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1. Introduction

Fuzzy differential equations are important topic. Thus, many researchers study
fuzzy differential equation. Especially, to solve fuzzy differential equation is useful
by fuzzy Laplace transform. In many papers, fuzzy Laplace transform was used
[2, 4, 8, 9, 11].

In this paper, we study the solutions of the fuzzy problem

y(iv) (t) + [λ]α y
′′
(t) = [µ]α , (1)
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y (0) = [A]α , y
′
(0) = [B]α , y

′′

(0) = [C]α , y
′′′

(0) = [D]α (2)

by the fuzzy Laplace transform for positive and negative fuzzy number coeffi-
cients, where

[λ]α =
[
λα, λα

]
, [µ]α =

[
µ
α
, µα

]
, [A]α =

[
Aα, Aα

]
,

[B]α =
[
Bα, Bα

]
, [C]α =

[
Cα, Cα

]
, [D]α =

[
Dα, Dα

]
are symmetric triangular fuzzy numbers, y (t) is positive fuzzy function, y,

y
′
, y

′′
, y

′′′
are (i)-differentiable.

2. Preliminaries

Definition 2.1 ([7]) A fuzzy number is a mapping u : R → [0, 1] satisfying the

properties {x ∈ R | u (x) > 0} is compact, u is normal, u is convex fuzzy set, u is
upper semi-continuous on R.

Let RF show the set of all fuzzy numbers.

Definition 2.2 ([6]) Let be u ∈ RF . [u]
α = [uα, uα] = {x ∈ R | u (x) ⩾ α} , 0 <

α ⩽ 1 is α-level set of u. If α = 0, [u]0 = cl {suppu} = cl {x ∈ R | u (x) > 0} .

Remark 2.3 ([6]) The parametric form [uα, uα] of a fuzzy number satisfying the
following requirements is a valid α-level set.
uα is bounded monotonic increasing (nondecreasing) left-continuous ∀α ∈ (0, 1]

and right-continuous for α = 0,
uα is bounded monotonic decreasing (nonincreasing) left-continuous ∀α ∈ (0, 1]

and right-continuous for α = 0,
uα ⩽ uα, 0 ⩽ α ⩽ 1.

Definition 2.4 ([12]) A fuzzy number u is called positive (negative), denoted by
u > 0 (u < 0), if its membership function u(x) satisfies u(x) = 0, ∀x < 0 (x > 0).

Definition 2.5 ([6, 10]) Let be u, v ∈ RF . If there exists w ∈ RF such that u =
v + w, w is the Hukuhara difference of u and v, w = u⊖ v.

Definition 2.6 ([3, 6]) Let be f : [a, b] → RF and x0 ∈ [a, b] . If there exists
f

′
(x0) ∈ RF such that for all h > 0 sufficiently small, ∃f (x0 + h)⊖f (x0) , f (x0)⊖

f (x0 − h) and the limits hold

lim
h→0

f (x0 + h)⊖ f (x0)

h
= lim

h→0

f (x0)⊖ f (x0 − h)

h
= f

′
(x0) ,

f is Hukuhara differentiable at x0.

Definition 2.7 ([6]) Let be f : [a, b] → RF and x0 ∈ [a, b] . If there exists f
′
(x0) ∈

RF such that for all h > 0 sufficiently small, ∃f (x0 + h)⊖f (x0) , f (x0)⊖f (x0 − h)
and the limits hold

lim
h→0

f (x0 + h)⊖ f (x0)

h
= lim

h→0

f (x0)⊖ f (x0 − h)

h
= f

′
(x0) ,
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f is (i)-differentiable at x0. If there exists f
′
(x0) ∈ RF such that for all h > 0

sufficiently small, ∃f (x0)⊖ f (x0 + h) , f (x0 − h)⊖ f (x0) and the limits hold

lim
h→0

f (x0)⊖ f (x0 + h)

−h
= lim

h→0

f (x0 − h)⊖ f (x0)

−h
= f

′
(x0) ,

f is (ii)-differentiable.

Theorem 2.1 ([5]) Let f : [a, b] → RF be fuzzy function and denote [f (x)]α =[
f
α
(x) , fα (x)

]
, for each α ∈ [0, 1] .

1) If f is (i)-differentiable, f
α

and fα are differentiable,
[
f

′
(x)
]α

=[
f

′

α
(x) , f

′

α (x)
]
,

2) If f is (ii)-differentiable, f
α

and fα are differentiable,
[
f

′
(x)
]α

=[
f

′

α (x) , f
′

α
(x)
]
.

