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1. Introduction

Ecology relates to the study of living beings in connection to their living styles.
Research in the area of theoretical ecology was first studied by Volterra [29] and
Lotka [23]. Later many ecologists and mathematicians contributed to the growth
of this area of knowledge as reported in [3, 7, 12, 24, 25] and references therein.
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The ecological interactions can be broadly classified as prey-predator, competition,
commensalism, ammensalism, and neutralism etc.
A two species Commensalisms is an ecological connection between two species

where one species X gain benefits while those of the other species Y neither benfit
nor harmed. Here, X may referred as the commensal species while Y the host.
Some examples are Cattle Egret, Anemonetish and Barnacles etc. The host species
Y supports the commensal species X which has a natural growth rate in spite of
a support other than from X. The commensal species X, in spite of the limitation
of its natural resources flourishes drawing strength from the host species Y. The
model is characterized by a system of first order nonlinear differential equations. In
the last decades, commensalism model studied many researchers [8, 9, 19, 20, 32].
Chen at el. [6] proposed the following two species commensal symbiosis models

with nonmonotonic functional response,

u′1(t) =u1(t)

[
a11 − b12u1(t) +

cu2(t)

d+ u22(t)

]
,

u′2(t) =u2(t) [a21 − b22u2(t)] ,

where a11, a21, b12, b22, c, d are all positive constants and showed that the system
admits a unique globally asymptotically stable positive equilibrium.
Zhao et al. [35] proposed and analyzed a commensalism model with nonmono-

tonic functional response and density-dependent birth rates,

u′1(t) =u1(t)

[
a11

a12 + a13u1(t)
− a14 − b1u1(t) +

cu2(t)

d+ u22(t)

]
,

u′2(t) =u2(t)

[
a21

a22 + a23u2(t)
− a24 − b2u2(t)

]
,

 (1)

where aij (i = 1, 2, j = 1, 2, 3, 4) and b1, c, d, and b2 are all positive constants.
Here u1(t) and u2(t) are the densities of the first and second species at time t,
respectively. a11 and a21 stand for the total resources available per unit time for
species u and v, respectively. By applying the differential inequality theory, they
showed that each equilibrium can be globally attractive under suitable conditions.
Xie et al. [33] derived sufficient conditions for the existence of positive periodic

solution of the following discrete Lotka-Volterra commensal symbiosis model

u(k + 1) =u(k) exp {a1(k)− b1(k)u(k) + c1(k)v(k)}

v(k + 1) = v(k) exp {a2(k)− b2(k)v(k)}

where {bi(k)}, i = 1, 2, {ci(k)} are all positive ω-periodic sequences, ω is a fixed
positive integer, {ai(k)}, are ω-periodic sequences such that ai =

1
ω

∑ω−1
k=0 ai(k) > 0,

i = 1, 2.
The differential, difference and dynamic equations on time scales are three equa-

tions play important role for modelling in the environment. Among them, the
theory of dynamic equations on time scales is the most recent and was introduced
by Stefan Hilger in his PhD thesis in 1988 with three main features: unification, ex-
tension and discretization. Since a time scale is any closed and nonempty subset of
the real numbers set. So, by this theory, we can extend known results from continu-
ous and discrete analysis to a more general setting. As a matter of fact, this theory
allows us to consider time scales which possess hybrid behaviours (both continuous
and discrete). These types of time scales play an important role for applications,
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since most of the phenomena in the environment are neither only discrete nor only
continuous, but they possess both behaviours. Moreover, basic results on this issue
have been well documented in the articles [1, 2] and monographs of Bohner and
Peterson [4, 5]. In the real world phenomena, since the almost periodic variation
of the environment plays a crucial role in many biological and ecological dynam-
ical systems and is more frequent and general than the periodic variation of the
environment. In this paper we systematically unify the existence of almost peri-
odic solutions of commensalism model with nonmonotic functional response and
density dependent birth rates modelled by ordinary differential equations and their
discrete analogues in the form of difference equations and to extend these results
to more general time scales. The concept of almost periodic time scales was pro-
posed by Li and Wang [13]. Based on this concept, some works have been done
(see [14–18, 21, 22, 26, 28] and references therein).
Recently, Wang [30] established a criteria for global existence of multiple periodic

solutions to the dynamic predator-prey model with delays,

u∆1 (t) = a(t)− b(t) exp{u1(t)} −
c(t) exp{2u2(t)}

m2 exp{2u2(t)}+ exp{2u1(t)}
− h(t) exp{−u1(t)},

u∆2 (t) =
f(t) exp{u1(t− τ(t)) + u2(t− τ(t))}

m2 exp{2u2(t− τ(t))}+ exp{2u1(t− τ(t))}
− d(t),

by applying continuation theorem based on Gaines and Mawhin’s coincidence de-
gree theory, and the corresponding discrete system was studied by [11].
Wang et al. [31] considered the following competitive system on time scales,

u∆1 (t) = r1(t)− a1(t) exp{u1(t)} −
b1(t) exp{u2(t)}
1 + exp{u2(t)

