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Abstract. The aim of this paper is to provide a stability analysis for models with a general
structure and mass action incidence; which include stage progression susceptibility, differential
infectivity as well, and the loss of immunity induced by the vaccine also. We establish that
the global dynamics are completely determined by the basic reproduction number R0. More
specifically, we prove that when R0 is smaller or equal to one, the disease free equilibrium is
globally asymptotically stable; while when it is greater than one, there exist a unique endemic
equilibrium. We also provide sufficient conditions for the global asymptotic stability of the
endemic equilibrium.
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1. Introduction

Infectivity or infectiousness can vary greatly in time for diseases that progress
through a long infectious period. Among infected and infectious persons, ameliora-
tion of the disease state can occurs. It can result from a host’s immune action or
more commonly from treatment. On the other hand, heterogeneity in the sensitive
host population can be the result of many factors such as genetic variations, social
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behaviors, immunization states. For instance, the hepatitis B vaccine is gradually
effective, according to the number of doses of vaccine already taken. As a result,
vaccinated people can still contract the disease and susceptibility varies during
the vaccination process. There have been several studies of models with a general
structure including variable infectiousness and infectivity. But little study on the
importance of variable susceptibility.

The global dynamics of a mathematical model for infectious diseases, which
progress through separate steps, with various degrees of infectivity in infected hosts
and possibility of improving was analyzed in [5]. The structure of this model can
deal with various complex interactions between different classes of infectiousness.
It can handle models with different classes of latency and infectiousness. Thus, this
model encompassed the deterministic stage progression model in [4] and therefore
the ones in [7]. Note that difference in susceptibility was not considered in [5].

In [6], compartmental differential susceptibility models in a general setting were
considered. Homogeneous infectiousness of infected individuals was assumed, so
that they were aggregated into one group of infected individuals. On the other
side, the susceptible population was divided into multiple subgroups according to
the susceptibility of individuals in each group. It was assumed that there was no
flow between susceptibles subgroups. That is to say, each susceptible individual
remained in his group until he is infected. In addition, the influx was supposed to
be distributed into all the subgroups of susceptibles. Modified versions of models in
[6] were studied in [2]. Therein, the infectiousness was considered non homogenous.
Indeed, infected individuals were supposed to progress through distinct states of
the disease. Moreover in [2], based on the ages of susceptible persons, a model in-
cluding a stage progression (with flow among the susceptible compartments) among
five classes of susceptible individuals was formulated to describe the dynamics of
Hepatitis B virus infection.

Stage progression susceptibility models were also formulated to describe the dy-
namic of Hepatitis B virus infection in [9, 14]. Actually, in order to complete the
vaccination process against Hepatitis B, three or four doses must generally be taken
several times, and there are fixed time intervals between two successive doses. In
these both papers, the differentiation in susceptibility therefore resulted from the
fact that people who have not completed the vaccination process may still con-
tract the disease. Considering the time to obtain immunity and the possibility to
be infected before. However, they are less susceptible to develop the infection than
fully susceptible persons. Such consideration was also present in [10, 12, 13], in
which the efficiency of vaccine was assumed to be non-complete. It should be noted
that, contrary to assumption that the vaccine induces immunity for life as regarded
in [9, 14], some authors considered that immunity further to vaccination was not
permanent when modelling the transmission of Hepatitis B virus [8, 18].

In this work, we consider stage progression susceptibility models in a general
setting. We suppose that the influx is distributed in the subgroups of susceptible
people, and we take into account flows between the infected and infectious com-
partments. In fact the model is constructed so that it encompasses the models in
[2, 5, 9, 18]. Since it is presented in a general setting we add hypotheses for biolog-
ical soundness. Our goal is to establish the global dynamics of the general model.
The organization of the paper is as follows. In the next section, we derive a stage
progression differential susceptibility and infectivity epidemic model that extends
and generalizes the model in [9] in the absence of vertical transmission. We formu-
late a general differential susceptibility and infectivity epidemic model of which the
form can be taken by the proposed model. Also, we establish its basic properties
in section 3. Thereafter, in section 4, a simple formula for the basic reproduction
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ratio R0 is given, the global stability of the disease free equilibrium when R0 ⩽ 1 is
proven and the existence and uniqueness of an endemic equilibrium when R0 > 1 is
established. In section 5, we provide the expression of the disease free equilibrium
of the proposed model, also some conditions under which its endemic equilibrium
is globally asymptotically stable. Finally the work is summarized in section 6.

2. A stage progression susceptibility model with differential susceptibility

Suppose an infectious disease spreads in a population. Assume there is a vaccine
against the infection and that the vaccine-induced immunity does not last life-
long. Suppose infected individuals are completely removed or isolated, or that they
acquire lifelong total immunity after recovery. Assume, as it is generally consid-
ered, the infectiousness is independent of the susceptible classes. Furthermore, the
susceptible individuals are taken into account on the basis of their inherent sus-
ceptibilities. In fact, the total host population is partitioned into : n groups of
susceptible individuals Si, i = 1, 2, . . . , n; m groups of infectious/infected individ-
uals Ij , j = 1, 2, . . . ,m; a group for successfully vaccinated persons V ; a group for
individuals who are removed from the infection process R.

Investigating transmission dynamics is our main interest. Hence we neglect de-
mographic effects in the population. Assume that a constant influx Λ̃ is distributed
into the n groups of susceptible people, such that Λi enter the group Si, i = 1, · · · , n,
and

∑n
i=1 Λi = Λ̃. For any i, 1 ⩽ i ⩽ n − 1, θi ⩾ 0, denotes the progression rate

from the group Si to the group Si+1. Only individuals in the group Sn can get the
status of vaccinated at a rate π. Vaccinated persons lose their immunity and return
to the group Sn at a rate σ. As a matter of fact, for some diseases a boost dose of
the vaccine is often necessary after a period has elapsed.

We model new infections using the mass-action law. αi ∈]0; 1], i = 1, · · · , n,
denotes the susceptibility of persons in the class Si and βj ⩾ 0, j = 1, · · · ,m,
the infectiousness of persons in the class Ij . Hence, βij := αiβj is the transmission
rate of Ij for Si. As soon as susceptibles in a group Si, are infected, they enter the
infection group I1 with infection rate λi :=

∑m
j=1 βijIj . Thus the total incidence

is given by λ :=
∑n

i=1 λiSi. From the group I1 they progress through a series of
stages Ij , j = 2, · · · ,m, with the possibility of recovering at the rate γj ⩾ 0 at each
stage. For 1 ⩽ j ⩽ m− 1, kj > 0 denotes the progression rate from the jth stage to
the (j + 1)th stage, and δi+1 ⩾ 0 denotes the amelioration rate from the (j + 1)th
stage to the jth stage. Furthermore, infected individuals from the group Im−2 can
directly progress to the group Im at a rate k′m−2 ⩾ 0, and those in the group Im
can directly return in the group Im−2 at a rate δ′m ⩾ 0.

Moreover we take into account the differences between the death rates. Thus, for
i = 1, · · · , n, µi denotes the death rate of the class Si; and for j = 1, · · · ,m, νj
denotes the one of the class Ij . Besides, µv and µr are respectively the death rates of
peoples in compartments V and R. The population transfer among compartments
is schematically depicted in the transfer diagram in Figure 1. The parameters are
gathered in Table 1. For convenience, we set m− 2 = c, m− 1 = p and m = f ,
in order to get closer to the notations used in [9]. In that paper, a compartmental
model is proposed to study the propagation of the hepatitis B virus. One of the
novel features of that model is that the population of carriers is divided into four
groups, denoted (E), (C), (P ) and (F ).

Finally, we assume that the biologically relevant hypotheses H1 and H2 that
follow are satisfied [2]. Notice that the accessibility is defined here according to the
graph theory.
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• H1 : Any "susceptible" compartment is accessible from a "susceptible" com-
partment with recruitment.

• H2 : Any infected-infectious compartment is accessible from at least one
compartment which is an "entry-point" for infection.

 

 µvV 

δ
2
I
2

 

δ
p
I
p 

 δ
f
I
f
 

γm-3Im-3 

  k2I2 
. . . 

γcIc 

γ
f
I
f
 

k’cIc 

δcIc 

  

πSn 

νm-3Im-3 

γ1I1 

µ2S2 

µ1S1 

µnSn 

ν1I1 
ν2I2 

νcIc 

νpIp 

km-3Im-3 
θ2S2 

 

θn-1Sn-1 

θ1S

νfIf 

 λnSn 
 kcIc 

 δ’fIf 

γ2I2 

k1I1 
kpIp 

m 

µrR 

Λ1 

    λ1S1 

λ2S2 

If 

S1 

I2 I1 

Sn 

S2 

Ip 

Ic 

R 

. . . 

γpIp 

Λ
2

 

Λ
n

 

Im-3 δ
3
I
3

 

V 𝜎V 

Figure 1. Diagram transmission of a general model with one vaccinated class, one removed
class, n susceptible classes and m infected/infectious classes. The transitions between the
compartments (C), (P ) and (F ) in [9] justify the triangular shape in this transfer diagram.

The transmission dynamics of infection are governed by the following system of
differential equations:

Ṡ1 = Λ1 − a1S1 − λ1S1,

Ṡi = Λi − aiSi + θi−1Si−1 − λiSi, i = 2, · · · , n− 1

Ṡn = Λn + σV − anSn + θn−1Sn−1 − λnSn,

V̇ = πSn − (µv + σ)V,

İ1 =

n∑
i=1

λiSi + δ2I2 − b1I1,

İj = kj−1Ij−1 + δj+1Ij+1 − bjIj , j = 2, · · · ,m− 3

İc = km−3Im−3 + δpIp + δ′fIf − bcIc,

İp = kcIc + δfIf − bpIp,

İf = k′cIc + kpIp − bfIf ,

Ṙ =
m∑
j=1

γjIj − µrR,

(1)

where

ai = µi + θi, i = 1, · · · , n− 1 ; an = µn + π; bj = kj + δj + νj + γj , j = 2, · · · ,m− 3 ;

b1 = k1 + ν1 + γ1; bc = kc + k′c + δc + νc + γc ; bp = kp + δp + νp + γp and bf = δf + δ′f + νf + γf .
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Table 1. Description of parameters.

Parameters Description
Λi, i = 1, · · · , n Recruitment rates of persons who enter the compartment Si

θi, i = 1, · · · , n− 1 Progression rate from the group Si to the group Si+1

αi, i = 1, · · · , n, Susceptibility of persons in the groupe Si

βj , j = 1, · · · ,m Infectiousness of persons in the class Ij
kj , j = 1, · · · ,m− 1 Progression rate from the stage Ij to the stage Ij+1

γj , j = 2, · · · ,m Recovering rate at the stage Ij
µi i = 1, · · · , n Mortality rate of susceptible individuals in groupe Si

νj , j = 1, · · · ,m Mortality rate of infected individuals in class Ij .
δi+1 Amelioration rate from the stage Ij+1 to the stage Ij
k′m−2 Rate of direct progression from the stage Im−2 to the stage Im
δ′m Amelioration rate from the stage Im to the stage Im−2

π Vaccination rate of individuals in the groupe Sn

σ Rate of waning vaccine-induced immunity
µv Mortality rate of vaccinated persons
µr Mortality rate of removed

In this paper, we use the bilinear mass action incidence to model new infections.
However, The proofs of stability results we will establish are still true in both fol-
lowing cases. On the one hand, when new infections are modeled using the standard
incidence mass action and the total population size N is constant, and on the other
hand when the model deals with proportions instead of numbers of individuals.
From the point of view of the structure of models, we have the following.

