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Abstract. In this paper, the optimal control of transmission dynamics of hand, foot and
mouth disease (HFMD), formulated by a compartmental deterministic SEIPR (Susceptible-
Incubation (Exposed)- Infected - Post infection virus shedding - Recovered) model with vac-
cination and treatment as control parameters is considered. The objective function is based
on the combination of minimizing the number of infected individuals and the cost involved
in the interventions of vaccination given to the susceptible population and treatment given
to the infected population. The existence for the optimal control pair is proved and the char-
acterization of the optimal control pair is obtained by applying the Pontryagin’s maximum
principle. The variational iteration method is adopted to solve the non-linear Hamilton equa-
tions derived from the Pontryagin’s maximum principle theory. These equations constitute a
two-point boundary value problem. By considering the correction functionals of the Hamilton
equations, the Lagrange multipliers are easily identified and practical iteration formulas are
derived. An algorithm is developed, based on this formulas, to determine iteratively the solu-
tions of the Hamilton equations with a desired accuracy. With the aid of solutions obtained,
the optimal control law can be easily deduced. The results were analyzed and interpreted
graphically using Maple.
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1. Introduction

Hand foot and mouth disease - a mild, contagious viral infection common in young
children is characterized by sores in the mouth and a rash on the hands and feet.
Hand foot and mouth disease is most commonly caused by a coxsackievirus. The
coxsackievirus belongs to a group of viruses called nonpolio enteroviruses. En-
terovirus 71 (EV-71) is the second-most common cause. Many other strains of
coxsackievirus and enterovirus can also be responsible. Oral ingestion is the main
source of coxsackievirus infection.
The usual period from initial infection to the onset of signs and symptoms

(incubation period) is three to six days. A fever is often the first sign of hand
foot and mouth disease, followed by a sore throat and sometimes a poor appetite
and malaise. One or two days after the fever begins, painful sores may develop
in the front of the mouth or throat. A rash on the hands and feet and possibly
on the buttocks can follow within one or two days. Sores that develop in the
back of the mouth and throat may suggest that your child is infected with a
related viral illness called herpangina. Other distinguishing features of herpangina
include a sudden high fever and in some instances, seizure. Sores that develop on
the hands, feet or other parts of the body are very rare. The illness spreads by
person-to-person contact with an infected person.

The first HFMD case was reported in New Zealand in 1957, which is now endemic
worldwide. Research literature for past 25 years from Asia describes the epidemiol-
ogy of HFMD, drawing on pediatric groups, national surveillance systems, outbreak
investigations and clinical data. HFMD occurs in various countries that span stages
of economic development and with climates that range from tropical to temperate
[11]. This diversity complicates the attempts to identify and understand the general
features of epidemiology and pathobiology of HFMD. Urashima et al.[21] tried to
find the relationship between the out break of HFMD with the weather patterns in
Taiwan and Tokyo, respectively. Hongwu Tan and Hui Cao[18] used mathematical
modeling to gain some insights into the transmission dynamics of HFMD when the
population is vaccinated.
Some mathematical modelers have developed models for analysing the dynamic

behaviour of the HFMD. SEIR model was analysed theoretically by using
numerical simulation which showed that the number of actively infective people
at initial time and the disease transmission coefficient play more role on the
transmission was done by Nandita Roy and Nilimesh Halder[16]. To curtail
HFMD in Sarawak, a simple deterministic model has been studied [20]. To
predict the real dynamics of Hand, Foot and Mouth infection, [4] hypothesized
a model by including the incubation period and post infection virus shedding
period. Liu[13] used the SEIQRS model to take into account the quarantine mea-
sure. Samanta [17] discussed a delay HFMD model with pulse vaccination strategy.

Optimal control theory is used extensively in controlling the spread of infectious
diseases. It is a powerful mathematical tool that can be used to make decisions
involving complex biological situation. It is often used in the control of the spread
of most diseases for which either vaccine or treatment is available. Gaff and Schae-
fer [7] applied optimal control theory to a set of epidemiological models in their
attempt to find the most effective control strategy to minimize the number of indi-
viduals who become infected in the course of an epidemic using both treatment and
vaccination as control measures. Zaman et al.[24] concentrated on an SIR model
using only vaccination as their control. Blayneh et al.[2] considered prevention
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and treatment as controls and studied optimal control of a vector-borne disease.
Ebenezer et al.[3] applied control theory to study about the reduction of the Ebola
infection using three different controls. Bakare [1] analyzed SIR epidemic model
and derived basic reproduction number and applied optimal control theory to min-
imize the total number of infective individuals and the cost associated with the
use of educational campaign and treatment. Tunde Tajudeen Yusuf and Francis
Benyah[23], in their paper addressed how to optimally combine the vaccination
and the treatment strategies such that the cost of the implementation of the two
interventions is minimized while the disease is eradicated within specified period.
Devipriya and Kalaivani [5] considered immune boosting and pathogen suppress-
ing drugs as their controls for the multiple transmission of water-borne disease and
obtained optimal solution in minimizing the number of infected individuals and
the cost of the drug dose usage in the eradication of water-borne disease.
Several methods are available in the literature to solve optimal control problems.