,

u∆2 (t) = r2(t)− a2(t) exp{u2(t)} −
b2(t) exp{u1(t)}
1 + exp{u1(t)

.

and established existence and uniformly asymptotic stability of unique positive
almost periodic solutions by time scale calculus theory and Lyapunov functional
method
Prasad et al. [27] studied the following 3-species predator-prey competition model

on time scales,

u∆1 (t) = r1(t)− exp{u1(t)} − α exp{u2(t)} − β exp{u3(t)},

u∆2 (t) = r2(t)− β exp{u1(t)} − exp{u2(t)} − α exp{u3(t)},

u∆3 (t) = r3(t)− α exp{u1(t)} − β exp{u2(t)} − exp{u3(t)},

and established sufficient conditions for the existence and uniform asymptotic sta-
bility of unique positive almost periodic solution of system.
Motivated by the aforementioned reasons in this paper we study commensalism
model with nonmonotic functional response and density dependent birth rates on
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time scales,

ω∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{ω1(t)}
− a14(t)− b1(t) exp{ω1(t)}

+
c(t) exp{ω2(t)}

d(t) + exp{2ω2(t)}
,

ω∆
2 (t) =

a21(t)

a22(t) + a23(t) exp{ω2(t)}
− a24(t)− b2(t) exp{ω2(t)},


(2)

where ωi(t) are the densities of the ithspecies at time t ∈ T+
(
T+ is a nonempty

closed subset of R+ = [0,+∞)
)
and ωi(0) > 0. ω∆

i express the delta derivative of
the functions ωi(t), i = 1, 2. aij(t), i = 1, 2, j = 1, 2, 3, 4 and b1(t), b2(t), c(t), d(t)
are bounded positive almost periodic functions. Clearly, if we set ui(t) =
exp{ωi}, i = 1, 2 and choose T+ = R+ the system (2) is reduced to the model
(1) and T+ = Z+ (Z+ is the set of nonnegative integer numbers), then the system
(2) is reduced to the following discrete system,

ω1(t+ 1) =ω1(t) exp

[
a11(t)

a12(t) + a13(t)ω1(t)
− a14(t)− b1(t)ω1(t) +

c(t)ω2(t)

d(t) +ω2
2(t)

]
,

ω2(t+ 1) =ω2(t) exp

[
a21(t)

a22(t) + a23(t)ω2(t)
− a24(t)− b2(t)ω2(t)

]
,

The paper is organized in the following way. In Section 2, we provide some defi-
nitions and lemmas which are useful in establishing our main results. In Section
3, we derive sufficient conditions for the permanence of system (2). The sufficient
conditions for the existence and uniform asymptotic stability of unique positive
almost periodic solution of system (2) are derived in Section 4. In final section, the
numeric simulations are given to illustrate the feasibility of the main results.

2. Preliminaries

In this section, we give some definitions and developed lemmas which are useful in
the next sections.
As we assumed almost periodic functions on T+ are bounded, we use the notations

fL = inf
{
f(t) : t ∈ T+

}
,

and

fU = sup
{
f(t) : t ∈ T+

}
,

where f(t) is an almost periodic function. We use the following notations in the
paper:

A1 =
aU11a

U
13e

κ1(
aL12 + aL13e

ℓ1
)2 , A2 =

aL11a
L
13e

ℓ1(
aU12 + aU13e

κ1

)2 ,
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B1 =
cU

(
dU − e3ℓ2

)
(dL + e2ℓ2)

2 , B2 =
cL

(
dL − e3κ2

)
(dU + e2κ2)2

,

C1 =
aU21a

U
23e

κ2(
aL22 + aL23e

ℓ2
)2 , C2 =

aL21a
L
23e

ℓ2(
aU22 + aU23e

κ2

)2 .
Definition 2.1 [5] A time scale T is a nonempty closed subset of the real numbers
R. T has the topology that it inherits from the real numbers with the standard
topology. It follows that the jump operators σ, ρ : T → T, and the graininess
µ : T → R+ are defined by

σ(t) = inf{τ ∈ T : τ > t},

ρ(t) = sup{τ ∈ T : τ < t},

and

µ(t) = ρ(t)− t,

respectively.

• The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) =
t, ρ(t) < t, σ(t) = t, σ(t) > t, respectively.

• If T has a right-scattered minimum m, then Tk = T\{m}; otherwise Tk = T.
• If T has a left-scattered maximum m, then Tk = T\{m};otherwise Tk = T.
• A function g : T → R is called rd-continuous provided it is continuous at right-

dense points in T and its left-sided limits exist (finite) at left-dense points in
T.