Remark 2.1.

• If we consider only one class for susceptible individuals (n = 1), if we remove
the class of vaccinated persons V (π = σ = 0) and the transitions between the
compartments Im−2 et Im (k′c = δ′f = 0), and if we consider that only the infected
persons in the last stage of infection can recover (γj = 0, i = 1, · · · ,m− 1), then
from Model (1) we get the stage progression infectivity model with amelioration
in [5], therefore the one investigated in [4].

• When we remove the stage progression susceptibility (θi = 0, i = 1, · · · , n−1) and
the class of vaccinated persons V , Model (1) corresponds to the situation where
there is no flow between susceptible classes. Moreover, if we do not consider the
amelioration of the state of infected persons (δj = 0, j = 2, · · · ,m) and the
transitions between the compartments Im−2 et Im, then from Model (1) we obtain
the differential susceptibility model studied in [2], and consequently that proposed
in [6].

• When Λi = 0, i = 2 · · · , n and θi 6= 0, i = 1, · · · , n − 1, Model (1) corresponds
to the case where all the recruitment is in the first class of susceptibles S1, and
susceptible people progress successively through different stages. In addition, if
we remove the class of vaccinated persons V , then Model (1) generalizes the one
studied in [9] in the absence of vertical transmission.

From now, the following notations will be used throughout this paper. We use
the ordering in Rn generated by the cone Rn

+. We will write: x ⩽ y, if y − x ∈ Rn
+;

x < y if x ⩽ y and x 6= y; x � y if xi < yi for all index i. For any vector x in
Rn, diag(x) will denote the n × n diagonal matrix, whose diagonal elements are
the components of x. We will denote by 〈 | 〉 the usual inner product on Rn. Let
{e1, · · · , en} be the canonical basis of Rn. We will denote by 1 the vector given by
1 = (1, · · · , 1)t = e1 + · · ·+ en, where the superscript t denotes transpose. Finally,
we will use the same notations regarding Rm.

Setting S = (S1, S2, . . . , Sn) and I = (I1, I2, . . . , Im) , the model (1) can be
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written under the form

Ṡ = Λ+ σV en + ÃSS − 〈β | I〉diag(α)S,

V̇ = 〈η, S〉 − (µv + σ)V,

İ = 〈β | I〉Pdiag(α)S + ÃII,

Ṙ = 〈γ, I〉 − µrR,

(2)

with:

Λ = (Λ1,Λ2, · · · ,Λn)
t, η = (0, 0, · · · , 0, π)t, γ = (γ1, γ2, · · · , γm)t, µ = (µ1, µ2, · · · , µn)

t, ν = (ν1, ν2, · · · , νm)t,

α = (α1, α2, · · · , αn)
t, β = (β1, β2, · · · , βm)t, ÃS = −diag(µ+ η) +AS , ÃI = −diag(ν + γ) +AI .

P , AS and AI being respectively the m × n, n × n and m × m matrices defined
below

P =


1 1 · · · 1
0 0 0 0
...

...
...

...
0 0 0 0

 , AS =


−θ1 0 0 · · · 0
θ1 −θ2 0 · · · 0

0 θ2
. . . . . . 0

... 0
. . . −θn−1 0

0 · · · 0 θn−1 0

 ,

AI =



−k1 δ2 0 0 0 0 0 0

k1 −(k2 + δ2)
. . . . . .

... 0 0 0

0 k2
. . . . . . 0

...
...

...

0 0
. . . . . . δm−3 0 0 0

... 0
. . . . . . −(km−3 + δm−3) δc 0 0

0
. . . . . . 0 km−3 − (k′c + kc + δc) δp δ′f

0
. . . 0 0 0 kc −(kp + δp) δf

0 · · · 0 0 0 k′c kp −(δf + δ′f )


.

Since in System (2) the variable R only appear explicitly in its equation, we may
reduce this system to the following equivalent system.


Ṡ = Λ+ σV en + ÃSS − 〈β | I〉diag(α)S,

V̇ = 〈η, S〉 − (µv + σ)V,

İ = 〈β | I〉Pdiag(α)S + ÃII.

(3)

AS is a compartmental Metzler matrix, whose column sums are zero, i.e., the
sum of the elements of each column is zero, the same for AI . It is obvious to see
that ÃS and ÃI are also compartmental matrices. Furthermore, because µ � 0 and
ν � 0, each susceptible compartment and each infected-infectious compartment is
outflow-connected. Thus using Gershgorin theorem [16], it follows that the matrices
ÃS and ÃI are asymptotically stable. Thus, the matrices ÃS and ÃI are Metzler
and asymptotically stable. So when there is no transmission, the infected and the
infectious disappear.
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Set

S = ÃS +
σ

µv + σ
enη

t.

It is obvious to show that enη
t ⩾ 0. Hence S is also a compartmental matrix. Fur-

thermore, S is asymptotically stable. Indeed keeping in mind that q is a sthocastic
vector, for all j, j = 1, . . . , n the sum of all entries of the jth column of S is:

− (µj + ηj)+
σ

µv + σ

n∑
i=1

qiηj = − (µj + ηj)+
σ

µv + σ
ηj = −µj − ηj

(
µv

µv + σ

)
< 0.

We will use the following properties repeatedly in the sequel : a Metzler matrix
M is stable if and only if −M−1 > 0. Also if a Metzler matrix M is stable, then
−M−1x � 0 for all x � 0.

3. Basic properties of the model

3.1 Some useful lemmas

Lemma 3.1. Let a vector x ∈ Rn
+ and the matrix

M(x) :=S −diag(x).

For any i, j ∈ N, i 6= j, any k ∈ N, k ⩾ 2, if
〈
Ap

Sej | ei
〉
= 0 for all p ∈ N,

1 ⩽ p ⩽ k − 1, then 〈
M(x)kej | ei

〉
=
〈
Ak

Sej | ei
〉
.

Proof The proof is made by induction on k. Firstly, notice that for all vector a
one has:

diag(a)ei = aiei (4)

〈diag(a)ASej | ei〉 =
n∑

l=1

al 〈el | ASej〉 〈el | ei〉 = ai 〈ASej | ei〉 (5)

Besides, using the expression of S , then the one of ÃS , we can rewrite the matrix
M(x) as

M(x) = AS − diag(µ+ η + x) +B,

where, keeping the definition of the vector η in mind,

B :=
σ

µv + σ
enη

t = diag

(
0, 0, . . . ,

σπ

µv + σ

)
=

σπ

µv + σ
diag(en).

Denote (en)j = the jth component of the vector en. We easily get

〈Bej | ei〉 =
σπ(en)j
µv + σ

〈ej | ei〉 . (6)
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Let us prove the claim for k = 2. Assume that

〈ASej | ei〉 = 0.

We can easily show the following

diag(en)diag(en) = diag(en), (7)

diag(µ+ η + x)diag(en) = diag(en)diag(µ+ η + x) = (µn + ηn + xn)diag(en).
(8)

Keeping relations (4), (5), (7), (8) and the last expression of B in mind, we have〈
M(x)2ej | ei

〉
=

〈(
AS − diag(µ+ η + x) +

σπ

µv + σ
diag(en)

)

×
(
AS − diag(µ+ η + x) +

σπ

µv + σ
diag(en)

)
ej | ei

〉

=

〈
A2

Sej − (µj + ηj + xj)ASej +
σπ

µv + σ
ASdiag(en)ej

− (µi + ηi + xi)ASej(µj + ηj + xj)
2ej | ei

〉

+

〈
− 2(µn + ηn + xn)

σπ

µv + σ
diag(en)ej +

σπ

µv + σ
diag(en)ASej

+

(
σπ

µv + σ

)2

diag(en)ej | ei

〉
.

Since i 6= j and by hypothesis we respectively have

〈ej | ei〉 = 0 and 〈ASej | ei〉 = 0. (9)

Moreover, we have

〈ASdiag(en)ej | ei〉 = 0. (10)

Because ASdiag(en) is a matrix whose columns are zero, except its nth column
which is the nth column of the matrix As. And this column is zero by the definition
of As.

Also, denoting (As)n,j the coefficient of the nth line and the jth column of the
matrix (As), we have

〈diag(en)ASej | ei〉 = 〈(AS)n,j ej | ei〉 = (AS)n,j 〈ej | ei〉 = 0. (11)

Since diag(en)AS is a matrix whose lines are zero, except its nth line which is the
nth line of the matrix As.
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Likewise, (en)j being the jth component of the vector en, we have

〈diag(en)ej | ei〉 = 〈(en)jej | ei〉 = (en)j 〈ej | ei〉 = 0. (12)

Therefore, plugging (9), (10), (11) and (12) in the expanding expression of〈
M(x)2ej | ei

〉
, we get

〈
M(x)2ej | ei

〉
=
〈
A2

Sej | ei
〉
.

Now, assume the truth of the statement for some k ∈ N, k ⩾ 2. Suppose,

〈
Ap

Sej , ei
〉
= 0, for all p, 0 ⩽ p ⩽ k. (13)

Since M(x)tei =

n∑
l=1

〈M(x)el, ei〉 el, we have

〈
M(x)k+1ej | ei

〉
=
〈
M(x)kej | M(x)tei

〉
=

〈
M(x)kej |

n∑
l=1

〈M(x)el, ei〉 el

〉

=
n∑

l=1

〈M(x)el | ei〉
〈
M(x)kej | el

〉
.

By (13) we have

〈
Ap

Sej , ei
〉
= 0, for all p, 0 ⩽ p ⩽ k − 1.

Then by induction assumption, we get
〈
M(x)kej | el

〉
=
〈
Ak

Sej | el
〉
. Hence,

〈
M(x)k+1ej | ei

〉
=

n∑
l=1

〈M(x)el | ei〉
〈
Ak

Sej | el
〉
.

Substituting M(x) = AS − diag(µ + η + x) + B into the right hand side of above
relation and using relations (4) and (6), we obtain

〈
M(x)k+1ej | ei

〉
=

n∑
l=1

(
〈ASel | ei〉 − (µl + ηl + xl) 〈el | ei〉+

σπ

µv + σ
(en)l 〈el | ei〉

)〈
Ak

Sej | el
〉

=

n∑
l=1

〈ASel | ei〉
〈
Ak

Sej | el
〉

+
n∑

l=1

(
−(µl + ηl + xl) +

σπ

µv + σ
(en)l

)
〈el | ei〉

〈
Ak

Sej | el
〉
.
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Since 〈ei | el〉 6= 0 only if i = l, reducing the second sum on the right, we obtain〈
M(x)k+1ej | ei

〉
=

n∑
l=1

〈ASel | ei〉
〈
Ak

Sej | el
〉
+

(
σπ

µv + σ
(en)i − (µi + ηi + xi)

)〈
Ak

Sej | ei
〉
.

