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Abstract. A simple method for solving Prandtl’s integro-differential equation is proposed
based on a new reproducing kernel space. Using a transformation and modifying the tradi-
tional reproducing kernel method, the singular term is removed and the analytical represen-
tation of the exact solution is obtained in the form of series in the new reproducing kernel
space. Compared with known investigations, its advantages are that the representation of
exact solution is obtained in a reproducing kernel Hilbert space and accuracy in numerical
computation is higher. On the other hand, the approximate solution and its derivatives con-
verge uniformly to the exact solution and its derivatives. The final numerical experiments
illustrate the method is efficient.
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1. Introduction

Prandtl’s singular integro-differential equation and related equations appear in
problems of aerofoil and propeller theory in fluid mechanics. Singular integral and
integro-differential equations are usually difficult to solve analytically so it is re-
quired to obtain the approximate solution. There are a few numerical methods on
singular integral and integro-differential equations with Cauchy kernel including
Galerkin and collocation methods, Chebyshev polynomials and so on (see [1-11]).

In recent years, the reproducing kernel method is applied for singular integral,
integro-differential equations, partial differential equation and fractional differential
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equations [12-27]. In the traditional reproducing kernel method, the representation
of reproducing kernel function is complicated and requirement for image space of
operator is high.

The purpose of this work is to introduce a reproducing kernel method for solving
a singular integro-differential equation of Prandtl’s type:

v(x)u(x) +
1

π

∫ 1

−1

u′(t)

t− x
dt+

∫ 1

−1
h(x, t)u(t) dt = f(x), (|x| < 1) (1)

where u(x) is the unknown function, and v(x) and f(x) are known functions, is
usually supplemented by the conditions [19]

u(−1) = u(1) = 0. (2)

Now, in ordere to get rid of the derivative of u(x) in (1), we apply the rule of
integration by part in the integral containing u′(x). Thus by taking into account
(2), we obtain the following equivalent form of (1):

v(x)u(x) +
1

π

∫ 1

−1

u(t)

(t− x)2
dt+

∫ 1

−1
h(x, t)u(t) dt = f(x), |x| < 1. (3)

Following Kalandiya [16] we set

u(x) = ω(x)φ(x), |x| < 1, (4)

where φ(x) is a well-behaved function on the interval −1 < x < 1 and

w(x) =
√

1− x2.

Substituting (4) into (3), we have

v(x)ω(x)φ(x) +
1

π

∫ 1

−1

φ(t)

(t− x)2
ω(t) dt+

∫ 1

−1
h(x, t)φ(t)ω(t) dt = f(x). (5)

On the other hand, the hypersingular integral term of (5) is equal to (see [5, 8]),∫ 1

−1
ω(t)

φ(t)

(t− x)2
dt = −πxφ′(x)− πφ(x) +

∫ 1

−1

−φ′(t)(t− x) + φ(t)− φ(x)

(t− x)2
ω(t) dt.

(6)
Then (1) can be converted into

−xφ′(x) + (v(x)ω(x)− 1)φ(x) +
1

π

∫ 1

−1

−φ′(t)(t− x) + φ(t)− φ(x)

(t− x)2
ω(t) dt

+

∫ 1

−1
h(x, t)u(t) dt = f(x), (7)

where −φ
′(t)(t−x)+φ(t)−φ(x)

(t−x)2 = φ′′(x)
2 while t = x. It means singular term have been

removed.
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The remainder of the paper is organized as follows: A reproducing kernel space
W 3

2 [−1, 1] is introduced in Section 2. In Section 3, the analytical representation of
the exact solution is obtained in the form of series. We also illustrate the numerical
experiment in secation 4. Section 5 ends this paper with a brief conclusion.

2. The reproducing kernel space W 3
2 [−1, 1]

The reproducing kernel space W 3
2 [−1, 1] is defined by

W 3
2 ≡ W 3

2 [−1, 1] = {φ(x)|φ′′(x) is an absolutely continuous real-valued function
on [−1, 1], φ′′′(x) ∈ L2[−1, 1]}}.