Definition 2.2 [5] A function f : T → R is called regressive provided 1+µ(t)f(t) ̸=
0 for all t ∈ Tk. The set of all regressive and rd-continuous functions f : T → R
will be denoted by R = R(T,R). Also, we denote the set

R+ = R+(T,R) = {f ∈ R : µ(t)f(t) > 0,∀t ∈ T}.

Lemma 2.3 [10] If a > 0, b > 0 and −b ∈ R+. Then

w∆(t) ≤ (≥)a− bw(t), w(t) > 0, t ∈ [t0,∞)T

implies

w(t) ≤ (≥)
a

b

[
1 +

(bw(t0)
a

− 1
)
e(−b)(t, t0)

]
, t ∈ [t0,∞)T.

Definition 2.4 [13] A time scale T is called an almost periodic time scale if

∏
= {κ ∈ R : t+ κ ∈ T,∀t ∈ T} ̸= {0}.
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Definition 2.5 [13] Let T be an almost periodic time scale. Then a function
w ∈ C(T,Rn) is called an almost periodic function if the ε-translation set of w i.e.,

E{ε, w} =
{
κ ∈

∏
: |w(t+ κ)− w(t)| < ε, ∀t ∈ T

}
is a relatively dense set in T for any positive real number ε.

Definition 2.6 [13] Let T be a positive almost periodic time scale. Then a function
ϕ ∈ C(T×D,Rn) is called an almost periodic function in t ∈ T uniformly for w ∈ D
if the ε-translation set of ϕ

E{ε, ϕ,S} =
{
κ ∈

∏
: |ϕ(t+ κ)− ϕ(t)| < ε, ∀(t, w) ∈ T× S

}
is a relatively dense set in T for any positive real number ε, and for each compact
subset S of D.

Next, consider the system

w∆(t) = ψ(t, w), (3)

and its associate product system

w∆(t) = ψ(t, w), z∆(t) = ψ(t, z), (4)

where ψ : T+ × SB → Rn, SB = {w ∈ Rn : ∥w∥ < B}, ψ(t, w) is almost periodic in
t uniformly for w ∈ SB and is continuous in w.

Lemma 2.7 [34] Let V(t, w, z) be Lyapunov function defined on T+ × S2B and
satisfies the following conditions

(i) α
(
∥w − z∥

)
≤ V(t, w, z) ≤ β

(
∥w − z∥

)
, where α, β ∈ P,

P =
{
γ ∈ C(R+,R+) : γ(0) = 0 and γ is increasing

}
;

(ii) |V(t, w, z)− V(t, w1, z1)| ≤ L
(
∥w − w1∥+ ∥z − z1∥

)
, where L > 0 is a constant,

(iii) D+V∆(t, w, z) ≤ −λV(t, w, z), where λ > 0,−λ ∈ R+.

Further, if there exists a solution x(t) ∈ S of system (3) for t ∈ T+, where S∪SB is
a compact set, then there exist a unique almost periodic solution f(t) ∈ S of system
(3), which is uniformly asymptotically stable.

Definition 2.8 System (2) is said to be permanent, if there exist positive constants
ℓ,κ such that

ℓ ≤ lim inf
t→+∞

ωi(t) < lim sup
t→+∞

ωi(t) ≤ κ, i = 1, 2,

for any solution
(
ω1(t),ω2(t)

)
of (2).

3. Permanence

In this section, we derive the sufficient conditions for the system (2) to be perma-
nent.
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Lemma 3.1 Suppose that

aU11 + cUaL12 >
[
aL14 + bL1

]
aL12

aU21 >
[
aL24 + bL2

]
aL22.

}
(5)

Then any positive solution
(
ω1(t),ω2(t)

)
of the dynamic system (2) satisfies

lim sup
t→+∞

ω1(t) ≤ κ1 :=
1

bL1

[
aU11
aL12

− aL14 + cU − bL1

]
and

lim sup
t→+∞

ω2(t) ≤ κ2 :=
1

bL2

[
aU21
aL22

− aL24 − bL2

]
.

Proof It follows from the first equation of the system (2) that

ω∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{ω1(t)}
− a14(t)− b1(t) exp{ω1(t)}

+
c(t) exp{ω2(t)}

d(t) + exp{2ω2(t)}

≤ a11(t)

a12(t)
− a14(t)− b1(t) exp{ω1(t)}+ c(t)

≤ aU11
aL12

− aL14 + cU − bL1 exp{ω1(t)}

≤ aU11
aL12

− aL14 + cU − bL1
[
ω1(t) + 1

]
.

By using Lemma 2.3 we have

lim sup
t→+∞

ω1(t) ≤ κ1 :=
1

bL1

[
aU11
aL12

− aL14 + cU − bL1

]
.

