-value theorem for integrals, give us

A J+1

/ . / U Fa ) (o tydeda

fij = —F

/ / | (2, t) P dtda

Jj+1

0.y (n.Q) / /Mﬁm

75 (n,¢) € Qnm
HIONS / /
dtdx
_ fn,Q)
" UynQ) 1)
Substituting (18) into (17), we have
L (.0 2 _ Mg

1218 = 537 (G oy i B) = F( ) < g (19)

where M;; is the upper bound for

f(n,6)
¢zg( C)

1/’%]( ,B) = fla, B).

Now, for any (z,t) € Qnas, the error between f(x,t) and fyar(z,t) is

E(xat) = fNM(xvt) - f(iL',t).
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Hence

1 1
|z, )]l = / / F2(e. 1) dtda

M-1

//(Z Ey(w )dtda:

=1 j=0
1 1 N M-1
:/ / Z E (z,t)dtdx
0 J0 =1 j=0
+22 //wat E i (z,t)dtdx.
1<j i<y’

Since the Block-pulse functions are distinct, we get

N -1

1B, )3 = Z / / B2 (2, t)dtda

i=1

in which L = max{M;; |i=1,---,N, j=0,---,M —1}. Hence

[E(z, )2 = lf(2,t) — fnar(e, D)2 < L

6. Numerical examples

To clarify the accuracy and effectiveness of the new method, some numerical exam-
ples are provided. We compare the numerical results of our method with Bernoulli
collocation method (BCM) [14] for N = M = 3, successive approximations method
(SAM) with m; = mo = 18 [19] and rationalized Haar functions (RHF) for n = 4
[10]. We introduce the error function as

EN,M(xvt) = ‘f(l‘,t)—fNM(x,t”, V(.I',t) € Q,

where f(x,t) denotes the exact solution and fyas(x,t) is the approximate solution
of TDVFIE obtained by our method. All codes are implemented in Matlab 2017
programming environment on a 2.3Hz Intel core i3 processor laptop and 4GB of
RAM.
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Example 6.1 Consider the following two-dimensional Volterra-Fredholm integral
equations of the second kind

x 1
fa.1) = gl t) + /0 /0 (x+ )y, s)dsdy, (x.1) € Q

where

5 3
g(z,t) =xt — %

The exact solution is f(z,¢) = zt. For this example, the numerical results of the
new method are reported in Table 1.

=Xt

f

Figure 1. Plot of the exact solution and approximate solution f53(z,t) for Example 6.1.

Example 6.2 Consider the following two-dimensional Volterra-Fredholm integral
equations of the second kind

z rl
fat) =g )+ [ [ @p + o)y s)dsdy, (.0) €9
0o Jo
where
. L oo l s
g(z,t) = zsint — 7% sin 1+ Vi (cos1—1).

The exact solution is f(x,t) = xsint. The numerical results of the new method for
Example 6.2 are reported in Table 2.

Example 6.3 Consider the following two-dimensional Volterra-Fredholm integral
equations of the second kind

x 1
flz,t) =gz, t) + / / wty?s* f(y, s)dsdy, (z,t) € Q
0 0

where

1 1
t) =2 + ot — —ta® — —ta5.
g(z,t) =2+ =z 15a: 163:
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Figure 2. Plot of the exact solution and approximate solution fga(z,t) for Example 6.2.

The exact solution is f(x,t) = x? + xt. For this example, the numerical results of
the new method are reported in Table 3.

f=x24xt

Figure 3. Plot of the exact solution and approximate solution f2(z,t) for Example 6.3.

7. Conclusion

This paper has introduced a new method for solving two-dimensional Volterra-
Fredholm integral equations of the second kind. Our approach is based on Block-
pulse functions introduced with orthogonal Legendre polynomials. Operational
matrix are used to convert two-dimensional integral equations into linear alge-
braic equations. We compare our method with BCM for solving two-dimensional
Volterra-Fredholm integral equations where absolute errors are reported in Tables
1-3. These numerical results confirm excellent performance of new the method to
solve TDVFIE.
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