The inner product and norm in W 3
2 are defined respectively by

〈φ, ϕ〉 =
2∑
i=0

φ(i)(−1)ϕ(i)(−1) +

∫ 1

−1
φ′′′(t)ϕ′′′(t) dt, ∀φ, ϕ ∈W 3

2 ,

‖φ‖ =
√
〈φ, φ〉, ∀φ ∈W 3

2 .

Theorem 2.1 W 3
2 is a reproducing kernel space with reproducing kernel

Ry(x) =



1

120
(276 + x5 + 195y − 5x4y + 40y2 + 10x3y2

+10x2
(
4 + 9y + 6y2

)
+ 5x

(
39 + 56y + 18y2

))
,

x ≤ y,

1

120

(
276 + 195y + 40y2 + y5 + 10x2(1 + y)2(4 + y)

−5x
(
−39− 56y − 18y2 + y4

))
,

y < x,

(8)

that is, for every x ∈ [−1, 1] and φ ∈W 3
2 , 〈φ,Ry〉 = φ(y) is hold.

Theorem 2.2 Let Ry(x) be the reproducing kernel of the space W 3
2 . Then,

∂i+jRy(x)

∂xi∂yj
∈W 3

2 [−1, 1], i+ j = 2

with respect to x or y.

The proof of Theorems 2.1 and 2.2 can be found in [6].

3. The solution of (7)

Define L : W 3
2 → L2[−1, 1] as follows

(Lφ)(x) = −xφ′(x) + (v(x)ω(x)− 1)φ(x)

+
1

π

∫ 1

−1

−φ′(t)(t− x) + φ(t)− φ(x)

(t− x)2
ω(t) dt+

∫ 1

−1
h(x, t)φ(t)ω(t) dt. (9)

Then (1) turns into

(Lφ) = f |x| < 1, (10)
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where if t = x, then −φ′(t)(t−x)+φ(t)−φ(x)
(t−x)2 = φ′′(x)

2 . In order to obtain the exact

solutions of (10), define

ψi(x) = [LyRx(y)] (xi) i = 1, 2, . . . , (11)

where {xi}∞i=1 in the domain [−1, 1]. Hence, one gets

ψi(x) = −xi
∂Rx(xi)

∂x
+ (v(xi)ω(xi)− 1)Rx(xi)

+
1

π

∫ 1

−1

∂Rx(xi)
∂x (t− xi) +Rx(t)−Rx(xi)

(t− xi)2
ω(t) dt

+

∫ 1

−1
h(xi, t)Rx(t)ω(t) dt. (12)

According to [12, 14], we have the following theorem:

Theorem 3.1 Linear operator L maps W 3
2 into L2[−1, 1].

Lemma 3.0.1 {ψi(x)}∞i=1 is complete in W 3
2 if {xi}∞i=1 is dense in [−1, 1].

Proof. For each φ(x) ∈W 3
2 , let 〈φ, ψi〉 = 0, (i = 1, 2, . . .), which means

〈φ, ψi〉 = 〈φ, [LyRx] (xi)〉 (13)

= Ly〈φ,Rx〉(xi) (14)

= [Lyφ(y)] (xi) = 0. (15)

From the density of {xi}∞i=1 and uniqueness of solution on (10), It follows that
φ(x) ≡ 0. So {ψi(x)}∞i=1 is complete in W 3

2 .
The orthonormal system {ψ̄i(x)}∞i=1 of W 3

2 can be derived from the Gram-
Schmidt orthogonalization process of {ψi(x)}∞i=1 as

ψ̄i(x) =
i∑

k=1

βikψk(x), βii > 0, i = 1, 2, . . . . (16)

Theorem 3.2 Let {xi}∞i=1 be dense on [−1, 1], then the exact solution of (10) could
be represented by

φ(x) =
∞∑
i=1

i∑
k=1

βikf(xk)ψ̄i(x). (17)

Proof. Let φ(x) be solution of (10) in W 3
2 . From {ψ̄}∞i=1 is an orthonormal system,
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φ(x) could be expressed Fourier series

φ(x) =
∞∑
i=1

〈φ, ψ̄i〉ψ̄i(x) =
∞∑
i=1

i∑
k=1

βik〈φ, ψk〉ψ̄i(x)

=
∞∑
i=1

i∑
k=1

βik [Lyφ(y)] (xk)ψ̄i(x) =
∞∑
i=1

i∑
k=1

βikLφ(xk)ψ̄i(x)

=
∞∑
i=1

i∑
k=1

βikf(xk)ψ̄i(x).