Similarly from the second equation of the system (2) that

ω∆
2 (t) =

a21(t)

a22(t) + a23(t) exp{ω2(t)}
− a24(t)− b2(t) exp{ω2(t)}

≤ a21(t)

a22(t)
− a24(t)− b2(t) exp{ω2(t)}

≤ aU21
aL22

− aL24 − bL2
[
ω2(t) + 1

]
.

From Lemma 2.3, we get

lim sup
t→+∞

ω2(t) ≤ κ2 :=
1

bL2

[
aU21
aL22

− aL24 − bL2

]
.

This completes the proof. ■
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Lemma 3.2 If the inequalities (5) and

aL11 > aU14
(
aU12 + exp{κ1}

)
aL21 > aU24

(
aU22 + exp{κ2}

)
}

(6)

hold, then any positive solution
(
ω1(t),ω2(t)

)
of system (2) satisfies

lim inf
t→+∞

ω1(t) ≥ ℓ1 := ln

[
aL11

bU1
(
aU12 + exp{κ1}

) − aU14
bU1

]
,

lim inf
t→+∞

ω2(t) ≥ ℓ2 := ln

[
aL21

bU2
(
aU22 + exp{κ2}

) − aU24
bU2

]
.

Proof From Lemma 3.1, we know that

lim sup
t→+∞

ω1(t) ≤ κ1,

which means that for any ε > 0, there exists a t0 ∈ T+ such that ω1(t) ≤ κ1 + ε
for all t ≥ t0. Then for t ≥ t0, it follows from the first equation of system (2) that

ω∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{ω1(t)}
− a14(t)− b1(t) exp{ω1(t)}

+
c(t) exp{ω2(t)}

d(t) + exp{2ω2(t)}

≥ aL11
aU12 + exp{κ1 + ε}

− aU14 − bU1 exp{ω1(t)}.

Now we claim that for t ≥ t0,

aL11
aU12 + exp{κ1 + ε}

− aU14 − bU1 exp{ω1(t)} ≤ 0. (7)

By way of contradiction, assume that there exists a t̂ ≥ t0 such that

aL11
aU12 + exp{κ1 + ε}

− aU14 − bU1 exp{ω1(t)} > 0

and for any t ∈ [t0, t̂)T+ ,

aL11
aU12 + exp{κ1 + ε}

− aU14 − bU1 exp{ω1(t)} ≤ 0.

Then

ω1(t̂) < ln

[
aL11

bU1
(
aU12 + exp{κ1 + ε}

) − aU14
bU1

]
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and for any t ∈ [t0, t̂)T+ ,

ω1(t) ≥ ln

[
aL11

bU1
(
aU12 + exp{κ1 + ε}

) − aU14
bU1

]
,

which implies ω∆
1 (t̂) < 0. It is contradiction, and hence the inequality in (7) holds

for all t ≥ t0, and

ω1(t) ≥ ln

[
aL11

bU1
(
aU12 + exp{κ1 + ε}

) − aU14
bU1

]
,

consequently

lim inf
t→+∞

ω1(t) ≥ ln

[
aL11

bU1
(
aU12 + exp{κ1 + ε}

) − aU14
bU1

]
.

Since ε is arbitrary small and from the first inequality in (6), we have

lim inf
t→+∞

ω1(t) ≥ ln

[
aL11

bU1
(
aU12 + exp{κ1}

) − aU14
bU1

]
.

Analogously, by the second inequality in (6), we obtain that

lim inf
t→+∞

ω2(t) ≥ ln

[
aL21

bU2
(
aU22 + exp{κ2}

) − aU24
bU2

]
.

This completes the proof. ■

Theorem 3.3 Under the assumptions (5) and (6), the system (2) is permanent.

Proof From Lemmas 3.1 and 3.2, the system (2) is permanent. ■

4. Positive almost periodic solution

In this section, we establish sufficient conditions for the existence, uniqueness and
uniform asymptotic stability of positive almost periodic solution of system (2).
Define

Λ =
{(

ω1(t),ω2(t)
)
:
(
ω1(t),ω2(t)

)
is a solution of (2)

and 0 < ℓi ≤ ωi(t) ≤ κi, i = 1, 2
}
.

It is clear that Λ is invariant set of system (2).

Theorem 4.1 Suppose that (5) and (6) are satisfied, then Λ ̸= ∅.

Proof The almost periodicity of aij(t), i = 1, 2, 3, 4; j = 1, 2 implies that there is
a sequence {θk} ⊆ T+ with θk → +∞ such that

aij(t+ θk) → aij(t), as k → +∞, i = 1, 2, 3, 4; j = 1, 2.
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From Lemma 3.1 and 3.2, for each sufficiently small ϵ > 0, there exists a τ ∈ T+

such that

ℓi − ϵ ≤ ωi(t) ≤ κi + ϵ, for all t ≥ τ, i = 1, 2.