By (13), we have
〈
Ak

Sej | ei
〉
= 0. It follows that

〈
M(x)k+1ej | ei

〉
=

n∑
l=1

〈ASel | ei〉
〈
Ak

Sej | el
〉
.

On the other hand, by some properties of the inner product, we have〈
Ak+1

S ej | ei
〉
=
〈
Ak

Sej | At
Sei

〉
=

〈
Ak

Sej |
n∑

l=1

〈ASel | ei〉 el

〉

=

n∑
l=1

〈ASel | ei〉
〈
Ak

Sej | el
〉
.

Hence 〈
M(x)k+1ej | ei

〉
=
〈
Ak+1

S ej | ei
〉
.

Therefore by induction the claim is true for all k ∈ N, k ⩾ 2. ■
Lemma 3.2. For any vector x ∈ Rn

+, we have

− [S − diag(x)]−1 Λ � 0.

Lemma 3.3. For any vector c ⩾ 0, we have

−
(
ÃI

)−1
Pc � 0.

Using Lemma 3.1, the proof of Lemmas 3.2 and 3.3 are easy adaptations of the
analogous ones in [2].

3.2 A compact positively invariant absorbing set

Proposition 3.1. (Positive invariance of the nonnegative orthant) The
nonnegative orthant Rm+n+2

+ is positively invariant for the System (3).

Proof System (3) can be rewritten in the following form:
Ṡ = Λ+ σV en + ÃSS − 〈β | I〉diag(α)S,

V̇ = 〈η, S〉 − (µv + σ)V,

İ = AI,

(14)
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where: A = Pdiag(α)Sβt + ÃI .
On the boundary S = 0 the first equation of System (14) becomes Ṡ = Λ +

σV en ⩾ 0 and on the boundary V = 0 the second equation of System (14) becomes
V̇ = 〈η, S〉 ⩾ 0. Therefore, for all t > 0 and initial data S(0) ⩾ 0 and V (0) ⩾ 0, the
components S and V of the solutions of System (14) are positive, whenever they
exist.

In addition, ÃI is a Metzler matrix, furthermore Pdiag(α)Sβt + ÃI > 0. Ac-
cordingly A is a Metzler matrix. It is well known that a linear Metzler matrix let
invariant the nonnegative orthant. Thus the nonnegative orthant Rm

+ is positively
invariant for the system İ = AI. ■

Let P (t) = 〈S | 1〉+ V + 〈I | 1〉. After replacing ÃS and ÃI by their respective
expressions, and adding all equations in System (3), we find that

Ṗ = 〈Λ | 1〉 − 〈µ | S〉 − µvV − 〈ν | I〉. (15)

Set: µ0 = min {µ1, · · · , µn} and ν0 = min {ν1, · · · , νm} and let φ0 be defined as

φ0 = min {µ0, µv, ν0} .

It follows from (15) that

Ṗ ⩽ 〈Λ | 1〉 − φ0P. (16)

Lemma 3.4. (Boundedness and dissipativity of the trajectories) For any
small ε > 0, let

Ωε =

{
(S, V, I) ∈ Rn+m+1, 0 ⩽ P ⩽ 〈Λ | 1〉

φ0
+ ε

}
.

The trajectories of the System (3) are bounded and the compact set Ωε is a positively
invariant compact absorbing set for (3).

Proof Relation (16) implies that:

lim sup
t→+∞

P (t) ⩽ 〈Λ | 1〉
φ0

.

Hence, the trajectories of the System (3) are bounded and Ωε is an absorbing set.
Let H be the function defined as follows:

H : Rn+m+1
+ −→ R

x = (S, V, I) 7−→ 〈S | 1〉+ V + 〈I | 1〉.

H is a differentiable application and its gradient is given by:

∇H(x) = 1, ∀x ∈ Rn+m+1
+ .

Let X be the field defined in the following manner:

X : Rn+m+1
+ −→ Rn+m+1

+

x = (S, V, I) 7−→ (X1, X2, X3)



12 Kouenkam et al./ IJM2C, 11 - 04 (2021) 1-37.

with: 
X1 = Λ+ σV en + ÃSS − 〈β | I〉diag(α)S, ,

X2 = 〈η, S〉 − (µv + σ)V,

X3 = 〈β | I〉Pdiag(α)S + ÃII.

For all x ∈ H−1

(
〈Λ | 1〉
φ0

+ ε

)
, we have

〈X(x) | ∇H(x)〉 = Ṡ + V̇ + İ and P =
〈Λ | 1〉
φ0

+ ε.

Thus,

〈X(x) | ∇H(x)〉 = Ṗ ⩽ 〈Λ | 1〉 − φ0P ⩽ −ε ⩽ 0.

By using the theorem of the barrier (which derives from lemma on page 324 in [17]),
we conclude that Ωε is a positively invariant set. ■

Moreover, without infection the dynamic of System (3) comes down to the fol-
lowing differential equation

ẋ = A0x+B0. (17)

where

x =

(
S
V

)
, A0 =

(
ÃS σen
ηt −(µv + σ)

)
, B0 =

(
Λ
0

)
Any equilibrium of (17) satisfies the following equations:{

Λ + σV ∗
0 q + ÃSS

∗
0 = 0,

〈η | S∗
0〉 − (µv + σ)V ∗

0 = 0.
(18)

The second equation of (18) yields

V ∗
0 =

〈η, S∗
0〉

µv + σ
. (19)

Plugging this in the first equation of (18) and using the relation 〈η, S∗
0〉 = ηtS∗

0 ,
we obtain

−
[
ÃS +

σ

µv + σ
enη

t

]
S∗
0 = Λ

i.e.,

−SS
∗
0 = Λ

Since S is a stable Metzler matrix we have −−1
S > 0. Therefore

S∗
0 = −−1

S Λ = −
[
ÃS +

σ

µv + σ
enη

t

]−1

Λ.
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It follows from Lemma 3.2 that S∗
0 � 0. Which in turn implies that V ∗

0 > 0, since
η > 0.

Proposition 3.2. The set Ω such as

Ω = {(S, V, I) ∈ Ωε, S(t) ⩽ S∗
0 , V (t) ⩽ V ∗

0 }

is a positively invariant compact set for System (3).

Proof From System (3) and System (18), we deduce that on the boundary S = S∗
0 ,

we have

Ṡ = −σV ∗
0 q + σV en − 〈β | I〉diag(α)S∗

0 = −σ (V ∗
0 − V ) q − 〈β | I〉diag(α)S∗

0 ⩽ 0.

Also, keeping Equation (19) in mind, on the boundary V = V ∗
0 , we have

V̇ = 〈η, S〉 − (µv + σ)V ∗
0 = 〈η, S〉 − 〈η, S∗

0〉 = −〈η, S∗
0 − S〉 ⩽ 0.

Therefore, Ω is a positively invariant set for System 3. ■

4. Basic reproduction number and equilibria

4.1 Basic reproductive number, local stability of the disease free equilibrium

A key concept in epidemiology is the basic reproduction number, commonly denoted
by R0. Usually, R0 is defined as the expected number of secondary individuals
produced, in a completely susceptible population, by a typical infected individual
during its entire period of infectiousness [3].

The disease free equilibrium of System (3) is X∗
0 = (S∗

0 , V
∗
0 , 0, 0) , where

S∗
0 = −−1

S Λ = −
[
AS − diag(µ+ η) +

σ

µv + σ
enη

t

]−1

Λ and V ∗
0 =

〈η, S∗
0〉

µv + σ
.

To derive the basic reproductive number of our model, we use the next generation
approach. It is defined by Van den Driessche and Watmough as the spectral radius
of the next generation matrix [15]. Using the notation in [15] on the System (3) the
derivatives DF and DV are given by:

DF =


0 0 0 0
0 0 0 0

〈β | I〉Pdiag(α) 0 Pdiag(α)Sβt 0
0 0 0 0

 , DV =


−ÃS + 〈β | I〉diag(α) −σen βtdiag(α)S 0

−ηt (µv + σ) 0 0

0 0 −ÃI 0
0 0 −1tdiag(γ) µr

 .

Denote F̃ the matrix for the new infection terms and Ṽ the matrix for the remaining
transfer terms. We have F̃ = Pdiag(α)S∗

0β
t and Ṽ = −ÃI . So the basic reproduc-

tion number R0 which is the spectral radius of the matrix F̃ Ṽ −1 is given by

R0 = ρ
(
Pdiag(α)S∗

0β
t(−ÃI)

−1
)
.

By writing

Pdiag(α)S∗
0β

t(−ÃI)
−1 = [Pdiag(α)S∗

0 ]
[
βt(−ÃI)

−1
]
,
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it is obvious to see that Pdiag(α)S∗
0β

t(−ÃI)
−1 is a rank one matrix. Therefore,

ρ
(
Pdiag(α)S∗

0β
t(−ÃI)

−1
)
= βt(−ÃI)

−1Pdiag(α)S∗
0 .

Hence the basic reproduction number of the System (3) is defined by:

R0 =
〈
β | (−ÃI)

−1Pdiag(α)S∗
0

〉
By the Theorem 2 in [15], we claim the following.

Proposition 4.1. The disease free equilibrium X∗
0 is asymptotically stable if R0 < 1

and unstable if R0 > 1.

4.2 Global stability of the disease free equilibrium

Theorem 4.1. If R0 ⩽ 1, then the disease free equilibrium X∗
0 is globally asymp-

totically stable on the nonnegative orthant Rn+m+1
+ .

Proof Let consider the following Lyapunov function: U =
〈
β | −A−1

I I
〉
. We have

U̇ =
〈
β | − Ã−1

I İ
〉

=
〈
β | − Ã−1

I

(
〈β | I〉Pdiag(α)S + ÃII

)〉
=
〈
β | 〈β | I〉

(
−Ã−1

I

)
Pdiag(α)S

〉
− 〈β | I〉 ,

i.e.,

U̇ = 〈β | I〉
(〈

β |
(
−Ã−1

I

)
Pdiag(α)S

〉
− 1
)
. (20)

Firstly, suppose R0 < 1. On the set Ω, we have S ⩽ S∗
0 . It follows from (20) that

in this case

U̇ ⩽ 〈β | I〉
(〈
β |

(
−A−1

I

)
Pdiag(α)S∗

0

〉
− 1
)
,

i.e.,

U̇ ⩽ 〈β | I〉 (R0 − 1) .