Now the approximate solution φn(x) can be obtained by the n-term intercept of
the analytical solution φ(x), that is,

φn(x) =
n∑
i=1

i∑
k=1

βikf(xk)ψ̄i(x). (18)

From (4), we know

u(x) = ω(x)

∞∑
i=1

i∑
k=1

βikf(xk)ψ̄i(x) (19)

and

un(x) = ω(x)

n∑
i=1

i∑
k=1

βikf(xk)ψ̄i(x) (20)

are the exact solution and the approximate solution of (1), respectively.

Theorem 3.3 The approximate solution un(x) and its derivatives u
(k)
n (x), 0 ≤ k ≤

2, are all uniformly convergent.

Proof. Let Ry(x) be the reproducing kernel of the space W 3
2 . Because

un(x)− u(x) = 〈un − u,Rx〉W 3
2
,

u(k)
n (x)− u(k)(x) = (un(x)− u(x))(k)

=
∂k

∂xk
[
〈un − u,Rx〉W 3

2

]
=

〈
un − u,

∂k

∂xk
Rx

〉
W 3

2

Since ∂k

∂xkRx(y) ∈W 3
2 , by Theorem (2.2), one obtains

|u(k)
n (x)− u(k)(x)| ≤ ‖un − u‖W 3

2
‖ ∂

k

∂xk
Rx‖W 3

2
.

Also ‖ ∂k

∂xkRx‖W 3
2

is continuous with respect to x in [−1, 1], then

|u(k)
n (x)− u(k)(x)| ≤M‖un − u‖W 3

2
,
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where M is a positive number. So that,

lim
n→∞

un(x) = u(x) =⇒ lim
n→∞

u(k)
n (x)

unif
= u(k)(x).

Theorem 3.4 Let that u(x) and un(x) are the exact solution and the approximate
solution of (1) in space W 3

2 , respectively. and en(x) is the error between the exact
solution u(x) and the approximate solution un(x).
Then,

(1) en(x) is monotonically decreasing in the sense of norm ‖.‖W 3
2
.

(2) ‖e(k)
n ‖ = O(h), where h = max16i6n−1|hi+1 − hi| and k = 0, 1, 2.

Proof.

(1) Note that

‖en‖2 = ‖u− un‖2 = ‖ω
∞∑

i=n+1

i∑
k=1

βikf(xk)ψ̄i‖2 = ‖ω‖
∞∑

i=n+1

(
i∑

k=1

βikf(xk))
2.

Similarly,

‖en−1‖2 = ‖u−un−1‖2 = ‖ω
∞∑
i=n

i∑
k=1

βikf(xk)ψ̄i‖2 = ‖ω‖
∞∑
i=n

(

i∑
k=1

βikf(xk))
2.

This means that the error {en} is monotonically decreasing in the sense of
‖.‖W 3

2
. From Theorem 3.2, it is noted that (20) is convergent in the norm

of W 3
2 .

(2) Note here that

Lu(x) = ω(x)

∞∑
i=1

i∑
k=1

βikf(xk)Lψ̄i(x)

then

(Lu)(xn) = ω(xn)

∞∑
i=1

i∑
k=1

βikf(xk)Lψ̄i(xn)

= ω(xn)

∞∑
i=1

i∑
k=1

βikf(xk)(ϕn,Lψ̄i)

= ω(xn)

∞∑
i=1

i∑
k=1

βikf(xk)(L∗ϕn, ψ̄i)

= ω(xn)

∞∑
i=1

i∑
k=1

βikf(xk)(ψn, ψ̄i).
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Therefore,

n∑
j=1

βnj(Lu)(xj) = ω(xj)
∞∑
i=1

i∑
k=1

βikf(xk)(
n∑
j=1

βnjψj , ψ̄i)

= ω(xj)
∞∑
i=1

i∑
k=1

βikf(xk)(ψ̄n, ψ̄i) = ω(xj)
n∑
k=1

βnkf(xk).