Theorem 2.2 ([5]) Let f
′
: [a, b] → RF be fuzzy function and denote [f (x)]α =[

f
α
(x) , fα (x)

]
, for each α ∈ [0, 1] , the function f is (i)-differentiable or (ii)-

differentiable.
1) If f and f

′
are (i)-differentiable, f

′

α
and f

′

α are differentiable,
[
f

′′
(x)
]α

=[
f

′′

α
(x) , f

′′

α (x)
]
,

2) If f is (i)-differentiable and f
′
is (ii)-differentiable, f

′

α
and f

′

α are differentiable,[
f

′′

(x)
]α

=

[
f

′′

α (x) , f
′′

α
(x)

]
,

3) If f is (ii)-differentiable and f
′
is (i)-differentiable, f

′

α
and f

′

α are differentiable,[
f

′′

(x)
]α

=

[
f

′′

α (x) , f
′′

α
(x)

]
,

4) If f and f
′
are (ii)-differentiable, f

′

α
and f

′

α are differentiable,
[
f

′′
(x)
]α

=[
f

′′

α
(x) , f

′′

α (x)
]
.

Definition 2.8 ([11]) Let f : [a, b] → RF be fuzzy function. The fuzzy Laplace
transform of f is

F (s) = L (f (t)) =

∞∫
0

e−stf (t) dt =

 lim
τ→∞

τ∫
0

e−stf (t) dt, lim
τ→∞

τ∫
0

e−stf (t) dt

 .

F (s, α) = L ((f (t))α) =
[
L
(
f
α
(t)
)
, L
(
fα (t)

)]
.

L
(
f
α
(t)
)
=

∞∫
0

e−stf
α
(t) dt = lim

τ→∞

τ∫
0

e−stf
α
(t) dt,

L
(
fα (t)

)
=

∞∫
0

e−stfα (t) dt = lim
τ→∞

τ∫
0

e−stfα (t) dt.
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Theorem 2.3 ([1]) Suppose that f, f
′
, ..., f (n−1) are continuous fuzzy-valued func-

tions on [0,∞) and of exponential order and that f
(n)

is piecewise continuous
fuzzy-valued function on [0,∞) . Then

L
(
f (n) (t)

)
= snL (f (t))⊖ sn−1f (0)⊖ sn−2f

′
(0)⊖ sn−3f

′′
(0)⊖ ...⊖ f

(n−1)

(0) ,

if f, f
′
, ..., f (n−1) are (i)-differentiable.

L
(
f (n) (t)

)
= ⊖

(
f

(n−1)

(0)
)
⊖ (−sn)L (f (t))⊖ sn−1f (0)

⊖sn−2f
′
(0)⊖ ...⊖ sn−(n−1)f

(n−2)

(0) ,

if f, f
′
, ..., f (n−2) are (i)-differentiable and f (n−1) is (ii)-differentiable.

L
(
f (n) (t)

)
= ⊖(sn−(n−1)f

(n−2)

(0))⊖ f
(n−1)

(0)⊖ (−sn)L (f (t))⊖ sn−1f (0)

⊖sn−2f
′
(0)⊖ ...⊖

(
sn−(n−2)

)
f

(n−3)

(0) ,

if f, f
′
, ..., f (n−3) are (i)-differentiable and f (n−1), f (n−2) are (ii)-differentiable.

Similarly

L
(
f (n) (t)

)
= ⊖(sn−1f (0))⊖ (−sn)L (f (t))⊖ sn−2f

′
(0)⊖ ...⊖ f

(n−1)

(0) ,

if f
′
, ..., f (n−1) are (i)-differentiable and f is (ii)-differentiable.

Continuing the process until we obtain 2n system of differential equations, hence
according to [2] the last equation is

L
(
f (n) (t)

)
= snL (f (t))⊖ sn−1f(0)⊖ sn−2f

′
(0)⊖ sn−3f

′′
(0) ...− f

(n−1)

(0) ,

if f, f
′
, ..., f (n−1) are (ii)-differentiable.

Theorem 2.4 ([2]) Let f (t), g (t) be continuous fuzzy-valued functions and c1
and c2 constants, then

L (c1f (t) + c2g (t)) = (c1L (f (t))) + (c2L (g (t))) .