Hence, U̇ ⩽ 0 and U̇ = 0 if and only if 〈β | I〉 = 0. The dynamics of I then
obeys İ = ÃII. Since ÃI is a stable Metzler matrix, İ = 0 only if I = 0, which in
turn implies R = 0, S = S∗

0 and V = V ∗
0 . Therefore the largest invariant set in Ω

contained in {(S, V, I, R) ∈ Ω, U̇ = 0} is reduced to the disease free equilibrium
X∗

0 . Given that Ω is an invariant compact set. By LaSalle invariance’s principle
[1, 11], the disease free equilibrium is globally asymptotically stable in Ω.

Now, suppose R0 = 1. Substituting 1 by the expression of R0 in the right hand
side of (20), we get

U̇ =〈β | I〉
(〈

β |
(
−Ã−1

I

)
Pdiag(α)S

〉
−
〈
β | (−ÃI)

−1Pdiag(α)S∗
0

〉)
=− 〈β | I〉

〈
β |

(
−Ã−1

I

)
Pdiag(α) (S∗

0 − S)
〉
.
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We have S ⩽ S∗
0 and α ⩾ 0, then diag(α) (S∗

0 − S) ⩾ 0. It follows from Lemma
3.3 that the vector

(
−Ã−1

I

)
Pdiag(α) (S∗

0 − S) � 0. Given that β > 0, it follows

that
〈
β |

(
−Ã−1

I

)
Pdiag(α) (S∗

0 − S)
〉
> 0.

Thus U̇ ⩽ 0 and U̇ = 0 if and only if 〈β | I〉 = 0. We can conclude as previously,
that the disease free equilibrium is globally asymptotically stable on the nonnegative
orthant Rn+m+1

+ when R0 = 1. ■

4.3 Existence and uniqueness of an endemic equilibrium

Proposition 4.2. Model (3) has a unique endemic equilibrium X∗ in the nonneg-
ative orthant if and only if R0 > 1. Furthermore X∗ is in the positive invariant
compact Ω.

Proof The endemic equilibrium X∗ of System (3) can be deduced by the system

Λ + σV ∗q + ÃSS
∗ − 〈β | I∗〉diag(α)S∗ = 0,

〈η, S∗〉 − (µv + σ)V ∗ = 0,

〈β | I∗〉Pdiag(α)S∗ + ÃII
∗ = 0,

1tdiag(γ)I∗ − µrR
∗ = 0.

(21)

From the second and the last equations of (21), we respectively have:

V ∗ =
〈η, S∗〉
µv + σ

=
ηtS∗

µv + σ
. (22)

and

R∗ =
1tdiag(γ)I∗

µr
.

Plugging (22) in the first equation of (21) yields

−
[
σenη

t

µv + σ
+ ÃS − 〈β | I∗〉diag(α)

]
S∗ = Λ

i.e.,

− [S − 〈β | I∗〉diag(α)]S∗ = Λ (23)

S is a stable compartmental matrix. Hence, for any I ⩾ 0, the matrix S −
〈β | I〉diag(α) is also a stable compartmental matrix. From Equation (23), it then
follows that

S∗ = − [S − 〈β | I∗〉diag(α)]−1 Λ = −M(〈β | I∗〉)−1Λ, (24)

where M is the stable Metzler matrix, depending linearly on the real variable x ⩾ 0,
defined as

M(x) =S −xdiag(α) =S −diag(xα).
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Furthermore, AI is a Metzler matrix. The third equation of (21) then involves

I∗ = 〈β | I∗〉
(
−Ã−1

I

)
Pdiag(α)S∗. (25)

From (24) and (25), we deduce that finding 〈β | I∗〉 is sufficient to determine S∗

and I∗.
Substituting (25) into 〈β | I∗〉, we obtain

〈β | I∗〉 = 〈β | I∗〉
〈
β |

(
−Ã−1

I

)
Pdiag(α)S∗

〉
.

As a result, we find

〈β | I∗〉 = 0 or
〈
β |

(
−Ã−1

I

)
Pdiag(α)S∗

〉
= 1.

If 〈β | I∗〉 = 0, then I∗ = 0. From which it follows that R∗ = 0, S∗ = S∗
0 and

V = V ∗
0 . In this case, we obtain the disease free equilibrium.

Suppose
〈
β |

(
−Ã−1

I

)
Pdiag(α)S∗

〉
= 1. Substituting (24) into this relation

yields 〈
β |

(
−Ã−1

I

)
Pdiag(α)

(
−M(〈β | I∗〉)−1

)
Λ
〉
= 1.

Which means that 〈β | I∗〉 is solution of the equation H(x) = 1, where H is the
function of the real variable x ⩾ 0 defined by

H(x) =
〈
β |

(
−Ã−1

I

)
Pdiag(α)

(
−M(x)−1

)
Λ
〉
.

H(x) is a strictly decreasing function. Indeed, M(x)′ = −diag(α). Thus, the
derivative of H is defined by

H(x)′ =
〈
β |

(
−Ã−1

I

)
Pdiag(α)M(x)−1 (−diag(α))M(x)−1Λ

〉
.

By Lemma 3.2, we have −M(x)−1Λ � 0. In addition, α � 0, therefore

diag(α)
(
−M(x)−1

)
Λ � 0

which in turn, by the fact that M(x) is a stable Metzler matrix, involves

−M(x)−1diag(α)
(
−M(x)−1

)
Λ � 0.

Accordingly,

diag(α)
[
−M(x)−1diag(α)

(
−M(x)−1

)
Λ
]
� 0,

i.e.,

−diag(α)M(x)−1 (−diag(α))M(x)−1Λ � 0.
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By Lemma 3.3, we have

−
(
−Ã−1

I

)
Pdiag(α)M(x)−1 (−diag(α))M(x)−1Λ � 0.

Since β ⩾ 0, it follows that

H(x)′ < 0.

The function H(x) satisfies lim
x→+∞

H(x) = 0. In fact it is easy to see that the

determinant |M(x)| is a n degree polynomial in x, and that any cofactor of M(x)
is a polynomial of which the degree is strictly less than n. In addition, we have
H(0) = R0. Consequently, the equation H(x) = 1 has a unique positive solution if
and only if R0 > 1.

Furthermore, from Equation (24) we have by Lemma 3.2 that S∗ � 0. Also,
since α � 0 we have by Lemma 3.3 that

(
−Ã−1

I

)
Pdiag(α)S � 0. Hence, it

follows from Equation (25) that I∗ � 0. Therefore, the equilibrium found is an
endemic equilibrium.

On the other side, we have S∗ = −M(〈β | I∗〉)−1Λ and S∗
0 = −M(0)−1Λ. But

d(−M(x)−1)

dx
= M(x)−1(−diag(α))M(x)−1

= −
(
−M(x)−1

)
(diag(α))

(
−M(x)−1

)
.

Since −M(x)−1 ⩾ 0 and diag(α) ⩾ 0, it follows that

d(−M(x)−1)

dx
⩽ 0,

Thus S∗ ⩽ S∗
0 .

Besides, it follows from Equation (22) that

V ∗ ⩽ ηtS∗
0

µv + σ
= V ∗

0 .

Therefore, the Endemic equilibrium found is in Ω.
In sight of achieving the proof, we see from the preceding analysis that if R0 = 1,

then the equation H(x) = 1 has a unique solution which is obtained for x = 0, i.e.,
〈β | I∗〉 = 0. In this case, we find again the disease free equilibrium. ■

5. Global dynamics of Model (1)

5.1 Disease free equilibrium

By a straightforward computation, we find that the disease free equilibrium of
Model (1) is X∗

0 such as X∗
0 = (S∗

0 , V
∗
0 , I

∗
0 , 0), with S∗

0 = (S∗
01, S

∗
02, · · · , S∗

0n), I∗0 =
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(0, 0, · · · , 0),

S∗
01 =

Λ1

a1
,

S∗
0i =

Λ1
∏i−1

l=1 θl +
∑i−1

k=2 Λk
∏k−1

l=1 al
∏i−1

l=k θl + Λi
∏i−1

l=1 al∏i
l=1 al

, i = 2, · · · , n− 1,

S∗
0n =

an (µv + σ)

µvπ + µvµn + σµn

(
Λ1
∏n−1

l=1 θl +
∑n−1

k=2 Λk
∏k−1

l=1 al
∏n−1

l=k θl + Λi
∏n−1

l=1 al∏n
l=1 al

)
.

and

V ∗
0 =

πan
µvπ + µvµn + σµn

(
Λ1
∏n−1

l=1 θl +
∑n−1

k=2 Λk
∏k−1

l=1 al
∏n−1

l=k θl + Λi
∏n−1

l=1 al∏n
l=1 al

)
.

Moreover, it follows from Theorem 4.1 that the disease free equilibrium X∗
0 of

Model (1) is globally asymptotically stable on the nonnegative orthant Rn+m+1
+

when R0 ⩾ 1.

5.2 Endemic equilibrium

Suppose R0 > 1, then by Proposition 4.2, there exist a unique endemic equilibrium
X∗ for Model (1).

Theorem 5.1. Assume R0 > 1.

* In the case where θi = 0, i = 1, · · · , n − 1, the endemic equilibrium X∗ is
globally asymptotically stable on the nonnegative orthant Rn+m+1

+ .
* In the opposite cases, if µiS

∗
i + βi1S

∗
i I

∗
1 ⩾ Λi, for all i, i = 2, · · · , n, then the

endemic equilibrium X∗ is globally asymptotically stable on the nonnegative
orthant Rn+m+1

+ .

Proof For the proof of Theorem 5.1, see 6. ■
Remark 5.1.

• The stability condition of the endemic equilibrium is fulfilled when Λi = 0 for
all i, i = 2, · · · , n. That is to say Model (1) is a stage progression susceptibility
model and all the recruitment is in the first stage. Therefore, when in addition
π = σ = 0, Theorem 5.1 generalizes analogous theorem in [9] in the absence of
vertical transmission; also the one in [13].

• In [5], the incidence of the disease is modeled by a general function. For the
special case of the mass-action law, Theorem 5.1 extends its analogous one. Just
consider that n = 1 and remove the class V .

• When we remove the stage progression susceptibility (θi = 0, i = 1, · · · , n − 1)
and the class of vaccinated persons V , Theorem 3.1 in [2] becomes a special case
of Theorem 5.1, the corresponding theorems in [4, 6, 7] too.

6. Summary

For many diseases, infectivity or susceptibility can evolve. Cases of HIV infection
and HBV infection are illuminating examples. In this paper, we have addressed
this issue by proposing a general model encompassing those of [2, 6, 9, 18]. The
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model includes the difference in susceptibility, the difference in infectivity and the
loss of vaccine-induced immunity. We have used mass action incidence to model the
transmission. Furthermore, we have consider different death rates and a constant
influx distributed into the susceptible classes. From a biological point of view, we
have considered two relevant hypothesis.