On one side, analytical theories, even if problems are in general solved numerically,
include Variational Calculus [22], Hamilton-Jacobi and Pontryagin’s principle of
minimum or maximum [15] for systems described by continuous state-space models
and dynamic programming. Non-linear differential equations can be solved easily
and with high accuracy by means of the variational iteration method proposed by
He [8], a good approximate solutions can be achieved by using practical iterative
formulas derived from the correction functionals.
To the best of our knowledge, the optimal control of HFMD model by He’s varia-

tional iteration method is nevertheless considered. Thus, an attempt is made in this
paper. The mathematical formulation of HFMD model is given in section 2. In sec-
tion 3, the controlled SEIPR model is considered and the existence optimal control
pair is proved followed by its characterization with aid of Pontryagin’s maximum
principle. The optimality system so obtained is a two point nonlinear boundary
value problem which is numerically solved using variational iteration method in
section 4. In section 5, the results are analyzed and graphically interpreted using
Maple.

2. Mathematical formulation of hand, foot and mouth disease

The mathematical model of HFMD is formulated by improving standard SIR model
[20] by adding the compartments of the incubation group and post-infection virus
shedding group which is a a simple deterministic SEIPR model to deal with the
periodic infected cases. The population is split into five compartments namely
the susceptible group (S), the incubation group (E), the infectious group (I), the
post-infection virus shedding group (P) and the fully recovered group (R). The
susceptible class increases through the natural birth and fully recovered individu-
als who have lost their immunity. Meanwhile, the susceptible class also decreases
through the natural death, the moving to incubation group, infectious group and
post-infection virus shedding group. The susceptible (S) gains the HFMD infection
through the contact with the asymptomatic patients (E), symptomatic patients
(I) or with those carrying post-infection virus individuals (P) [14]. Once infected,
the asymptomatic patients will move to incubation group (E). During this incuba-
tion period, HFMD patients have no symptom shown. Symptoms can be developed
within few days [14, 20], however after many simulations ran, it was assumed that
symptoms are developed in about one day and the patients are moved to the in-
fected group (I). Another one week, when the symptoms subside then they will
move to the post-infection virus shedding group (P) where the patients are said
to be clinically recovered and do not exhibit any symptoms, but the virus may
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continue to shed. One more week later, the patients are fully recovered and will
move to fully recovered group (R) [12]. An individual will attain an immunity from
HFMD after recovery, however the patient can be infected again through different
HFMD viruses. Thus, the recovered patient returns to susceptible class and capa-
ble to be infected again. Now let us formulate the Mathematical model of HFMD
by the following system of nonlinear differential equations[4]:

dS(t)

dt
= k1 + β7R(t)− β1S(t)E(t)− β5S(t)I(t)− β6S(t)P (t)− k2S(t)

dE(t)

dt
= β1S(t)E(t) + β5S(t)I + β6S(t)P − β2E(t)− k2E(t)

dI(t)

dt
= β2E(t)− β3I(t)− (k2 + k3)I(t)

dP (t)

dt
= β3I(t)− β4P (t)− k2P (t)

dR(t)

dt
= β4P (t)− k2R(t)− β7R(t)

(1)

with initial data

S(0) ⩾ 0; E(0) ⩾ 0; I(0) ⩾ 0; P (0) ⩾ 0; R(0) ⩾ 0,

where k1 and k2 represent natural birth and death rate, k3 represents the death
rate due to the disease, β1 denote the transmission coefficient of susceptible indi-
viduals (S) getting infected by exposed individuals (E), β2 denote the transmission
coefficient of susceptible individuals (S) getting infected by infectious individuals
(I), β3 denote the transmission coefficient of susceptible individuals (S) getting in-
fected by clinically recovered individuals (P). The rate at which an asymptomatic
patient developing symptoms per unit time is given by α, the rate at which an
infectious individual clinically recovered per unit time is given by ν1, the rate at
which a clinically recovered individual fully recovered per unit time is given by ν2
and the rate at which a recovered individual loses its immunity is given by γ.