3. Main results

3.1 The problem with positive fuzzy coefficient

Let be [λ]α is positive fuzzy number. Taking the fuzzy Laplace transform of the
equation (1), we have the equations

s4Y α (s)− s3y
α
(0)− s2y

′

α
(0)− sy

′′

α
(0)− y

′′′

α
(0)

+λα

(
s2Y α (s)− sy

α
(0)− y

′

α
(0)
)
=

µ
α

s
,
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s4Y α (s)− s3yα (0)− s2y
′

α (0)− sy
′′

α (0)− y
′′′

α (0)

+λα

(
s2Y α (s)− syα (0)− y

′

α (0)
)
=

µα

s
.

Using the initial conditions (2),

Y α (s) =
µ
α

s3 (s2 + λα)
+

Aα

s
+

Bα

s2
+

Cα

s (s2 + λα)
+

Dα

s2 (s2 + λα)
,

Y α (s) =
µα

s3
(
s2 + λα

) + Aα

s
+

Bα

s2
+

Cα

s
(
s2 + λα

) + Dα

s2
(
s2 + λα

)
are obtained. From this, the solution is

y
α
(t) = Aα +

Dα

λα

−
µ
α

λ2
α

+

(
Bα +

Cα

λα

)
t+

µ
α

λα

t2

+

(
µ
α

λ2
α

− Dα

λα

)
cos (λαt)−

Cα√
(λα)

3
sin (λαt) ,

yα (t) = Aα +
Dα

λα

− µα

λ
2
α

+

(
Bα +

Cα

λα

)
t+

µα

λα

t2

+

(
µα

λ
2
α

− Dα

λα

)
cos
(
λαt
)
− Cα√(

λα

)3 sin (λαt
)
,

[y (t)]α =
[
y
α
(t) , yα (t)

]
.

Example 3.1 Consider the problem

y(iv)(t) + [1]α y
′′
(t) = [2]α ,

y(0) = [0]α , y
′
(0) = [1]α , y

′′
(0) = [2]α , y

′′′
(0) = [3]α

by fuzzy Laplace transform, where [0]α = [−1 + α, 1− α] , [1]α = [α, 2− α] ,

[2]α = [1 + α, 3− α] , [3]α = [2 + α, 4− α] .
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The solution of the fuzzy problem is

y
α
(t) = −1 + α+

(
α2 + α+ 1

α

)
t+

1 + α

α
t2

+

(
1− α− α2

α2

)
(cos (αt)− 1)−

(
1 + α√

α3

)
sin (αt) ,

yα (t) = 1− α+

(
(2− α)2 + 3− α

2− α

)
t+

3− α

2− α
t2

+

(
5α− α2 − 5

(2− α)2

)
(cos ((2− α) t)− 1)−

 3− α√
(2− α)3

 sin ((2− α) t) ,

[y (t)]α =
[
y
α
(t) , yα (t)

]
.

Figure 1. Graphic of solution for α = 0.5; Blue: yα (t), Red: y
α
(t), Green: y1 (t) = y

1
(t).

According to Remark 1, y (t) is a valid fuzzy function for t ∈ (0.240824, 2.40719)
in Figure ??.

3.2 The problem with negative fuzzy coefficient

Let be [λ]α is negative fuzzy number. Taking the fuzzy Laplace transform of the
equation (1), we have the equations

s4Y α (s)− s3y
α
(0)− s2y

′

α
(0)− sy

′′

α
(0)− y

′′′

α
(0)

+s2λαY α (s)− sλαyα (0)− λαy
′

α (0) =
µ
α

s
,

s4Y α (s)− s3yα (0)− s2y
′

α (0)− sy
′′

α (0)− y
′′′

α (0)
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+s2λαY α (s)− sλαyα (0)− λαy
′

α
(0) =

µα

s

Using the initial conditions (2),

s2Y α (s) + λαY α (s) =
µ
α

s3
+ sAα +Bα +

Cα

s
+

Dα

s2
+

λαAα

s
+

λαBα

s2
, (3)

s2Y α (s) + λαY α (s) =
µα

s3
+ sAα +Bα +

Cα

s
+

Dα

s2
+

λαAα

s
+

λαBα

s2
(4)

are obtained. If Y α (s) in the equation (4) is replaced by the equation (3) and
making the necessary operations, we have

Y α (s) = − µαλα

s3
(
s4 − λαλα

) − (Dαλα + λαλαBα

)
s2
(
s4 − λαλα

) +
µ
α
− Cαλα − λαλαAα

s
(
s4 − λαλα

)
+

Dα(
s4 − λαλα

) + Cαs(
s4 − λαλα

) + Bαs
2(

s4 − λαλα

) + Aαs
3(

s4 − λαλα

) .