We have derived an explicit formula of the basic reproduction ratio R0. Further-
more, we have proven the global stability of the disease free equilibrium when the
basic reproduction ratio R0 ⩽ 1 and the existence of a unique endemic equilibrium
when R0 > 1. As regards to the stability of the endemic equilibrium when it exists,
we have established that it is globally asymptotically stable in the case of a stage
progression susceptibility model with recruitment only in the first stage, generalis-
ing by the way the analogous results in [9] in the absence of vertical transmission.
Also in the case where there is no flow between susceptible individuals with no
constraint on recruitment, extending by the way analogous results in [2, 5] and
therefore in [4, 6, 7]. In the general case of a differential stage progression suscepti-
bility class of models, we have provided some conditions under which it is globally
asymptotically stable.
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Appendix A. Some useful results

The first lemma is obvious to establish, that is why we have omitted their proofs.

Lemma 6.1. Let (un) and (vn) be two sequences of real numbers.
For all n ⩾ 2, we have

n∑
j=2

n∑
l=j

ul(1− vj) =
n∑

j=2

uj

(
j − 1−

j∑
l=2

vl

)
. (26)

For all n ⩾ 5, we have

n−3∑
j=2

n∑
l=n−2

ul(1− vj) =
n∑

j=n−2

uj

(
n− 4−

n−3∑
l=2

vl

)
. (27)

For all n ⩾ 2, we have

n−1∑
i=1

n∑
k=i+1

ukvi =

n∑
i=2

ui

i−1∑
k=1

vk. (28)

Lemma 6.2. Let be the following positive constants:



A1 = 1;

A2 =
b1 −

∑n
i=1 βi1S

∗
i

k1
;

Aj =

∑n
i=1

∑m
l=j βilS

∗
i I

∗
l + δjI

∗
jAj−1

kj−1I∗j−1

, j = 3, · · · ,m− 2;

Ap =
(δpbf + kpδ

′
f )Ac + bf

∑n
i=1 βipS

∗
i + kp

∑n
i=1 βifS

∗
i

bpbf − kpδf
;

Af =
(δ′fbp + δpδf )Ac + δf

∑n
i=1 βipS

∗
i + bp

∑n
i=1 βifS

∗
i

bpbf − kpδf
.

(29)
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The constants Aj , j = 1, · · · ,m, satisfy the following relations

A1 − 1 = 0,

k1A2 − b1A1 +
n∑

i=1

βi1S
∗
i = 0,

kjAj+1 + δjAj−1 − bjAj +
n∑

i=1

βijS
∗
i = 0, j = 2, · · · ,m− 3,

kcAp + k′cAf + δcAm−3 − bcAc +
n∑

i=1

βicS
∗
i = 0,

kpAf + δpAc − bpAp +

n∑
i=1

βipS
∗
i = 0,

δfAp + δ′fAc − bfAf +

n∑
i=1

βifS
∗
i = 0.

(30)

Proof The following equilibrium equations, where λ∗
i =

∑m
j=1 βijI

∗
j , holds :

Λ1 − (µ1 + θ1)S
∗
1 − λ∗

1S
∗
1 = 0,

Λi − (µi + θi)S
∗
i − λ∗

iS
∗
i + θi−1S

∗
i−1 = 0, i = 2, · · · , n− 1

Λn + σV ∗ − (µn + π)S∗
n − λ∗

nS
∗
n + θn−1S

∗
n−1 = 0,

πS∗
n − (µv + σ)V ∗ = 0,

n∑
i=1

λ∗
iS

∗
i + δ2I

∗
2 − b1I

∗
1 = 0,

kj−1I
∗
j−1 + δj+1I

∗
j+1 − bjI

∗
j = 0, j = 2, · · · ,m− 3

km−3I
∗
m−3 + δpI

∗
p + δ′fI

∗
f − bcI

∗
c = 0,

kcI
∗
c + δfI

∗
f − bpI

∗
p = 0,

k′cI
∗
c + kpI

∗
p − bfI

∗
f = 0.

(31)

Let us first show that the constant A2 is positive. Indeed, it follows from the
expression of A2 that

k1A2I
∗
1 = b1I

∗
1 −

n∑
i=1

βi1S
∗
i I

∗
1 .

Keeping in mind the expression of λ∗
i , one deduces from the fifth equation in

System (31) that

b1I
∗
1 −

n∑
i=1

βi1S
∗
i I

∗
1 =

n∑
i=1

m∑
j=2

βijS
∗
i I

∗
j + δ2I

∗
2 > 0.

Hence, k1A2I
∗
1 > 0, which in turn implies that A2 > 0.

Now, the first, the second, the fifth and the sixth relations in (30) are easy to
establish. Hence, we will show only the third and the fourth relations in (30).
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In order to prove the third relation in (30), we first consider the case j = 2. Using
the expression of A3 and A1 as given in (29), we have

k2A3 + δ2A1 − b2A2 +

n∑
i=1

βi2S
∗
i

=
1

I∗2

(
n∑

i=1

m∑
l=3

βilS
∗
i I

∗
l +A2 (δ3I

∗
3 − b2I

∗
2 ) + δ2I

∗
2 +

n∑
i=1

βi2S
∗
i I

∗
2

)
.

It follows from the sixth equation in System (31) that

δ3I
∗
3 − b2I

∗
2 = −k1I

∗
1 .

Then,

n∑
i=1

m∑
l=3

βilS
∗
i I

∗
l +A2 (δ3I

∗
3 − b2I

∗
2 ) + δ2I

∗
2 +

n∑
i=1

βi2S
∗
i I

∗
2

=

n∑
i=1

m∑
l=2

βilS
∗
i I

∗
l − k1A2I

∗
1 + δ2I

∗
2 .

Keeping the fifth equation in System (31) in mind, plugging A2 into the right hand
side of this relation yields

n∑
i=1

m∑
l=3

βilS
∗
i I

∗
l +A2 (δ3I

∗
3 − b2I

∗
2 ) + δ2I

∗
2 +

n∑
i=1

βi2S
∗
i I

∗
2

=
n∑

i=1

m∑
l=2

βilS
∗
i I

∗
l − b1I

∗
1 +

n∑
i=1

βi1S
∗
i I

∗
1 + δ2I

∗
2

=

n∑
i=1

m∑
l=1

βilS
∗
i I

∗
l − b1I

∗
1 + δ2I

∗
2

= 0.

Therefore,

k2A3 + δ2A1 − b2A2 +
n∑

i=1

βi2S
∗
i = 0.

Hence, the third relation in (30) holds for j = 2.
Now, we have to establish the third relation in (30) for j, 3 ⩽ j ⩽ m − 3.

Substituting Aj+1 by its expression as given in (29) into the left hand side of the
third relation in (30), we have

kjAj+1 + δjAj−1 − bjAj +
n∑

i=1

βijS
∗
i

=
1

I∗j

 n∑
i=1

m∑
l=j+1

βilS
∗
i I

∗
l + δjI

∗
jAj−1 +Aj

(
δj+1I

∗
j+1 − bjI

∗
j

)
+

n∑
i=1

βijS
∗
i I

∗
j

 .
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From the sixth equation in System (31), we deduce that

δj+1I
∗
j+1 − bjI

∗
j = −kj−1I

∗
j−1.

Then,

n∑
i=1

m∑
l=j+1

βilS
∗
i I

∗
l + δjI

∗
jAj−1 +Aj

(
δj+1I

∗
j+1 − bjI

∗
j

)
+

n∑
i=1

βijS
∗
i I

∗
j

=
n∑

i=1

m∑
l=j

βilS
∗
i I

∗
l + δjI

∗
jAj−1 − kj−1I

∗
j−1Aj .

Taking into account the fifth equation in System (31), substituting the expression
of Aj into the right hand side of the above relation, we easily obtain

n∑
i=1

m∑
l=j+1

βilS
∗
i I

∗
l + δjI

∗
jAj−1 +Aj

(
δj+1I

∗
j+1 − bjI

∗
j

)
+

n∑
i=1

βijS
∗
i I

∗
j = 0.

Therefore,

kjAj+1 + δjAj−1 − bjAj +

n∑
i=1

βijS
∗
i = 0.

Hence, we have established the third relation in (30) for j = 2, . . . ,m− 3.
We next show that the fourth relation in (30) holds true. Combining the height

with the ninth equations in System (31), we obviously get:
I∗p =

I∗c (kcbf + k′cδf )

bpbf − kpδf

I∗f =
I∗c (kckp + k′cbp)

bpbf − kpδf

(32)

Recall m− 2 = c, thus by the third relation in (30), we have

Ac =

∑n
i=1 βicS

∗
i I

∗
c +

∑n
i=1 βipS

∗
i I

∗
p +

∑n
i=1 βifS

∗
i I

∗
f + δcI

∗
cAm−3

km−3I∗m−3

. (33)

From the seventh equation in System (31), we obtain

km−3I
∗
m−3 = −δpI

∗
p − δ′fI

∗
f + bcI

∗
c . (34)

On the one hand, substituting the expressions of I∗p and I∗f as given in (32) into
(34), we get

km−3I
∗
m−3 =

A1I
∗
c

bpbf − kpδf
, (35)

where

A1 = bc (bpbf − kpδf )− δp
(
kcbf + k′cδf

)
− δ′f

(
kckp + k′cbp

)
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On the other hand, using the same expressions of I∗p and I∗f , we have

n∑
i=1

βicS
∗
i I

∗
c +

n∑
i=1

βipS
∗
i I

∗
p +

n∑
i=1

βifS
∗
i I

∗
f =

A2I
∗
c

bpbf − kpδf
(36)

where

A2 = (bpbf − kpδf )
n∑

i=1

βicS
∗
i +

(
kcbf + k′cδf

) n∑
i=1

βipS
∗
i +

(
kckp + k′cbp

) n∑
i=1

βifS
∗
i .

Substituting (35) and (36) into (33), we get by an easy computation

Ac =
A2 + δcAm−3 (bpbf − kpδf )

A1
. (37)

Plugging Ap and Af as defined in the System (29) into the fourth equation in (30),
we easily have

kcAp + k′cAf + δcAm−3 − bcAc +
n∑

i=1

βicS
∗
i =

A2 + δcAm−3 (bpbf − kpδf )−A1Ac

bpbf − kpδf
.

(38)

Substituting (37) into relation (38), we obtain

kcAp + k′cAf + δcAm−3 − bcAc +
n∑

i=1

βicS
∗
i = 0.

This achieves the proof. ■

Appendix B. Proof of Theorem 5.1

To prove the global stability of the endemic equilibrium, we make use of a Lyapunov
function V such as

V (t) =
n∑

i=1

(Si − S∗
i ln(Si)) +B (V − V ∗ ln(V )) +

m∑
j=1

Aj

(
Ij − I∗j ln(Ij)

)

where B =
σ

µv + σ
and Aj , j = 1, · · · ,m are positive constants defined in (29).

The derivative of V (t) along the trajectories of System (1) is given by

V̇ (t) =
n∑

i=1

(
1− S∗

i

Si

)
Ṡi +B

(
1− V ∗

V

)
V̇ +

m∑
j=1

Aj

(
1−

I∗j
Ij

)
İj .