Set ωik(t) = ωi(t + θk) for t ≥ τ − θk, k = 1, 2, · · · . For any positive integer m,
there exists a sequence {ωik(t) : k ≥ m} such that the sequence {ωik(t)} has a
subsequence, denoted by {ω∗

ik(t)}(ω∗
ik(t) = ωi(t + θ∗k)), converging on any finite

interval of T+ as k → +∞. So we have a sequence {wi(t)} such that for t ∈ T+,

ω∗
ik(t) → wk(t), as k → +∞, i = 1, 2. (8)

It is easy to see that the above sequence {θ∗k} ⊆ T+ with θ∗k → +∞ for k → +∞
such that

aij(t+ θ∗k) → aij(t), as k → +∞, i = 1, 2, 3, 4; j = 1, 2.

Which, together with (8) and

ω∗∆
1 (t) =

a11(t+ θ∗k)

a12(t+ θ∗k) + a13(t+ θ∗k) exp{ω1(t)}
− a14(t+ θ∗k)− b1(t+ θ∗k) exp{ω1(t)}

+
c(t+ θ∗k) exp{ω2(t)}

d(t+ θ∗k) + exp{2ω2(t)}
,

ω∗∆
2 (t) =

a21(t+ θ∗k)

a22(t+ θ∗k) + a23(t+ θ∗k) exp{ω2(t)}
− a24(t+ θ∗k)− b2(t+ θ∗k) exp{ω2(t)},

yields

w∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{w1(t)}
− a14(t)− b1(t) exp{w1(t)}

+
c(t) exp{w2(t)}

d(t) + exp{2w2(t)}
,

w∆
2 (t) =

a21(t)

a22(t) + a23(t) exp{w2(t)}
− a24(t)− b2(t) exp{w2(t)},

It is clear that
(
w1(t), w2(t)

)
is a solution of system (2) and

ℓi − ϵ ≤ wi(t) ≤ κi + ϵ, for t ∈ T+, i = 1, 2.

Since ϵ was arbitrary, it follows that

ℓi ≤ wi(t) ≤ κi, for t ∈ T+, i = 1, 2.

This completes the proof. ■
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Theorem 4.2 Assume that (5), (6), Γ1 > 0 and Γ2 > 0, where

Γ1 =

[(
2bL1 e

ℓ1 + 2bL1 A2e
ℓ1 + µLbL1 e

ℓ1B2

)
−
(
2A1 + µU

(
bU1

)2
e2κ1 + µUA 2

1 + µUA1B1 + B1

)]
,

Γ2 =

[(
µLbL1 e

ℓ1B2 + 2bL2 e
ℓ2
(
1 + µLC2

))
−
(
µUB2

1 + µUA1B1 + B1 + 2C1 + µUC 2
1 + µU (bU2 )

2e2κ2
)]
,

are satisfied. Then the dynamic system (2) has a unique almost periodic solution(
ω1(t),ω2(t)

)
∈ Λ and is uniformly asymptotically stable.

Proof From Theorem 4.1 that there exists a solution
(
ω1(t),ω2(t)

)
of system (2)

such that

ℓi ≤ ωi(t) ≤ κi,

for t ∈ T+, i = 1, 2.
Define

∥
(
ω1(t),ω2(t)

)
∥ = |ω1(t)|+ |ω2(t)|,

(
ω1(t),ω2(t)

)
∈ R2

+.

Assume that W1(t) =
(
ω1(t),ω2(t)

)
, W2(t) =

(
w1(t), w2(t)

)
are any two positive

solutions of system (2), then

∥W1∥ ≤ κ1 + κ2

and

∥W2∥ ≤ κ1 + κ2.

We consider the associate product system of system (2) as follows

ω∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{ω1(t)}
− a14(t)− b1(t) exp{ω1(t)}

+
c(t) exp{ω2(t)}

d(t) + exp{2ω2(t)}
,

ω∆
2 (t) =

a21(t)

a22(t) + a23(t) exp{ω2(t)}
− a24(t)− b2(t) exp{ω2(t)},

w∆
1 (t) =

a11(t)

a12(t) + a13(t) exp{w1(t)}
− a14(t)− b1(t) exp{w1(t)}

+
c(t) exp{w2(t)}

d(t) + exp{2w2(t)}
,

w∆
2 (t) =

a21(t)

a22(t) + a23(t) exp{w2(t)}
− a24(t)− b2(t) exp{w2(t)}.



(9)
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Construct the following Lyapunov function V
(
t,W1(t),W2(t)

)
on T+ × Ω× Ω by

V
(
t,W1(t),W2(t)

)
=

(
ω1(t)− w1(t)

)2
+
(
ω2(t)− w2(t)

)2
.