3. Controlled HFMD model

Consider the controlled SEIPR model

dS(t)

dt
= k1 + β7R(t)− β1S(t)E(t)− β5S(t)I(t)− β6S(t)P (t)− k2S(t)− u1(t)S(t)

dE(t)

dt
= β1S(t)E(t) + β5S(t)I(t) + β6S(t)P (t)− β2E(t)− k2E(t)

dI(t)

dt
= β2E(t)− β3I(t)− (k2 + k3)I(t)− u2(t)I(t)

dP (t)

dt
= β3I(t)− β4P (t)− k2P (t)

dR(t)

dt
= β4P (t)− k2R(t)− β7R(t) + u1(t)S(t) + u2(t)I(t)

(2)
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with initial conditions

S(0) = 10000, E(0) = 4, I(0) = 4, P (0) = 4, R(0) = 0 (3)

where u1(t) and u2(t) are controls representing treatment given to the infected
individuals and vaccination given to the susceptible individuals, respectively.
The main objective is to minimize the number of infected and the cost involved
in the intervention of vaccination and treatment. Thus, the objective functional is
defined as

J(u1(t), u2(t)) =

∫ T

0
(A1I(t) +A2u

2
1(t) +A3u

2
2(t))dt (4)

where A1, A2 and A3 are positive weights that balance the size of terms. The
term A2u

2
1(t)and A3u

2
2(t) describe the cost associated with the intervention of vac-

cination and treatment. Here the aim is to minimize the number of infected and
cost involved in control strategies, the optimal control pair (u1

∗(t), u2
∗(t)) were

obtained such that

J(u1
∗(t), u2

∗(t)) = min
(
J(u1(t), u2(t))/(u1(t), u2(t)) ∈ U

)
(5)

where U = {(u1(t), u2(t))/ui(t) is measurable, 0 ⩽ ui(t) ⩽ 1, t ∈ [0, T ], for i =
1, 2} is the adimissible control set. Here, the value ui(t) = 1, i = 1, 2 represents the
maximal control due to vaccination and treatment provided.

3.1 Existence of an optimal control pair

The existence of the optimal control pair for the state system (2) can be obtained
by using a result by Fleming and Rishel [6].

Theorem 3.1 Consider the control problem with system (2). There exists a opti-
mal control pair (u∗1(t), u

∗
2(t)) ∈ U such that J(u∗1, u

∗
2) = minu1,u2∈U J(u1, u2).

Proof To prove the existence of an optimal control, we use the result in [6]. Note
that the control and the state variable are nonnegative values. In this minimizing
problem, the necessary convexity of the objective functional in u1, u2 is satisfied.
The set of all the control variable (u1, u2) ∈ U is also convex and closed by defini-
tion. The optimal system is bounded which determines the compactness needed for
the existence of the optimal control. In addition, the integrand in the functional
(3), A1I(t) + A2u

2
1(t) + A3u

2
2(t) is convex on the control set U. Also we can eas-

ily see that, there exist a constant ω > 1 and positive numbers ω1, ω2 such that
J(u1, u2) ⩾ ω1(|u1|2 + |u2|2)ω/2 − ω2, because, the state variables are bounded,
which completes the existence of an optimal control. ■

3.2 Characterization of the optimal control pair

According to the Pontryagin’s Maximum Principle, we now derive the necessary
conditions that a pair of optimal controls and corresponding states must satisfy.
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To this purpose, we define the Hamiltonian function for the system:

H(t, S, E, I, P,R, λS , λE , λI , λP , λR) = A1I(t) +A2u
2
1(t) +A3u

2
2(t) + λS(k1

+ β7R(t)− β1S(t)E(t)− β5S(t)I(t)− β6S(t)P (t)− k2

− u1(t)S(t)) + λE(β1S(t)E(t) + β5S(t)I(t) + β6S(t)P (t)

− β2E(t)− k2E(t)) + λI(β2E(t)− β3I(t)− (k2 + k3)I(t)

− u2(t)I(t)) + λP (t)(β3I(t)− β4P (t)− k2P (t)) + λR(β4P (t)

− k2R(t)− β7R(t) + u1(t)S(t) + u2(t)I(t))

(6)

Theorem 3.2 Given optimal controls u1
∗(t) and u2

∗(t) and solutions
S(t),E(t),I(t),P(t) and R(t) of the corresponding state system, there exists adjoint
variables λS(t),λE(t),λI(t),λP (t) and λR(t) satisfying

λ̇S(t) = λS(t)β1E(t) + λS(t)β5I(t) + λS(t)β6P (t) + λS(t)k2 + λS(t)u1(t)

− λE(t)β1E(t)− λE(t)β5I(t)− λE(t)β6P (t)− λR(t)u1(t)

λ̇E(t) = λS(t)β1S(t)− λE(t)β1S(t) + λE(t)β2 + λE(t)k2 − λI(t)β2(t)

λ̇I(t) = −A1 + λS(t)β5S(t)− λE(t)β5S(t) + λI(t)β3 + λI(t)(k2 + k3)

+ λI(t)u2(t)− λP (t)β3 − λR(t)u2(t)

λ̇P (t) = λS(t)β6S(t)− λE(t)β6S(t) + λP (t)β4 + λP (t)k2 − λR(t)β4

λ̇R(t) = −λS(t)β7 + λR(t)k2 + λR(t)β7

(7)

and λS(T ) = λE(T ) = λI(T ) = λP (T ) = λR(T ) = 0,
the transversality conditions.
Furthermore

u1
∗(t) = min

{
max

{
0,

S(t)(λS(t)− λR(t))