Using the first, the second and the third equations of System (31), we can rewrite
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V̇ (t) as

V̇ (t)

=

n∑
i=1

[
aiS

∗
i

(
1− Si

S∗
i

)
+ λ∗

iS
∗
i − λiSi

](
1− S∗

i

Si

)

+
n∑

i=2

θi−1

(
Si−1 − S∗

i−1

)(
1− S∗

i

Si

)
+ σ (V − V ∗)

(
1− S∗

n

Sn

)

+BπSn

(
1− V ∗

V

)
+B(µv + σ)(V ∗ − V ) +A1

n∑
i=1

λiSi

(
1− I∗1

I1

)

+
m−3∑
j=1

δj+1AjIj+1

(
1−

I∗j
Ij

)
+

m−3∑
j=2

kj−1AjIj−1

(
1−

I∗j
Ij

)

−
m−3∑
j=1

bjAjIj

(
1−

I∗j
Ij

)
+Ac

(
km−3Im−3 + δ′fIf + δpIp − bcIc

)(
1− I∗c

Ic

)

+Ap (kcIc + δfIf − bpIp)

(
1−

I∗p
Ip

)
+Af

(
k′cIc + kpIp − bfIf

)(
1−

I∗f
If

)
.

To simplify the notation in what follows, we will denote by:

v = V
V ∗ ; yc =

Ic
I∗
c
; yp =

Ip
I∗
p
; yf = If

I∗
f
; yj =

Ij
I∗
j
, 1 ⩽ j ⩽ m− 3; xi =

Si

S∗
i
, 1 ⩽ i ⩽ n.

For convenience, define Uk, 1 ⩽ k ⩽ n and Wk, 1 ⩽ k ⩽ n− 1 respectively by

Uk =

(
1− Sk

S∗
k

)(
1−

S∗
k

Sk

)
= 2− xk −

1

xk
(39)

and

Wk = xk +
1

xk+1
− xk

xk+1
− 1. (40)

Accordingly, we have

anS
∗
nUn + σ (V − V ∗)

(
1− S∗

n

Sn

)
+BπSn

(
1− V ∗

V

)
+B(µv + σ)(V ∗ − V )

=anS
∗
nUn − σV

S∗
n

Sn
− σV ∗

(
1− S∗

n

Sn

)
+BπSn

(
1− V ∗

V

)
+B(µv + σ)V ∗

+ V [σ − (µv + σ)B]

=anS
∗
nUn − σV ∗ v

xn
− σV ∗

(
1− 1

xn

)
+BπS∗

nxn

(
1− 1

v

)
+B(µv + σ)V ∗

+ V [σ − (µv + σ)B].
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The fourth equation in System (31) implies

V ∗ =
πS∗

n

µv + σ
. (41)

Then, using the expression of B and Relation (41), we get

anS
∗
nUn + σ (V − V ∗)

(
1− S∗

n

Sn

)
+BπSn

(
1− V ∗

V

)
+B(µv + σ)(V ∗ − V )

=anS
∗
nUn − σV ∗ v

xn
− σV ∗

(
1− 1

xn

)
+ σV ∗xn

(
1− 1

v

)
+ σV ∗

=anS
∗
nUn + σV ∗

(
1

xn
+ xn − v

xn
− xn

v

)
=anS

∗
nUn − σV ∗Un + σV ∗Uv.

where

Uv = 2− v

xn
− xn

v
. (42)

Substituting an = µn + π and Relation (41) in the previous sum, we obtain,

anS
∗
nUn − σV

S∗
n

Sn
− σV ∗

(
1− S∗

n

Sn

)
+BπSn

(
1− V ∗

V

)
+B(µv + σ)V ∗

= S∗
nUn

(
µnσ + anµv

µv + σ

)
+ σV ∗Uv.

On the other hand, we have

n∑
i=2

θi−1

(
Si−1 − S∗

i−1

)(
1− S∗

i

Si

)
=

n∑
i=2

θi−1S
∗
i−1

(
xi−1 +

1

xi
− xi−1

xi
− 1

)

=

n−1∑
i=1

θiS
∗
i Wi,

m−3∑
j=1

δj+1AjIj+1

(
1−

I∗j
Ij

)
=

m−2∑
j=2

δjAj−1Ij

(
1−

I∗j−1

Ij−1

)

=

m−2∑
j=2

δjAj−1Ij −
m−2∑
j=2

δjAj−1I
∗
j

yj
yj−1

,
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m−3∑
j=2

kj−1AjIj−1

(
1−

I∗j
Ij

)
−

m−3∑
j=1

bjAjIj

(
1−

I∗j
Ij

)

=
m−4∑
j=1

kjAj+1Ij

(
1− 1

yj+1

)
−

m−3∑
j=1

bjAjIj

(
1− 1

yj

)

=

m−4∑
j=1

(kjAj+1 − bjAj) Ij −
m−4∑
j=1

kjAj+1I
∗
j

yj
yj+1

+

m−3∑
j=1

bjAjI
∗
j − bm−3Am−3Im−3.

Substituting the four above relations into the previous expression of V̇ (t), expand-
ing, then rearranging some terms, we obtain

V̇ (t) =K1(t) + σV ∗Uv +

n∑
i=1

λ∗
iS

∗
i

(
1− 1

xi

)
+ (A1 − 1)

n∑
i=1

λiSi + I1 (k1A2 − b1A1)

−A1
I∗1
I1

n∑
i=1

λiSi +
m−4∑
j=2

Ij (kjAj+1 + δjAj−1 − bjAj)−
m−4∑
j=1

kjAj+1I
∗
j

yj
yj+1

+

m−3∑
j=1

bjAjI
∗
j −

m−2∑
j=2

δjAj−1I
∗
j

yj
yj−1

+ δm−3Am−4Im−3 − bm−3Am−3Im−3

+ Ic
(
kcAp + k′cAf + δcAm−3 − bcAc

)
+ Ip (kpAf + δpAc − bpAp)

+ If
(
δfAp + δ′fAc − bfAf

)
−Ac

(
km−3Im−3 + δ′fIf + δpIp

) 1

yc
+ bcAcI

∗
c

+ bpApI
∗
p + bfAfI

∗
f −Ap (kcIc + δfIf )

1

yp
−Af

(
kpIp + k′cIc

) 1

yf
,

where

K1(t) =

n−1∑
i=1

θiS
∗
i Wi + S∗

nUn

(
µnσ + anµv

µv + σ

)
+

n−1∑
i=1

aiS
∗
i Ui. (43)

Notice that
n∑

i=1

λiS
∗
i =

n∑
i=1

m∑
j=1

βijS
∗
i Ij and recall that m− 2 = c, m− 1 = p and
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m = f . Therefore,

V̇ (t)

= K1(t) + σV ∗Uv +
n∑

i=1

λ∗
iS

∗
i

(
1− 1

xi

)
+ (A1 − 1)

n∑
i=1

λiSi + I1

(
k1A2 − b1A1

+

n∑
i=1

βi1S
∗
i

)
− A1

y1

n∑
i=1

λiSi +

m−3∑
j=2

Ij

(
kjAj+1 + δjAj−1 − bjAj +

n∑
i=1

βijS
∗
i

)

−
m−3∑
j=1

kjAj+1I
∗
j

yj
yj+1

+
m−3∑
j=1

bjAjI
∗
j −

m−2∑
j=2

δjAj−1I
∗
j

yj
yj−1

+ Ic

(
kcAp + k′cAf

+ δcAm−3 − bcAc +

n∑
i=1

βicS
∗
i

)
+ Ip

(
kpAf + δpAc − bpAp +

n∑
i=1

βipS
∗
i

)

+ If

(
δfAp + δ′fAc − bfAf +

n∑
i=1

βifS
∗
i

)
+ bcAcI

∗
c + bpApI

∗
p + bfAfI

∗
f

−Ac

(
δ′fI

∗
fyf + δpI

∗
pyp
) 1

yc
−Ap

(
kcI

∗
c yc + δfI

∗
fyf
) 1

yp
−Af

(
kpI

∗
pyp + k′cI

∗
c yc
) 1

yf
.

In addition, we have
n∑

i=1

λ∗
iS

∗
i =

n∑
i=1

m∑
j=1

βijS
∗
i I

∗
j and

1

y1

n∑
i=1

λiSi =

n∑
i=1

m∑
j=1

βijS
∗
i I

∗
j

xiyj
y1

. Hence, cancelling some terms by substituting relations in (30)

into V̇ (t), we get

V̇ (t) =K1(t) + σV ∗Uv +

n∑
i=1

m∑
j=1

βijS
∗
i I

∗
j

(
1− 1

xi

)
+ I∗1

(
b1 − k1A2

y1
y2

)

−
n∑

i=1

m∑
j=1

βijS
∗
i I

∗
j

xiyj
y1

+

m−3∑
j=2

I∗j

(
bjAj − kjAj+1

yj
yj+1

− δjAj−1
yj
yj−1

)

− δcAm−3I
∗
c

yc
ym−3

+ I∗c

(
bcAc − kcAp

yc
yp

− k′cAf
yc
yf

)
+ I∗p

(
bpAp − δpAc

yp
yc

− kpAf
yp
yf

)
+ I∗f

(
bfAf − δ′fAc

yf
yc

− δfAp
yf
yp

)
.

Later on, the third relation in (30) yields

kjAj+1 = bjAj − δjAj−1 −
n∑

i=1

βijS
∗
i , j = 2, · · · ,m− 3.



Kouenkam et al./ IJM2C, 11 - 04 (2021) 1-37. 29

Thus, for j = 2, · · · ,m− 3, we have

bjAj − kjAj+1
yj
yj+1

− δjAj−1
yj
yj−1

= bjAj

(
1− yj

yj+1

)
+δjAj−1

(
yj
yj+1

− yj
yj−1

)

+

n∑
i=1

βijS
∗
i

yj
yj+1

.

On the other hand, it follows from the fifth equation in System (31) that

b1I
∗
1 = δ2I

∗
2 +

n∑
i=1

m∑
j=1

βijS
∗
i I

∗
j ,

and from the second relation in (30) that

k1A2 = b1 −
n∑

i=1

βi1S
∗
i .

Consequently

I∗1

(
b1 − k1A2

y1
y2

)
= b1I

∗
1

(
1− y1

y2

)
+

n∑
i=1

βi1S
∗
i I

∗
1

y1
y2

= δ2I
∗
2

(
1− y1

y2

)
+

n∑
i=1

m∑
j=1

βijS
∗
i I

∗
j

(
1− y1

y2

)
+

n∑
i=1

βi1S
∗
i I

∗
1

y1
y2

.