It is obvious that the norm

∥W1(t)−W2(t)∥ = |ω1(t)− w1(t)|+ |ω2(t)− w2(t)|

is equivalent to

∥W1(t)−W2(t)∥∗ =
[(
ω1(t)− w1(t)

)2
+
(
ω2(t)− w2(t)

)2] 1

2 ,

in other words, there exist two constants δ1 > 0, δ2 > 0 such that

δ1∥W1(t)−W2(t)∥ ≤ ∥W1(t)−W2(t)∥∗ ≤ δ2∥W1(t)−W2(t)∥,

and hence we have

(
δ1∥W1(t)−W2(t)∥

)2 ≤ V
(
t,W1(t),W2(t)

)
≤

(
δ2∥W1(t)−W2(t)∥

)2
.

Let α, β ∈ C(R+,R+), α(ω) = δ21ω
2, β(ω) = δ22ω

2, then the assumption (i) of
Lemma 2.7 is satisfied. On the other hand, we have

∣∣∣V(t,W1(t),W2(t)
)
− V

(
t,W∗

1 (t),W∗
2 (t)

)∣∣∣
=

∣∣∣(ω1(t)− w1(t)
)2

+
(
ω2(t)− w2(t)

)2 − (
ω∗

1(t)− w∗
1(t)

)2 − (
ω∗

2(t)− w∗
2(t)

)2∣∣∣
≤

∣∣∣(ω1(t)− w1(t)
)
−
(
ω∗

1(t)− w∗
1(t)

)∣∣∣∣∣∣(ω1(t)− w1(t)
)
+
(
ω∗

1(t)− w∗
1(t)

)∣∣∣∣∣∣(ω2(t)− w2(t)
)
−

(
ω∗

2(t)− w∗
2(t)

)∣∣∣∣∣∣(ω2(t)− w2(t)
)
+
(
ω∗

2(t)− w∗
2(t)

)∣∣∣
≤

∣∣∣(ω1(t)− w1(t)
)
−
(
ω∗

1(t)− w∗
1(t)

)∣∣∣(|ω1(t)|+ |w1(t)|+ |ω∗
1(t)|+ |w∗

1(t)|
)

∣∣∣(ω2(t)− w2(t)
)
−
(
ω∗

2(t)− w∗
2(t)

)∣∣∣(|ω2(t)|+ |w2(t)|+ |ω∗
2(t)|+ |w∗

2(t)|
)

≤ L
(
|ω1(t)−ω∗

1(t)|+ |ω2(t)−ω∗
2(t)|+ |w1(t)− w∗

1(t)|+ |w2(t)− w∗
2(t)|

)
= L

(
∥W1(t)−W∗

1 (t)∥+ ∥W2(t)−W∗
2 (t)∥

)
,

where W∗
1 (t) =

(
ω∗

1,ω
∗
2

)
,W∗

2 (t) =
(
w∗
1, w

∗
2

)
, and L = 4max{κi, i = 1, 2}. Hence,

the assumption (ii) of Lemma 2.7 is satisfied.
Now, estimating the right derivative D+V∆ of V along with associate product
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system (9), we obtain

D+V∆
(
t,W1(t),W2(t)

)
=

(
ω1(t)− w1(t)

)∆(
ω1(t)− w1(t)

)
+ [ω1(σ(t))− w1(σ(t))]

(
ω1(t)− w1(t)

)
+

(
ω2(t)− w2(t)

)∆(
ω2(t)− w2(t)

)
+ [ω2(σ(t))− w2(σ(t))]

(
ω2(t)− w2(t)

)
=

(
ω1(t)− w1(t)

)∆(
ω1(t)− w1(t)

)
+
[(
µ(t)ω∆

1 (t) +ω1(t)
)

−
(
µ(t)w∆

1 (t) + w1(t)
)](

ω1(t)− w1(t)
)∆

+
(
ω2(t)− w2(t)

)∆(
ω2(t)− w2(t)

)
+
[(
µ(t)ω∆

2 (t) +ω2(t)
)

−
(
µ(t)w∆

2 (t) + w2(t)
)](

ω2(t)− w2(t)
)∆

=
[
2
(
ω1(t)− w1(t)

)
+ µ(t)

(
ω1(t)− w1(t)

)∆] (
ω1(t)− w1(t)

)∆
+
[
2
(
ω2(t)− w2(t)

)
+ µ(t)

(
ω2(t)− w2(t)

)∆] (
ω2(t)− w2(t)

)∆
.

So,

D+V∆
(
t,W1(t),W2(t)

)
= V1 + V2, (10)

where

V1 =
[
2
(
ω1(t)− w1(t)

)
+ µ(t)

(
ω1(t)− w1(t)

)∆] (
ω1(t)− w1(t)

)∆
,

V2 =
[
2
(
ω2(t)− w2(t)

)
+ µ(t)

(
ω2(t)− w2(t)

)∆] (
ω2(t)− w2(t)

)∆
.