2A2

}
, 1

}
u2

∗(t) = min

{
max

{
0,

I(t)(λI(t)− λR(t))

2A3

}
, 1

} (8)

Proof The form of the adjoint equations and transversality conditions are standard
results from Pontryagin’s maximum principle. The adjoint system can be obtained
as follows:

λ̇S(t) = −∂H

∂S
= λS(t)β1E(t) + λS(t)β5I(t) + λS(t)β6P (t) + λS(t)k2 + λS(t)u1(t)

− λE(t)β1E(t)− λE(t)β5I(t)− λE(t)β6P (t)− λR(t)u1(t)

λ̇E(t) = −∂H

∂E
= λS(t)β1S(t)− λE(t)β1S(t) + λE(t)β2 + λE(t)k2 − λI(t)β2

λ̇I(t) = −∂H

∂I
= −A1 + λS(t)β5S(t)− λE(t)β5S(t) + λI(t)β3 + λI(t)(k2 + k3)

+ λI(t)u2(t)− λP (t)β3 − λR(t)u2(t)
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λ̇P (t) = −∂H

∂P
= λS(t)β6S(t)− λE(t)β6S(t) + λP (t)β4 + λP (t)k2 − λRβ4(t)

λ̇R(t) = −∂H

∂R
= −λS(t)β7 + λR(t)k2 + λR(t)β7

(9)

The optimality equations were given by:

∂H

∂u1
= 2A2u1(t)− λS(t)S(t) + λR(t)S(t) = 0 at u1

∗(t)

∂H

∂u2
= 2A3u2(t)− λI(t)I(t) + λR(t)I(t) = 0 at u2

∗(t)

(10)

Hence,

u1
∗(t) =

S(t)(λS(t)− λR(t))

2A2

u2
∗(t) =

I(t)(λI(t)− λR(t))

2A3

(11)

By using the bounds for the control u1, we get

u1
∗(t) =


S(t)(λS(t)−λR(t))

2A2
if 0 ≤ S(t)(λS(t)−λR(t))

2A2
≤ 1,

0 if S(t)(λS(t)−λR(t))
2A2

≤ 0,

1 if S(t)(λS(t)−λR(t))
2A2

≥ 1.

(12)

In compact notation,

u1
∗(t) = min

{
max

{
0,

S(t)(λS(t)− λR(t))

2A2

}
, 1

}
(13)

By using the bounds for the control u2, we get

u2
∗(t) =


I(t)(λI(t)−λR(t))

2A3
if 0 ≤ I(t)(λI(t)−λR(t))

2A3
≤ 1,

0 if I(t)(λI(t)−λR(t))
2A3

≤ 0,

1 if I(t)(λI(t)−λR(t))
2A3

≥ 1.

(14)

In compact notation,

u2
∗(t) = min

{
max

{
0,

I(t)(λI(t)− λR(t))

2A3

}
, 1

}
(15)
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Using (13) and (15), we have the following optimality system:

Ṡ(t) = k1 + β7R(t)− β1S(t)E(t)− β5S(t)I(t)− β6S(t)P (t)− k2S(t)

−min{max{0, S(t)(λS(t)− λR(t))

2A2
}, 1}S(t)

Ė(t) = β1S(t)E(t) + β5S(t)I(t) + β6S(t)P (t)− β2(t)E(t)− k2(t)E(t)

İ(t) = β2E(t)− β3I(t)− (k2 + k3)I(t)−min{max{0, I(t)(λI(t)− λR(t))

2A3
}, 1}I(t)

Ṗ (t) = β3I(t)− β4P (t)− k2P (t)

Ṙ(t) = β4P (t)− k2R(t)− β7R(t) + min{max{0, S(t)(λS(t)− λR(t))

2A2
}, 1}S(t)

+ min{max{0, I(t)(λI(t)− λR(t))

2A3
}, 1}I(t)

λ̇S(t) = λS(t)β1E(t) + λS(t)β5I(t) + λS(t)β6P (t) + λS(t)k2

+ λS(t)min{max{0, S(t)(λS(t)− λR(t))

2A2
}, 1} − λE(t)β1E(t)

− λE(t)β5I(t)− λE(t)β6P (t)−min{max{0, S(t)(λS(t)− λR(t))

2A2
}, 1}λR(t)

λ̇E(t) = λS(t)β1S(t)− λE(t)β1S(t) + λE(t)β2 + λE(t)k2 − λI(t)β2

λ̇I(t) = −A1 + λS(t)β5S(t)− λE(t)β5S(t) + λI(t)β3 + λIv(k2 + k3)

+ min{max{0, I(t)(λI(t)− λR(t))

2A3
}, 1}λI(t)− λP (t)β3

−min{max{0, I(t)(λI(t)− λR(t))

2A3
}, 1}λR(t)