Hence, substituting the three above relations into V̇ (t), we obtain,

V̇ (t)

= K1(t) + σV ∗Uv +

n∑
i=1

m∑
j=1

βijS
∗
i I

∗
j

(
1− 1

xi

)
+ δ2I

∗
2

(
1− y1

y2

)

+
n∑

i=1

m∑
j=1

βijS
∗
i I

∗
j

(
1− y1

y2

)
+

n∑
i=1

βi1S
∗
i I

∗
1

y1
y2

−
n∑

i=1

m∑
j=1

βijS
∗
i I

∗
j

xiyj
y1

+

m−3∑
j=2

bjAjI
∗
j

(
1− yj

yj+1

)
+

n∑
i=1

m−3∑
j=2

βijS
∗
i I

∗
j

yj
yj+1

+

m−3∑
j=2

δjAj−1I
∗
j

(
yj
yj+1

− yj
yj−1

)

− δcAm−3I
∗
c

yc
ym−3

+ I∗c

(
bcAc − kcAp

yc
yp

− k′cAf
yc
yf

)
+ I∗p

(
bpAp − δpAc

yp
yc

− kpAf
yp
yf

)
+ I∗f

(
bfAf − δ′fAc

yf
yc

− δfAp
yf
yp

)
.

Furthermore, the sixth equation in System (31) implies

bjI
∗
j = kj−1I

∗
j−1 + δj+1I

∗
j+1, j = 2, · · · ,m− 3.
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Thus, using the expression of Aj , as given in (29), we obtain

bjAjI
∗
j = kj−1I

∗
j−1Aj + δj+1I

∗
j+1Aj = δjAj−1I

∗
j +

n∑
i=1

m∑
l=j

βilI
∗
l S

∗
i + δj+1AjI

∗
j+1.

As a consequence,

m−3∑
j=2

bjAjI
∗
j

(
1− yj

yj+1

)

=

m−3∑
j=2

δjAj−1I
∗
j +

n∑
i=1

m−3∑
j=2

m∑
l=j

βilI
∗
l S

∗
i

(1− yj
yj+1

)

+

m−3∑
j=2

δj+1AjI
∗
j+1

(
1− yj

yj+1

)

=

m−3∑
j=2

δjAj−1I
∗
j +

n∑
i=1

m−3∑
j=2

m∑
l=j

βilI
∗
l S

∗
i

(1− yj
yj+1

)

+

m−2∑
j=3

δjAj−1I
∗
j

(
1− yj−1

yj

)
.

By the relation (26) in Lemma 6.1 and the relation (27) in Lemma 6.1, it is straight-
forward to establish,

n∑
i=1

m−3∑
j=2

m∑
l=j

βilI
∗
l S

∗
i

(
1− yj

yj+1

)

=
n∑

i=1

m−3∑
j=2

m−3∑
l=j

βilS
∗
i I

∗
l

(
1− yj

yj+1

)
+

n∑
i=1

m−3∑
j=2

m∑
l=m−2

βilS
∗
i I

∗
l

(
1− yj

yj+1

)

=
n∑

i=1

m−3∑
j=2

βijS
∗
i I

∗
j

(
j − 1−

j∑
l=2

yl
yl+1

)

+
n∑

i=1

S∗
i

(
βicI

∗
c + βipI

∗
p + βifI

∗
f

)(
m− 4−

m−3∑
l=2

yl
yl+1

)
.
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Then, we get

m−3∑
j=2

bjAjI
∗
j

(
1− yj

yj+1

)

=
n∑

i=1

m−3∑
j=2

βijS
∗
i I

∗
j

j − 1−
j∑

q=2

yq
yq+1

+
n∑

i=1

S∗
i

(
βicI

∗
c + βipI

∗
p + βifI

∗
f

)

×

(
m− 4−

m−3∑
l=2

yl
yl+1

)
+

m−3∑
j=3

δjAj−1I
∗
j

(
2− yj

yj+1
− yj−1

yj

)
+ δ2I

∗
2

(
1− y2

y3

)

+ δcAm−3I
∗
c

(
1− ym−3

yc

)
.

Thus, substituting the three above relations into V̇ (t), we obtain,

V̇ (t) = K1(t) +K2(t) + σV ∗Uv

+
n∑

i=1

βi1S
∗
i I

∗
1

(
2− xi −

1

xi

) n∑
i=1

m−3∑
j=2

βijS
∗
i I

∗
j

(
j + 1− 1

xi
− xiyj

y1
−

j−1∑
l=1

yl
yl+1

)

+
n∑

i=1

βicS
∗
i I

∗
c

(
m− 2− 1

xi
− xiyc

y1
−

m−3∑
l=1

yl
yl+1

)

+

n∑
i=1

βipS
∗
i I

∗
p

(
m− 2− 1

xi
− xiyp

y1
−

m−3∑
l=1

yl
yl+1

)

+
n∑

i=1

βifS
∗
i I

∗
f

(
m− 2− 1

xi
−

xiyf
y1

−
m−3∑
l=1

yl
yl+1

)

+

m−2∑
j=2

δjAj−1I
∗
j

(
2− yj−1

yj
− yj

yj−1

)
.

where

K2(t) =− δcAm−3I
∗
c + I∗c

(
bcAc − kcAp

yc
yp

− k′cAf
yc
yf

)
+ I∗p

(
bpAp − δpAc

yp
yc

− kpAf
yp
yf

)
+ I∗f

(
bfAf − δ′fAc

yf
yc

− δfAp
yf
yp

)
.

Let us find a suitable expression of K2(t). From the fourth, the fifth, the sixth
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and the seventh equations in (30), we deduce respectively that:



bcAc =kcAp + k′cAf + δcAm−3 +
n∑

i=1

βicS
∗
i ,

bpAp =kpAf + δpAc +

n∑
i=1

βipS
∗
i ,

bfAf =δfAp + δ′fAc +
n∑

i=1

βifS
∗
i .

(44)

As a result

K2(t)

= kpAfI
∗
p

(
1− yp

yf

)
+ δpAcI

∗
p

(
2− yp

yc

)
+ δfApI

∗
f

(
1−

yf
yp

)
+ δ′fAcI

∗
f (2− yfyc)

− kcApI
∗
c

yc
yp

− k′cAfI
∗
c

yc
yf

+

n∑
i=1

βicS
∗
i I

∗
c + 2

n∑
i=1

βipS
∗
i I

∗
p + 2

n∑
i=1

βifS
∗
i I

∗
f .

From the height and the ninth equations in System (31) we have respectively:

kpI
∗
p = bfI

∗
f − k′cI

∗
c and δfI

∗
f = bpI

∗
p − kcI

∗
c .

Then, taking into account the second and the third relations in System (44), we get

kpAfI
∗
p = bfAfI

∗
f − k′cAfI

∗
c i.e., kpAfI

∗
p = δfApI

∗
f + δ′fAcI

∗
f − k′cAfI

∗
c +

n∑
i=1

βifS
∗
i I

∗
f .

(45)

and

δfApI
∗
f = bpApI

∗
p − kcApI

∗
c i.e., δfApI

∗
f = kpAfI

∗
p + δpAcI

∗
p − kcApI

∗
c +

n∑
i=1

βipS
∗
i I

∗
p .

(46)

Substituting (46) into (45), we easily deduce the relation

δpAcI
∗
p = kcApI

∗
c + k′cAfI

∗
c − δ′fAcI

∗
f −

n∑
i=1

βipS
∗
i I

∗
p −

n∑
i=1

βifS
∗
i I

∗
f . (47)

Plugging (45) and (47) into K2(t), we get the suitable expression of K2(t) that
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follows

K2(t)

= δfApI
∗
f

(
2− yp

yf
−

yf
yp

)
+ δ′fAcI

∗
f

(
1 +

yp
yc

− yp
yf

−
yf
yc

)
+ kcApI

∗
c

(
2− yp

yc
− yc

yp

)

+ k′cAfI
∗
c

(
1− yp

yc
+

yp
yf

− yc
yf

)
+

n∑
i=1

βicS
∗
i I

∗
c +

n∑
i=1

βipS
∗
i I

∗
p

yp
yc

+
n∑

i=1

βifS
∗
i I

∗
f

(
1 +

yp
yc

− yp
yf

)

=
(
δfApI

∗
f − k′cAfI

∗
c

)(
2− yp

yf
−

yf
yp

)
+ δ′fAcI

∗
f

(
1 +

yp
yc

− yp
yf

−
yf
yc

)
+ k′cAfI

∗
c

×
(
3− yp

yc
−

yf
yp

− yc
yf

)
+ kcApI

∗
c

(
2− yp

yc
− yc

yp

)
+

n∑
i=1

βicS
∗
i I

∗
c +

n∑
i=1

βipS
∗
i I

∗
p

yp
yc

+
n∑

i=1

βifS
∗
i I

∗
f

(
1 +

yp
yc

− yp
yf

)
.

Replacing K2(t) by its above expression in V̇ (t), factoring and rearranging some
terms, we obtain

V̇ (t)

= K1(t) + σV ∗Uv +

n∑
i=1

βi1S
∗
i I

∗
1

(
2− xi −

1

xi

)
+ δ′fAcI

∗
f

(
1 +

yp
yc

− yp
yf

−
yf
yc

)

+ kcApI
∗
c

(
2− yp

yc
− yc

yp

)
+ k′cAfI

∗
c

(
3− yp

yc
−

yf
yp

− yc
yf

)

+
(
δfApI

∗
f − k′cAfI

∗
c

)(
2− yp

yf
−

yf
yp

)
+

m−2∑
j=2

δjAj−1I
∗
j

(
2− yj−1

yj
− yj

yj−1

)

+

n∑
i=1

m−3∑
j=2

βijS
∗
i I

∗
j

(
j + 1− 1

xi
− xiyj

y1
−

j−1∑
l=1

yl
yl+1

)
+

n∑
i=1

βipS
∗
i I

∗
p

(
m− 2 +

yp
yc

− 1

xi
− xiyp

y1
−

m−3∑
l=1

yl
yl+1

)
+

n∑
i=1

βicS
∗
i I

∗
c

(
m− 1− 1

xi
− xiyc

y1
−

m−3∑
l=1

yl
yl+1

)

+
n∑

i=1

βifS
∗
i I

∗
f

(
m− 1 +

yp
yc

− yp
yf

− 1

xi
−

xiyf
y1

−
m−3∑
l=1

yl
yl+1

)
.