From the system (9), we have

(
ω1(t)− w1(t)

)∆
= a11(t)

[
1

a12(t) + a13(t) exp{ω1(t)}
− 1

a12(t) + a13(t) exp{w1(t)}

]
− b1(t)[exp{ω1(t)} − exp{w1(t)}] + c(t)

[
exp{ω2(t)}

d(t) + exp{2ω2(t)}
− exp{w2(t)}
d(t) + exp{2w2(t)}

]
and

(
ω2(t)− w2(t)

)∆
= a21(t)

[
1

a22(t) + a23(t) exp{ω2(t)}
− 1

a22(t) + a23(t) exp{w2(t)}

]
− b2(t)[exp{ω2(t)} − exp{w2(t)}].

By mean value theorem, there exit ξi(t),ηi(t), i = 1, 2 lie between ωi(t) and wi(t),
and ξ(t) lie between ω2(t) and w2(t) such that

exp{ωi(t)} − exp{wi(t)} = exp{ξi(t)}[ωi(t)− wi(t)],

exp{ω2(t)}
d(t) + exp{2ω2(t)}

− exp{w2(t)}
d(t) + exp{2w2(t)}

=

[
d− exp{3ξ(t)}

(d+ exp{2ξ(t)})2

]
[ω2(t)− w2(t)],
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1

ai2(t) + ai3(t) exp{ωi(t)}
− 1

ai2(t) + ai3(t) exp{wi(t)}

=

[
ai3(t) exp{ηi(t)}

(ai2(t) + ai3(t) exp{ηi(t)})2

]
[ωi(t)− wi(t)].

Therefore,

(
ω1(t)− w1(t)

)∆
=

[
a11(t)a13(t) exp{η1(t)}

(a12(t) + a13(t) exp{η1(t)})2

]
[ω1(t)− w1(t)]

− b1(t) exp{ξ1(t)}[ω1(t)− w1(t)] +

[
c(t)(d− exp{3ξ(t)})
(d+ exp{2ξ(t)})2

]
[ω2(t)− w2(t)],

and

(
ω2(t)− w2(t)

)∆
=

[
a21(t)a23(t) exp{η2(t)}

(a22(t) + a23(t) exp{η2(t)})2

]
[ω2(t)− w2(t)]

− b2(t) exp{ξ2(t)}[ω2(t)− w2(t)].

Now from (10), we have

V1 =

[
2
(
ω1(t)− w1(t)

)
+ µ(t)

([
a11(t)a13(t) exp{η1(t)}

(a12(t) + a13(t) exp{η1(t)})2

]
[ω1(t)− w1(t)]

− b1(t) exp{ξ1(t)}[ω1(t)− w1(t)] +

[
c(t)(d− exp{3ξ(t)})
(d+ exp{2ξ(t)})2

]
[ω2(t)− w2(t)]

)]
×
[ [

a11(t)a13(t) exp{η1(t)}
(a12(t) + a13(t) exp{η1(t)})2

]
[ω1(t)− w1(t)]

− b1(t) exp{ξ1(t)}[ω1(t)− w1(t)] +

[
c(t)(d− exp{3ξ(t)})
(d+ exp{2ξ(t)})2

]
[ω2(t)− w2(t)]

]
=

[
2

(
a11(t)a13(t) exp{η1(t)}

(a12(t) + a13(t) exp{η1(t)})2
− b1(t) exp{ξ1(t)}

)
+ µ(t)(b1(t))

2 exp{2ξ1(t)}+ µ(t)

(
a11(t)a13(t) exp{η1(t)}

(a12(t) + a13(t) exp{η1(t)})2

)2

− 2b1(t)a11(t)a13(t) exp{ξ1(t) + η1(t)}
(a12(t) + a13(t) exp{η1(t)})2

]
[ω1(t)− w1(t)]

2

+ µ(t)

[
c(t)(d(t)− exp{3ξ(t)})
(d(t) + exp{2ξ(t)})2

]2
[ω2(t)− w2(t)]

2

+ 2

[
µ(t)

(
a11(t)a13(t) exp{η1(t)}

(a12(t) + a13(t) exp{η1(t)})2

)(
c(t)(d(t)− exp{3ξ(t)})
(d(t) + exp{2ξ(t)})2

)
+
(
1− µ(t)b1(t) exp{ξ1(t)}

)(c(t)(d(t)− exp{3ξ(t)})
(d(t) + exp{2ξ(t)})2

)]
× [ω1(t)− w1(t)][ω2(t)− w2(t)]
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≤
[
2A1 − 2bL1 e

ℓ1 + µU
(
bU1

)2
e2κ1 + µUA 2

1 − 2bL1 A2e
ℓ1
]
[ω1(t)− w1(t)]

2

+ µUB2
1 [ω2(t)− w2(t)]

2

+ 2[µUA1B1 + B1 − µLbL1 e
ℓ1B2][ω1(t)− w1(t)][ω2(t)− w2(t)]

Since 2ab ≤ a2 + b2 for any a, b ∈ R, it follows that

V1 ≤−
[(
2bL1 e

ℓ1 + 2bL1 A2e
ℓ1 + µLbL1 e

ℓ1B2

)
−
(
2A1 + µU

(
bU1

)2
e2κ1 + µUA 2

1 + µUA1B1 + B1

)]
[ω1(t)− w1(t)]

2

+
[
µLbL1 e

ℓ1B2 −
(
µUB2

1 + µUA1B1 + B1

)]
[ω2(t)− w2(t)]

2.