Moreover, it is easy to see by induction that

(Lu)(xj) = ω(xj)f(xj), j = 1, 2, ..., n. (21)

Similarly, one can show that

(Lun)(xj) = ω(xj)f(xj), j = 1, 2, ..., n. (22)

Now, from (21), (22), we have

(Lu)(xj) = (Lun)(xj) = ω(xj)f(xj), j = 1, 2, . . . , n.

Therefore, (Lun)(xj) is the interpolating function of (Lu)(xj), where
xj(j = 1, 2, . . . , n) are the interpolation nodes in [−1, 1].

By (21), (22) and by means of value theorem for differentials, we have

L(u(x)− un(x)) = L(u(x)− u(xj) + un(xj)− un(x))

= L(u′(ζ)(x− xj) + u′n(ς)(xj − x))

= (xj+1 − xj)(Lu′(ζ)
x− xj

xj+1 − xj

+ Lu′n(ς)
xj − x

xj+1 − xj
) = hρ(x),

where ζ, ς ∈ (x, xj), ρ(x) = Lu′(ζ) x−xj

xj+1−xj
+ Lu′n(ς) xj−x

xj+1−xj
. It is clear that

ρ(x) ∈ C[−1, 1] and since L−1 exists, then

L−1f(x) = u(x) = ω(x)
∞∑
i=1

i∑
k=1

βikf(xk)ψ̄i(x). (23)

Therefore, L−1 can be obtained by (23). Note here that L−1ρ(x) ∈ W 3
2 ,

thus, ‖L−1ρ‖ is bounded. it follows that

‖en‖ = ‖u− un‖ = ‖L−1(hρ)‖ = h‖L−1ρ‖ = O(h).

The proof is complete.

4. Numerical examples

In this section, two numerical examples are provided to show the accu-
racy of the present method. In our numerical calculations, we have chosen
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Figure 1. The absolute errors of u(x) (left), u′(x) (center) and u′′(x) (right) for case (a).

Figure 2. The absolute errors of u(x) (left), u′(x) (center) and u′′(x) (right) for case (b).

the four-point Gauss-Chebyshev quadrature rule of the second kind. All
computations are performed by Mathematica 8.

The original (1) or, which is the same, (10) in the case of v(x) = ϑ0 =const
and h(x, t) = h1(x, t)− ϑ1 ln |x− t| which means an equation of the form

ϑ0u(x)+
1

π

∫ 1

−1

u′(t)

(t− x)
dt+

∫ 1

−1
[h1(x, t)− ϑ1 ln |x− t|]u(t) dt = f(x). (24)

We apply the present method in Section 3 to (24) with

a) ϑ0 = 0, ϑ1 = 0, h1(x, t) = x+ t, f(x) = π
2

(
1− 6x2

)
+ π

8x,

b) ϑ0 = 1, ϑ1 = 0, h1(x, t) = t(x2|x|+ t|t|),
f(x) = x

((
1 + 4x

15π

)
Abs[x] + 6

π +
(

(3x2−2)

π
√

1−x2

)
Log

[
1+
√

1−x2

1−
√

1−x2

])
.

In case (a) (24) possesses the solution u(x) =
√

1− x2x2, and in case (b)
the solution u(x) =

√
1− x2x|x|.

Using the method presented in Section 3, taking n = 30, xi = −1 +
2i

n+1 , i = 1, 2, ..., n, the numerical results of un(x) are shown in Figs. 1− 2.
It can be seen that the approximate solution and its derivatives converge

uniformly to the exact solution and its derivatives, respectively.

5. Conclusion

In this paper, a new method is proposed for solving Prandtl’s integro-differential
equation. Here we obtained a series of solutions for Prandtl’s integro-differential
equation in reproducing kernel space. The weak singularity of (1) was successfully
removed by applying smooth transformations. A representation of the solutions
was obtained by applying a linear operator and a reproducing kernel function. It is
worthy to note that, in our work, the approximate solution and its derivatives con-
verge uniformly to the exact solution and its derivatives, respectively. The method
used in this paper can be generalized to solve a two-dimensional thermoelastic
contact problem involving frictional heating [3], the other appropriate integral and
integro-differential equations with singular kernel.
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