λ̇P (t) = λS(t)β6S − (t)λE(t)β6S(t) + λP (t)β4(t) + λP (t)k2 − λR(t)β4

˙λR(t) = −λS(t)β7 + λR(t)k2 + λR(t)β7
(16)

with initial conditions

S(0) = 10000, E(0) = 4, I(0) = 4, P (0) = 4, R(0) = 0

and transversality conditions

λS(T ) = λE(T ) = λI(T ) = λP (T ) = λR(T ) = 0

■

4. Numerical solution of controlled HFMD by He’s variational iteration
method

To study the behaviour of HFMD with controls, the optimality system (16) have
to be solved. As it is a nonlinear two point boundary value problem(BVP), find-
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ing exact solution is difficult. To overcome these difficulties numerical method is
necessary. Hence we find numerical solution of system (16) by He’s variational it-
eration method (VIM). By considering the correction functionals of the Hamilton
equations, the Lagrange multipliers are easily identified and practical iteration for-
mulas are derived. An algorithm is developed, based on this formulas, to determine
iteratively the solutions of the Hamilton equations with a desired accuracy. Let us
introduce the notation for the state and costate variables as follows: S = x1, E =
x2, I = x3, P = x4, R = x5 ; λS = p1, λE = p2, λI = p3, λP = p4, λR = p5.
The corresponding correction functionals of the optimality system are

x
(N+1)
1 (t) = x

(N)
1 (t) +

∫ t

0
λx1

(ξ)
[
ẋ
(N)
1 (ξ)− k1 − β7x̃

(N)
5 (ξ) + β1x̃

(N)
1 (ξ)x̃

(N)
2 (ξ)

+ β5x̃
(N)
1 (ξ)x̃

(N)
3 (ξ) + β6x̃

(N)
1 (ξ)x̃

(N)
4 (ξ) + k2x

(N)
1 (ξ)

− 1

2A2

(
p̃N1 (ξ)− p̃

(N)
5 (ξ)

)
x̃1

(N)(ξ)
]
dξ

x
(N+1)
2 (t) = x

(N)
2 (t) +

∫ t

0
λx2

(ξ)
[
ẋ
(N)
2 (ξ)− β1x̃

(N)
1 (ξ)x̃

(N)
2 (ξ)− β5x̃

(N)
1 (ξ)x̃

(N)
3 (ξ)

− β6x̃
(N)
1 (ξ)x̃

(N)
4 (ξ) + β2x

(N)
2 (ξ) + k2x

(N)
2 (ξ

]
dξ

x
(N+1)
3 (t) = x

(N)
3 (t) +

∫ t

0
λx3

(ξ)
[
ẋ
(N)
3 (ξ)− β2x̃

(N)
2 (ξ) + β3x

(N)
3 (ξ) + (k2 + k3)x

(N)
3 (ξ)

+
1

2A3

(
p̃
(N)
3 (ξ)− p̃

(N)
5 (ξ)

)
x̃
(N)
3 (ξ)

]
dξ

x
(N+1)
4 (t) = x

(N)
4 (t) +

∫ t

0
λx4

(ξ)
[
ẋ
(N)
4 (ξ)− β3x̃

(N)
3 (ξ) + β4x

(N)
4 (ξ) + k2x

(N)
4 (ξ)

]
dξ

x
(N+1)
5 (t) = x

(N)
5 (t) +

∫ t

0
λx5

(ξ)
[
ẋ
(N)
5 (ξ)− β4x̃

(N)
4 (ξ) + k2x

(N)
5 (ξ) + β7x

(N)
5 (ξ)

− 1

2A2

(
p̃N1 (ξ)− p̃

(N)
5 (ξ)

)
x̃1

(N)(ξ)− 1

2A3

(
p̃
(N)
3 (ξ)− p̃

(N)
5 (ξ)

)
x̃
(N)
3 (ξ)

]
dξ

p
(N+1)
1 (t) = p

(N)
1 (t) +

∫ t

0
λp1

(ξ)
[
ṗ
(N)
1 (ξ)− β1p̃

(N)
1 (ξ)x̃

(N)
2 (ξ)− β5p̃

(N)
1 (ξ)x̃

(N)
3 (ξ)

− β6p̃
(N)
1 (ξ)x̃

(N)
4 (ξ)− k2p

(N)
1 (ξ)− p̃

(N)
1 (ξ)x̃

(N)
1 (ξ)

(
1

2A2

)(
p̃N1 (ξ)− p̃

(N)
5 (ξ)

)
+ β1p̃

(N)
2 (ξ)x̃

(N)
3 (ξ) + β6p̃

(N)
2 (ξ)x̃

(N)
4 (ξ)

+ p̃
(N)
5 (ξ)x̃

(N)
1 (ξ)

(
1

2A2

)(
p̃N1 (ξ)− p̃

(N)
5 (ξ)

)]
dξ

p
(N+1)
2 (t) = p

(N)
2 (t) +

∫ t

0
λp2

(ξ)
[
ṗ
(N)
2 (ξ)− β1x̃

(N)
1 (ξ)p̃

(N)
1 (ξ) + β1x̃

(N)
1 (ξ)p̃

(N)
2 (ξ)