Recall that m−2 = c. Substituting the expressions of I∗p , I∗f as given in (32), and
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the ones of Ap, Af as defined in (29) into the previous expression of V̇ (t), we have

V̇ (t)

= K1(t) + σV ∗Uv +
k′cδ

′
fbpAcI

∗
c

bpbf − kpδf

(
2−

yf
yc

− yc
yf

)
+

kcδpbfAcI
∗
c

bpbf − kpδf

(
2− yp

yc
− yc

yp

)
+ ξ

(
2− yp

yf
−

yf
yp

)
+

kckpδ
′
fAcI

∗
c

bpbf − kpδf

(
3− yc

yp
−

yf
yc

− yp
yf

)
+

k′cδpδfAcI
∗
c

bpbf − kpδf

(
3− yp

yc

−
yf
yp

− yc
yf

)
+

m−2∑
j=2

δjAj−1I
∗
j

(
2− yj−1

yj
− yj

yj−1

)
+

n∑
i=1

βi1S
∗
i I

∗
1Ui

+

n∑
i=1

m−2∑
j=2

βijS
∗
i I

∗
jZj +

kcbfI
∗
c

bpbf − kpδf

n∑
i=1

βipS
∗
i Zp1

+
k′cδfI

∗
c

bpbf − kpδf

n∑
i=1

βipS
∗
i Zp2

+
k′cbpI

∗
c

bpbf − kpδf

n∑
i=1

βifS
∗
i I

∗
fZf1 +

kckpI
∗
c

bpbf − kpδf

n∑
i=1

βifS
∗
i I

∗
fZf2 .

with

Zj = j + 1− 1

xi
− xiyj

y1
−

j−1∑
l=1

yl
yl+1

, j = 2, . . . , n− 2,

Zp1
= m− 1

xi
− xiyp

y1
−

m−3∑
l=1

yl
yl+1

− yc
yp

,

Zp2
= m+ 1− 1

xi
− xiyp

y1
−

m−3∑
l=1

yl
yl+1

− yc
yf

−
yf
yp

,

Zf1 = m− 1

xi
−

xiyf
y1

−
m−3∑
l=1

yl
yl+1

− yc
yf

,

Zf2 = m+ 1− 1

xi
−

xiyf
y1

−
m−3∑
l=1

yl
yl+1

− yc
yp

− yp
yf

,

and

ξ = δfApI
∗
f − k′cAfI

∗
c +

k′cδ
′
fbpAcI

∗
c

bpbf − kpδf
+

k′cbpI
∗
c

bpbf − kpδf

n∑
i=1

βifS
∗
i I

∗
f .

ξ is a positive constant. Indeed, substituting the expression of I∗f into System
(32), the ones of Ap and Af as defined in (29) into ξ, we easily get

ξ =
kpδf (kcbf + k′cδf ) I

∗
c

∑n
i=1 βipS

∗
i + kpδf (kckp + k′cbp) I

∗
c

∑n
i=1 βifS

∗
i

(bpbf − kpδf )
2

+

kpAcI
∗
c

[
kc

(
δpδfbf + kp

(
δ′f

)2)
+ k′cδf

(
δpδf + δ′fbp

)]
(bpbf − kpδf )

2 .



Kouenkam et al./ IJM2C, 11 - 04 (2021) 1-37. 35

In the case where θi = 0, for all i, i = 1, · · · , n − 1, , we have ai = µi

and the first sum in K1(t) is zero (see (43)). Then, keeping in mind the above
definitions of Zp1

, Zp2
, Zf1 , Zf2 and Zj , j = 2, . . .m − 2, also the one of Ui,

i = 1, . . . n, as given in (39) and the one of Uv as given in (42), by the property
that the arithmetic mean is greater than or equal to the geometric mean, it is easy
to see that V̇ (t) ⩽ 0. Moreover V̇ (t) = 0 only if Si = S∗

i , 1 ⩽ i ⩽ n, V = V ∗

and
Ij
I∗j

=
I1
I∗1

, 2 ⩽ j ⩽ m. Thus the largest invariant set contained in the set

{(Si, Ij , V,R) ∈ Ω, 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m, V̇ = 0} is reduced to the endemic
equilibrium. Since trajectories of System (1) are bounded, by Lasalle’s invariance
principle [1, 11], the endemic equilibrium is globally and asymptotically stable on
the compact Ω.

Let us continue the proof in the case where parameters θi, i = 1, · · · , n− 1, are
not all zero. Firstly, let us find a suitable expression of K1(t).

It follows from the n first equations in System (31) that for i = 1, · · · , n− 1,

θiS
∗
i =

µvπS
∗
n

µv + σ
+

n∑
k=i+1

µkS
∗
k − Λk +

m∑
j=1

βkjS
∗
kI

∗
j

 , i = 1, · · · , n− 1. (48)

Indeed, It follows from the third equation in System (31) and relation (41) that,

θn−1S
∗
n−1 =

µvπS
∗
n

µv + σ
+

µnS
∗
n − Λn +

m∑
j=1

βnjS
∗
nI

∗
j

 .

Hence, Relation (48) is valid for i = n− 1. Afterwards, suppose that Relation (48)
holds for some i, 2 ⩽ i ⩽ n − 1. We deduce from the second equation in System
(31) that

θi−1S
∗
i−1 = −Λi + µiS

∗
i + θiS

∗
i +

m∑
j=1

βijS
∗
i I

∗
j .

By the induction assumption,

θi−1S
∗
i−1 =− Λi + µiS

∗
i +

m∑
j=1

βijS
∗
i I

∗
j +

µvπS
∗
n

µv + σ
+

n∑
k=i+1

µkS
∗
k − Λk +

m∑
j=1

βkjS
∗
kI

∗
j


=
µvπS

∗
n

µv + σ
+

n∑
k=i

µkS
∗
k − Λk +

m∑
j=1

βkjS
∗
kI

∗
j


Therefore, (48) is valid for i − 1. By induction, the relation (48) holds for all i,
1 ⩽ i ⩽ n− 1.



36 Kouenkam et al./ IJM2C, 11 - 04 (2021) 1-37.

Now, since ai = (µi + θi), i = 1, . . . , n− 1, we have

n−1∑
i=1

aiS
∗
i Ui +

n−1∑
i=1

θiS
∗
i Wi

=

n−1∑
i=1

µiS
∗
i Ui +

n−1∑
i=1

θiS
∗
i (Ui +Wi)

=

n−1∑
i=1

µiS
∗
i Ui +

n−1∑
i=1

µvπS
∗
n

µv + σ
+

n∑
k=i+1

µkS
∗
k − Λk +

m∑
j=1

βkjS
∗
kI

∗
j

 (Ui +Wi).

Using relation (28) in Lemma6.1, it is obvious to see that for all sequence of real
numbers (un), for all n ⩾ 2, we have

n−1∑
i=1

n∑
k=i+1

uk(Ui +Wi) =
n∑

i=2

ui

i−1∑
k=1

(Uk +Wk) =

n∑
i=2

ui (Ti − Ui) .

where for i = 2, . . . , n,

Ti = i+ 1− xi −
1

x1
−

i−1∑
k=1

xk
xk+1

.

Therefore, keeping relation (48) in mind and substituting an = µn + π, we have

K1(t)

=

n−1∑
i=1

µiS
∗
i Ui + µnS

∗
n +

µvπS
∗
n

µv + σ
Un +

µvπS
∗
n

µv + σ
(Tn − Un)

+
n∑

i=2

µiS
∗
i − Λi +

m∑
j=1

βijS
∗
i I

∗
j

 (Ti − Ui))

=
n∑

i=1

µiS
∗
i Ui +

µvπS
∗
n

µv + σ
Tn +

n∑
i=2

µiS
∗
i − Λi +

m∑
j=1

βijS
∗
i I

∗
j

 (Ti − Ui)

= µ1S
∗
1U1 +

µvπS
∗
n

µv + σ
Tn +

n∑
i=2

(Ti − Ui)
m∑
j=2

βijS
∗
i I

∗
j −

n∑
i=2

βi1S
∗
i I1Ui +

n∑
i=2

ΛiUi

+
n∑

i=2

(µiS
∗
i + βi1S

∗
i I

∗
1 − Λi)Ti.

Notice that,

m∑
j=2

βijS
∗
i I

∗
j =

m−2∑
j=2

βijS
∗
i Ij + βipS

∗
i Ip + βifS

∗
i If .
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Keeping all this in mind, substituting the expressions of I∗p and I∗f as given in
System (32) into the last expression of V̇ (t), we obtain

V̇ (t)

= σV ∗Uv + (µ1S
∗
1 + β11S

∗
1I

∗
1 )U1 +

n∑
i=2

ΛiUi +
µvπS

∗
n

µv + σ
Tn +

n∑
i=2

(µiS
∗
i + βi1S

∗
i I

∗
1

− Λi)Ti +
k′cδ

′
fbpAcI

∗
c

bpbf − kpδf

(
2−

yf
yc

− yc
yf

)
+

kcδpbfAcI
∗
c

bpbf − kpδf

(
2− yp

yc
− yc

yp

)
+ ξ

(
2− yp

yf
−

yf
yp

)
+

kckpδ
′
fAcI

∗
c

bpbf − kpδf

(
3− yc

yp
−

yf
yc

− yp
yf

)
+

k′cδpδfAcI
∗
c

bpbf − kpδf

×
(
3− yp

yc
−

yf
yp

− yc
yf

)
+

m−2∑
j=2

δjAj−1I
∗
j

(
2− yj−1

yj
− yj

yj−1

)
+

m−2∑
j=2

β1jS
∗
1I

∗
jZ1

+
n∑

i=2

m−2∑
j=2

βijS
∗
i I

∗
j Z̃ij +

kcbfI
∗
c

bpbf − kpδf

n∑
i=1

βipS
∗
i Z̃p1

+
k′cδfI

∗
c

bpbf − kpδf

n∑
i=1

βipS
∗
i Z̃p2

+
k′cbpI

∗
c

bpbf − kpδf

n∑
i=1

βifS
∗
i I

∗
f Z̃f1 +

kckpI
∗
c

bpbf − kpδf

n∑
i=1

βifS
∗
i I

∗
f Z̃f2 ,

where

Z̃ij = i+ j − 1

x1
− xiyj

y1
−

i−1∑
k=1

xk
xk+1

−
j−1∑
l=1

yl
yl+1

, i = 2, . . . , n, j = 2, . . . ,m− 2,

Z̃p1
= i+m− 1− 1

x1
− yc

yp
− xiyp

y1
−

i−1∑
k=1

xk
xk+1

−
m−3∑
l=1

yl
yl+1

,

Z̃p2
= i+m− 1

x1
− xiyp

y1
− yc

yf
−

yf
yp

−
i−1∑
k=1

xk
xk+1

−
m−3∑
l=1

yl
yl+1

,

Z̃f1 = i+m− 1− 1

x1
−

xiyf
y1

− yc
yf

−
i−1∑
k=1

xk
xk+1

−
m−3∑
l=1

yl
yl+1

,

Z̃f2 = i+m− 1

x1
−

xiyf
y1

− yc
yp

− yp
yf

−
i−1∑
k=1

xk
xk+1

−
m−3∑
l=1

yl
yl+1

.

Hence, if µiS
∗
i + βi1S

∗
i I

∗
1 ⩾ Λi, for all i, i = 2, · · · , n, as in the previous case, by

the arithmetic geometric inequality, it is easy to see that V̇ (t) ⩽ 0, and that the

equality holds only for Si = S∗
i , i = 1, · · · , n, V = V ∗ and

Ij
I∗j

=
I1
I∗1

, j = 2, · · · ,m

Therefore in this case where parameters θi, i = 1, · · · , n − 1, are not all zero,
we conclude as previously that the endemic equilibrium is globally asymptotically
stable on the nonnegative orthant Rn+m+1

+ when µiS
∗
i +βi1S

∗
i I

∗
1 ⩾ Λi, for all i, i =

2, · · · , n. This achieves the proof of Theorem 5.1. ■