(11)

Similarly, we can find

V2 ≤ −
[
2bL2 e

ℓ2
(
1 + µLC2

)
−
(
2C1 + µUC 2

1 + µU (bU2 )
2e2κ2

)]
[ω2(t)− w2(t)]

2.

(12)

From (10), (11) and (12), we get

D+V∆
(
t,W1(t),W2(t)

)
= V1 + V2

= −
[(
2bL1 e

ℓ1 + 2bL1 A2e
ℓ1 + µLbL1 e

ℓ1B2

)
−
(
2A1 + µU

(
bU1

)2
e2κ1 + µUA 2

1 + µUA1B1 + B1

)]
[ω1(t)− w1(t)]

2

−
[(
µLbL1 e

ℓ1B2 + 2bL2 e
ℓ2
(
1 + µLC2

))
−

(
µUB2

1 + µUA1B1 + B1 + 2C1 + µUC 2
1 + µU (bU2 )

2e2κ2
)]
[ω2(t)− w2(t)]

2

= −Γ1[ω1(t)− w1(t)]
2 − Γ2[ω2(t)− w2(t)]

2

≤ −λV(t,W1(t),W2(t)).

where λ = min{Γi : i = 1, 2} > 0 and −λ ∈ R+. Thus, the assumption (iii) of
Lemma 2.7 is satisfied and hence, it follows from Lemma 2.7 that there exists a
unique uniformly asymptotically stable almost periodic solution

(
ω1(t),ω2(t)

)
of

dynamic system (2) and
(
ω1(t),ω2(t)

)
∈ Λ. This completes the proof. ■

5. Numerical simulations

In this section we present an example to check the validity of our main results.
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Example 5.1 Consider the following system for T+ = R+.

u′1(t) =u1(t)

[
a11(t)

a12(t) + a13(t)u1(t)
− a14(t)− b1(t)u1(t) +

c(t)u2(t)

d(t) + u22(t)

]
,

u′2(t) =u2(t)

[
a21(t)

a22(t) + a23(t)u2(t)
− a24(t)− b2(t)u2(t)

]
,

 (13)

where 
a11 a21
a12 a22
a13 a23
a14 a24

 =


50 + 0.1 sin(

√
3t) 48 + 0.1 sin(

√
5t)

15 + 0.2 sin(
√
2t) 28 + 0.1 sin(

√
3t)

0.2 + 0.1 sin(
√
5t) 120 + 0.2 sin(

√
2t)

0.03 + 0.01 sin(
√
2t) 0.002 + 0.01 sin(

√
3t)


[
b1
b2

]
=

[
1.4 + 0.1 cos(

√
2t)

1.4− 0.1 sin(
√
5t)

]
,

[
c
d

]
=

[
0.4 + 0.1 sin(

√
2t)

3.2 + 0.1 sin(
√
3t)

]
.

By calculating, we get

57.5 = aU11 + cUaL12 > 19.536 =
[
aL14 + bL1

]
aL12,

48.1 = aU21 > 36.0468 =
[
aL24 + bL2

]
aL22,

which shows that (5) holds and κ1 = 1.973180873,κ2 = 0.3323187208. Now we
check (6),

49.9 = aL11 > 0.8957408724 = aU14
(
aU12 + exp{κ1}

)
,

47.9 = aL21 > 0.3539303657 = aU24
(
aU22 + exp{κ2}

)
.

So, ℓ1 = 0.3776703951, ℓ2 = 0.07204048280. From these values we obtain,

A1 = 0.4840130676, A2 = 0.02416120093, B1 = 0.05685627445,

B2 = 0.04254742499, C1 = 0.3284875457, C2 = 0.1610553506.

By above values (note that for T = R, µ(t) = 0), we get

Γ1 = 2.859856503, Γ2 = 2.080385645.

λ = min{Γi : i = 1, 2} > 0 and −λ ∈ R+. From Fig. 1-3, it is easy to see
that for system (13) there exists a positive almost periodic solution denoted by(
ω∗

1(t),ω
∗
2(t)

)
. Moreover, Fig. 4-5 shows that any positive solution

(
ω1(t),ω2(t)

)
tends to the above almost periodic solution

(
ω∗

1(t),ω
∗
2(t)

)
.
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