− β2p
(N)
2 (ξ)− k2p

(N)
2 (ξ) + β2p̃

(N)
3 (ξ)

]
dξ

p
(N+1)
3 (t) = p

(N)
3 (t) +

∫ t

0
λp3

(ξ)
[
ṗ
(N)
3 (ξ) +A2 − β5p̃

(N)
1 (ξ)x̃

(N)
1 (ξ) + β1p̃

(N)
2 (ξ)x̃

(N)
1 (ξ)

− β3p
(N)
3 − (k2 + k3)p

(N)
3 (ξ)− p̃

(N)
3 (ξ)

(
1

2A3

)(
p̃
(N)
3 (ξ)− p̃

(N)
5 (ξ)

)
x̃
(N)
3 (ξ)
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+ β3p̃
(N)
4 (ξ) + p̃

(N)
5 (ξ)

(
1

2A3

)(
p̃
(N)
3 (ξ)− p̃

(N)
5 (ξ)

)
x̃
(N)
3 (ξ)

]
dξ

p
(N+1)
4 (t) = p

(N)
4 (t) +

∫ t

0
λp4

(ξ)
[
ṗ
(N)
4 (ξ)− β6p̃

(N)
1 (ξ)x̃

(N)
1 (ξ) + β6p̃

(N)
2 (ξ)x̃

(N)
1 (ξ)

− β4p
(N)
4 (ξ)− k2p̃

(N)
4 (ξ) + β4p

(N)
5 (ξ)

]
dξ

p
(N+1)
5 (t) = p

(N)
5 (t) +

∫ t

0
λp5

(ξ)
[
ṗ
(N)
5 (ξ) + β7p̃

(N)
1 (ξ)− k2p

(N)
5 (ξ)− β7p̃

(N)
5 (ξ)

]
dξ

where λxi
and λpi

, i = 1, 2 · · · , 5 are the general Lagrange multipliers and x̃
(N)
i

and p̃
(N)
i ,i = 1, 2 · · · , 5 denote the restricted variations, i.e.,

δx̃
(N)
i = δp̃

(N)
i = 0 for i = 1, 2 · · · , 5

Making the above correction functional stationary, we can obtain following station-
ary conditions:

λ̇x1
(ξ)− k2λx1

(ξ) = 0, ξ ∈ [0, t]

1 + λx1
(t) = 0

λ̇x2
(ξ)− (β2 + k2)λx2

(ξ) = 0, ξ ∈ [0, t]

1 + λx2
(t) = 0

λ̇x3
(ξ)− (β3 + k2 + k3)λx3

(ξ) = 0, ξ ∈ [0, t]

1 + λx3
(t) = 0

λ̇x4
(ξ)− (β4 + k2)λx4

(ξ) = 0, ξ ∈ [0, t]

1 + λx4
(t) = 0

λ̇x5
(ξ)− (β7 + k2)λx5

(ξ) = 0, ξ ∈ [0, t]

1 + λx5
(t) = 0

λ̇p1
(ξ) + k2λp1

(ξ) = 0, ξ ∈ [0, t]

1 + λp1
(t) = 0

λ̇p2
(ξ)− (β2 + k2)λp2

(ξ) = 0, ξ ∈ [0, t]

1 + λp2
(t) = 0

λ̇p3
(ξ)− (β3 + k2 + k3)λp3

(ξ) = 0, ξ ∈ [0, t]

1 + λp3
(t) = 0

λ̇p4
(ξ)− (β4 + k2)λp4

(ξ) = 0, ξ ∈ [0, t]

1 + λp4
(t) = 0

λ̇p5
(ξ)− (β7 + k2)λp5

(ξ) = 0, ξ ∈ [0, t]

1 + λp5
(t) = 0
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The Lagrange multipliers, therefore, can be identified as

λx1
(ξ) = −ek2(ξ−t); λx2

(ξ) = −e(β2+k2)(ξ−t); λx3
(ξ) = −e(β3+k2+k3)(ξ−t);

λx4
(ξ) = −e(β4+k2)(ξ−t); λx5

(ξ) = −e(β7+k2)(ξ−t);

λp1
(ξ) = −ek2(t−ξ); λp2

(ξ) = −e(β2+k2)(t−ξ); λp3
(ξ) = −e(β3+k2+k3)(t−ξ);

λp4
(ξ) = −e(β4+k2)(t−ξ); λp5

(ξ) = −e(β7+k2)(t−ξ)

Substituting the above multipliers into the correction functionals results in the
following iteration formulae:

x
(N+1)
1 (t) = x

(N)
1 (t)−

∫ t

0
ek2(ξ−t)

[
ẋ
(N)
1 (ξ)− k1 − β7x̃

(N)
5 (ξ) + β1x̃

(N)
1 (ξ)x̃

(N)
2 (ξ)