From this, the lower solution is obtained as

y
α
(t) =

µα

λα

t2 +
Dα

λα

t+Aα +Bα +
Cα

λα

−
µ
α

λαλα

+

 Cαλα − µα

2

√
λα

(
λα

)3
(cosh( 4

√
λαλαt

)
− cos

(
4

√
λαλαt

))

−

 Dα

2
4

√
λα

(
λα

)5
(sinh( 4

√
λαλαt

)
+ sin

(
4

√
λαλαt

))

+

(
µ
α
− Cαλα

2λαλα

)(
cosh

(
4

√
λαλαt

)
+ cos

(
4

√
λαλαt

))

+

 Dα

2
4

√(
λαλα

)3
(sinh( 4

√
λαλαt

)
− sin

(
4

√
λαλαt

))
.
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Similarly, the upper solution is obtained as

yα (t) =
µ
α

λα

t2 +
Dα

λα

t+Aα +Bα +
Cα

λα

− µα

λαλα

+

 Cαλα − µ
α

2
√

(λα)
3 λα

(cosh( 4

√
λαλαt

)
− cos

(
4

√
λαλαt

))

−

 Dα

2 4

√
(λα)

5 λα

(sinh( 4

√
λαλαt

)
+ sin

(
4

√
λαλαt

))

+

(
µα − Cαλα

2λαλα

)(
cosh

(
4

√
λαλαt

)
+ cos

(
4

√
λαλαt

))

+

 Dα

2
4

√(
λαλα

)3
(sinh( 4

√
λαλαt

)
− sin

(
4

√
λαλαt

))
.

Consequently, the solution is

[y (t)]α =
[
y
α
(t) , yα (t)

]
.

Example 3.2 Consider the problem

y(iv)(t) + [−1]α y
′′
(t) = [2]α ,

y(0) = [0]α , y
′
(0) = [1]α , y

′′
(0) = [2]α , y

′′′
(0) = [3]α

by fuzzy Laplace transform, where [−1]α = [−2 + α,−α] , [0]α = [−1 + α, 1− α] ,
[2]α = [1 + α, 3− α] , [3]α = [2 + α, 4− α] .
The solution of the fuzzy problem is

y
α
(t) =

(
α− 3

α

)(
t2 + 1

)
+

(
α− 4

α

)
t+

5α2 − 2α3 − 3α− 1

α (α− 2)

−

(
α2 + 3

2
√
α3 (2− α)

)(
cosh

(
4
√
α (2− α)t

)
− cos

(
4
√
α (2− α)t

))

+

(
α− 4

2 4
√

α5 (2− α)

)(
sinh

(
4
√
α (2− α)t

)
+ sin

(
4
√
α (2− α)t

))
+

(
α2 − 4α+ 7

2α (2− α)

)(
cosh

(
4
√
α (2− α)t

)
+ cos

(
4
√

α (2− α)t
))

+

 2 + α

2 4

√
(α (2− α))3

(sinh( 4
√

α (2− α)t
)
− sin

(
4
√
α (2− α)t

))
.
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Figure 2. Graphic of solution for α = 0.5; Blue: yα (t), Red: y
α
(t), Green: y1 (t) = y

1
(t).

yα (t) = −
(
1 + α

2− α

)(
t2 + 1

)
−
(
2 + α

2− α

)
t+

2α3 − 7α2 + 7α− 3

α (α− 2)

+

 4α− α2 − 7

2
√
α (2− α)3

(cosh( 4
√
α (2− α)t

)
− cos

(
4
√
α (2− α)t

))

−

 2 + α

2 4

√
α (2− α)5

(sinh( 4
√
α (2− α)t

)
+ sin

(
4
√
α (2− α)t

))

+

(
α2 + 3

2α (2− α)

)(
cosh

(
4
√
α (2− α)t

)
+ cos

(
4
√

α (2− α)t
))

+

 4− α

2 4

√
(α (2− α))3

(sinh( 4
√

α (2− α)t
)
− sin

(
4
√
α (2− α)t

))
,

[y (t)]α =
[
y
α
(t) , yα (t)

]
.

According to Remark 1 and since y (t) is positive fuzzy function, y (t) is a valid
fuzzy function for t ∈ (0, 0.891621) in Figure 2.

4. Conclusions

In this paper, fuzzy initial value problems for fourth-order fuzzy differential equa-
tions with positive and negative fuzzy number coefficients are studied by fuzzy
Laplace transform. Examples are solved. Graphics of solutions are drawn using
the Mathematica program. It is found that the solutions are valid fuzzy functions
in different interval. Also, when initial values are triangular fuzzy numbers, the
solutions are triangular fuzzy numbers for any t > 0 time.
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