+ β5x̃
(N)
1 (ξ)x̃

(N)
3 (ξ) + β6x̃

(N)
1 (ξ)x̃

(N)
4 (ξ) + k2x

(N)
1 (ξ)

− 1

2A2

(
p̃N1 (ξ)− p̃

(N)
5 (ξ)

)
x̃1

(N)(ξ)
]
dξ

x
(N+1)
2 (t) = x

(N)
2 (t)

∫ t

0
e(β2+k2)(ξ−t)

[
ẋ
(N)
2 (ξ)− β1x̃

(N)
1 (ξ)x̃

(N)
2 (ξ)− β5x̃

(N)
1 (ξ)x̃

(N)
3 (ξ)

− β6x̃
(N)
1 (ξ)x̃

(N)
4 (ξ) + β2x

(N)
2 (ξ) + k2x

(N)
2 (ξ

]
dξ

x
(N+1)
3 (t) = x

(N)
3 (t)−

∫ t

0
e(β3+k2+k3)(ξ−t)

[
ẋ
(N)
3 (ξ)− β2x̃

(N)
2 (ξ) + β3x

(N)
3 (ξ)

+ (k2 + k3)x
(N)
3 (ξ) +

1

2A3

(
p̃
(N)
3 (ξ)− p̃

(N)
5 (ξ)

)
x̃
(N)
3 (ξ)

]
dξ

x
(N+1)
4 (t) = x

(N)
4 (t)−

∫ t

0
e(β4+k2)(ξ−t)

[
ẋ
(N)
4 (ξ)− β3x̃

(N)
3 (ξ) + β4x

(N)
4 (ξ) + k2x

(N)
4 (ξ)

]
dξ

x
(N+1)
5 (t) = x

(N)
5 (t)−

∫ t

0
e(β7+k2)(ξ−t)

[
ẋ
(N)
5 (ξ)− β4x̃

(N)
4 (ξ) + k2x

(N)
5 (ξ) + β7x

(N)
5 (ξ)

− 1

2A2

(
p̃N1 (ξ)− p̃

(N)
5 (ξ)

)
x̃1

(N)(ξ)− 1

2A3

(
p̃
(N)
3 (ξ)− p̃

(N)
5 (ξ)

)
x̃
(N)
3 (ξ)

]
dξ

p
(N+1)
1 (t) = p

(N)
1 (t)−

∫ t

0
ek2(t−ξ)

[
ṗ
(N)
1 (ξ)− β1p̃

(N)
1 (ξ)x̃

(N)
2 (ξ)− β5p̃

(N)
1 (ξ)x̃

(N)
3 (ξ)

− β6p̃
(N)
1 (ξ)x̃

(N)
4 (ξ)− k2p

(N)
1 (ξ)− p̃

(N)
1 (ξ)x̃

(N)
1 (ξ)

(
1

2A2

)(
p̃N1 (ξ)− p̃

(N)
5 (ξ)

)
+ β1p̃

(N)
2 (ξ)x̃

(N)
3 (ξ) + β6p̃

(N)
2 (ξ)x̃

(N)
4 (ξ)

+ p̃
(N)
5 (ξ)x̃

(N)
1 (ξ)

(
1

2A2

)(
p̃N1 (ξ)− p̃

(N)
5 (ξ)

)]
dξ

p
(N+1)
2 (t) = p

(N)
2 (t)−

∫ t

0
e(β2+k2)(t−ξ)

[
ṗ
(N)
2 (ξ)− β1x̃

(N)
1 (ξ)p̃

(N)
1 (ξ) + β1x̃

(N)
1 (ξ)p̃

(N)
2 (ξ)

− β2p
(N)
2 (ξ)− k2p

(N)
2 (ξ) + β2p̃

(N)
3 (ξ)

]
dξ
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p
(N+1)
3 (t) = p

(N)
3 (t)−

∫ t

0
e(β3+k2+k3)(t−ξ)

[
ṗ
(N)
3 (ξ) +A2 − β5p̃

(N)
1 (ξ)x̃

(N)
1 (ξ)

+ β1p̃
(N)
2 (ξ)x̃

(N)
1 (ξ)− β3p

(N)
3 − (k2 + k3)p

(N)
3 (ξ)

− p̃
(N)
3 (ξ)

(
1

2A3

)(
p̃
(N)
3 (ξ)− p̃

(N)
5 (ξ)

)
x̃
(N)
3 (ξ) + β3p̃

(N)
4 (ξ)

+ p̃
(N)
5 (ξ)

(
1

2A3

)(
p̃
(N)
3 (ξ)− p̃

(N)
5 (ξ)

)
x̃
(N)
3 (ξ)

]
dξ

p
(N+1)
4 (t) = p

(N)
4 (t)−

∫ t

0
e(β4+k2)(t−ξ)

[
ṗ
(N)
4 (ξ)− β6p̃

(N)
1 (ξ)x̃

(N)
1 (ξ)

+ β6p̃
(N)
2 (ξ)x̃

(N)
1 (ξ)− β4p

(N)
4 (ξ)− k2p̃

(N)
4 (ξ) + β4p

(N)
5 (ξ)

]
dξ

p
(N+1)
5 (t) = p

(N)
5 (t)−

∫ t

0
e(β7+k2)(t−ξ)

[
ṗ
(N)
5 (ξ) + β7p̃

(N)
1 (ξ)− k2p

(N)
5 (ξ)− β7p̃

(N)
5 (ξ)

]
dξ

5. Numerical results and discussion

The optimality system has been solved numerically and the results have been in-
terpreted graphically using Maple. The optimality system is a nonlinear two-point
boundary value problem, with separated boundary conditions at times t = 0 and
t = T . Let the simulation be done for the terminal value T = 20.
Let the values of the parameters be [4]:
k1 = 2.923× 10−4, k2 = 1.077× 10−4, k3 = 1.731× 10−5, β1 = 3.000× 10−5,
β2 = 5.500.β3 = 1.000, β4 = 1.000, β5 = 1.500× 10−4, β6 = 6.000× 10−5,
β7 = 7.000× 10−2.
Let us choose the weight constants A1 = 1000, A2 = 100, A3 = 10.
The initial costates values of p1(0), p2(0), p3(0), p4(0), p5(0) are un-
known constants to be determined by imposing transversality conditions
p1(T ) = 0, p2(T ) = 0, p3(T ) = 0, p4(T ) = 0, p5(T ) = 0.

In figure 1, the effect of optimal control in the susceptible population is analyzed.
We observe a decline in the population of susceptible with and without control.
With control that is when the susceptibles are vaccinated we infer a steady
decrease in their population compared to without control. For instance, by 10th

day, the susceptible population is below 6000 whereas it is close to 10000 without
control. Also the vaccination does not work to the children who are exposed to
the disease , so they move to the exposed and infected compartments.

In figure 2, the number of individuals who are exposed to HFMD is presented.
The increase in curve is observed denoting that the susceptible move to the
exposed compartment because they may gain disease when they are in contact
with infected patients or with those carrying post-infection virus or with those
who are already exposed. However, the number of exposed children with control
is comparatively lesser than without control.

In figure 3, the effect of optimal control in infected population is discussed. The
figure shows that in the presence of control the number of infected population
moves close zero. The treatment given to the infected helped to minimize the
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Figure 1. The effect of optimal control in the susceptible population.

Figure 2. The effect of optimal control in the Exposed population.

infected population. The infected population move to the clinically recovered
or post-infection virus shedding group compartment when they get treated.
They move to the post-infection virus shedding group because their symp-
toms are only reduced but they are not fully recovered. On the other hand, we
infer a rapid increase in the number of infected individuals in the absence of control.

In figure 4, the number of individuals in the post-infection virus shedding group
is shown. We assumed that initially only 4 children were clinically recovered.
There is no increase in the clinically recovered graph due to the effectiveness of the
control in the infected individuals. Whereas in the absence of control, we observe
a rapid increase in the clinically recovered group as symptoms may subside over a
period of time but they act as carrier of the viruses.
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Figure 3. The effect of optimal control in the Infected population.

Figure 4. The effect of optimal control in the Clinically Recovered population.

In figure 5, the effect of optimal control in the fully recovered population is
discussed. In the presence of control, we infer that there is an increase in the curve
which is because as the clinically recovered population move to the fully recovered
compartment, the susceptible population after the vaccination and also the infected
population after the treatment move to fully recovered population. But after a
certain interval of time there is a decrease in the fully recovered population as they
may lose their immunity and move to susceptible class or they may get exposed
to other strains of HFMD virus. On the other hand, without control initially there
was a slight increase in the recovered population and there after it reduces. The
slight increase in curve may be due to the children’s own immunity. The figure
clearly depicts the increase in recovered population with and without control.
At convergence, the value of the costate vector at t = 0 are

[p1(0) = 0.003304428876; p2(0) = 23.76573493; p3(0) = 22.47392574;
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Figure 5. The effect of optimal control in the Fully Recovered population.

p4(0) = 0.0003412521205; p5(0) = 0.002324704130]

6. Conclusion

In this paper, a controlled SEIPR model of Hand Foot and Mouth Diseases was
formulated by considering two controls as treatment for infected population and
vaccination for susceptible population. An attempt was made to study the optimal
combination of vaccination and treatment strategies with cure and vaccine towards
eradication within a specified period. Pontryagin’s maximum principle was used to
characterize the optimal controls, and the optimality system was derived.The opti-
mality system is two point boundary value problem. The solution for this optimal
system is obtained by applying He’s variational iteration method, which gives ap-
proximate solutions with high accuracy and the result is represented graphically.
The numerical results show that the optimal strategy becomes more effective when
we combined the vaccination and treatment strategies together.
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