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Abstract. The ABS methods, introduced by Abaffy, Broyden and Spedicato, are direct itera-
tion methods for solving a linear system where the i-th iteration satisfies the first ¢ equations,
therefore a system of m equations is solved in at most m steps. In this paper, we introduce a
class of ABS-type methods for solving a full row rank linear equations, where the i-th itera-
tion solves the first 3¢ equations. We also extended this method for k steps. So, termination is
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achieved in at most [ steps. Morever in our new method in each iteration, we have

the the general solution of each iteration.
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1. Introduction

The ABS methods, introduce by Abaffy, Broyden and Spedicato [1], are a general
class of algorithms for solving linear and nonlinear algebraic systems. There are
many papers on this topic. Some authhors used this method for solving linear
system of equations [2, 4, 5, 7, 8, 10, 11], and there are some works on Diophantine
linear systems [3, 8]. Solving some linear inequality systems considered by this
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method [6, 7]. ABS algorithms are also used in optimization [6, 7, 12, 13]. Recently
this method has been used for solving fuzzy linear system of equations [9)].
The basic algorithm works on a system of the form

Az = b, (1)

where A = [a1 -+~ am]”, ¢; € R*, 1 < i < m, x € R", b € R™. The basic ABS
methods determine the solution of (1) or signify lack of its existence in at most
m iterations. In [4, 5], the authores introduced a class of ABS-type methods for
solving full row rank linear equations, where the i-th iteration solves the first 2i
equations.

Here we suggest an approach, based on ABS methods, which in any iteration,
k new equations, if compatible, are satisfied and we use two new updates for the
Abaffian matrix, one of them leads to a solution of the i-th iterate and the other
leads to the general solution of that iterate.

Section 2 provides an overview of the ABS methods. There we discuss a new
rank three update and present a new algorithm for solving compatible systems. We
also state and prove some results about the algorithm in this section. In Section
3, we describe the main parameters for solving full row rank linear systems by
7 (k=1,---,m) steps. In Section 4, we discuss on computational and numerical
results.

2. ABS Type Methods for Solving m Linear Equations in % Steps.
The basic ABS algorithm starts with an initial vector xg € R and a nonsingular
matrix Hy € R"*" (Spedicato’s parameter). Given that x; is a solution of the

first ¢ equations, the ABS algorithm computes z; as the solution of the first ¢ + 1
equations performing the following steps (See [2, 4, 5]):

(1) Determine z; (Broyden’s parameter) so that z! H;a; # 0 and set
Py = H{ z,
(2) Update the solution by
Tiv1 = T + a; B,

where the step size «; is given by

bi - CLZT.’Ei
o; = 7T
a; P;
(3) Update the Abaffian matrix H; by
HiainHi
Hipy = Hy — =00
i+1 i "LUZTHZCLZ

It is easily observed that the ABS methods satisfy a new equation at each iteration.
So, at most m iterations are needed to determine a solution or signify the lack of
it.

We now discuss an approach to satisfy three equations at a time. We consider
the system (1) and we assume that rank(A)=m, where m = 3.
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Remark 2.1 if m = 3¢+ 1 or m = 3¢ + 2, we can consider the augmented
Systems.

03] [ = Lol

and

A0O0 T b
010 |zpsr | = |0
001 | 2nio 0

respectively, that contains the same solution x as (1).

Alternatively, we can use a rank one or a rank two update at the final iteration.
We shall see that if a solution exists, it will be found in at most % steps.
Let

and

rj(x):a;frx—bj, j=1-,m.

Assume that we are at the i-th step and z; satisfies A%z = b%. We determine
H;, e R"™" 2 € R" and \; € R so that

Ti = Tij—1 — )\Z'H?Zi, (2)
be a solution of the first 3¢ equations of the system (1). That is
Az = b3, (3)

or equivalently we have
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Thus for j =3i — 2, j = 3i — 1 and j = 3i, we have:
ali_o (zi1 — NH] 2) — bgi—o = 0,
a1 (wic1 — NiH] ) — bgi—1 =0,
a3Ti («Tz’—l — )\szTZZ) — b37; = O,

or equivalently we have

Ni(Hiazi—2)T 2 = r3i—a(wi—1),
Ni(Hiazi—1)T 2 = r3im1(wi1), (4)

Ni(Hiazi) Tz = rai(mioq).

Suppose that T‘gl’,Q(SEl’,l) 75 0, 7’31',1(1‘1',1) 7& 0 and Tgi(xifl) 75 0. Then )\z must be
nonzero and (4) is compatible if and only if we have:

\ — T3i—2(xi—1) _ T3i—1(xi—1) _ 73i(Ti—1) (5)
Y (Hiasi—2)Tz (Hiasi—1)Tz  (Hiasi)Tz

There are several ways to satisfy (5); for example:

(1) Choose an appropriate update for H; so that
Hiaz; = Hiazi1 = Hiazi—2 # 0

(2) Choose a vector z; from an orthogonal space to the vectors:
H;(as; — as;—1) and H;(ag; — asi—2); or equivalently , we choose a vector z;
from an orthogonal space to the vector H;as;. So that

ZZ-THiagi 75 0 (6)

Since three new equations are considered in each step, we use a rank two
update as (7) and a rank one update as (8), where (7) help us to compute
a solution of each iterate and (8) leads to the general solution of each
iteration.

Here we present H; and H;, , such that they satisfy the following properties:

Hia; =0, j=1,---,3i—3

(7)
Hia; #0,5 =3i—2,---,3i

and

aj=0, j=1,---,3i—3 (8)

i—1
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Now, we let

az; — aj, j # 3i
cj = 9)
asg, j = 3i

Using (9), the systems (7) and (8) are written as (10) and (11), respectively:

Hicj =0, j=1,---,3i—1, (10)

Hli—lcj = 0, j = 1, s ,3i — 3. (11)

We compute H; from Hj, ,, such that the relations (10)and (11) hold. We proceed
inductively. Suppose that the matrix H; satisfies (10) and the matrix H;, | satisfies
(11). We define
Hip1 = Hy, + gid] +eif]
where g;,d;, e;, fi € R™. We need to have
Hije;=0,j=1,-,3i+2,
Hycj=0, j=1,--- 3,
or equivalently,
(Hy, + gid] +eiff)c;=0,j=1,---,3i +2,
Hycj =0, j=1,---,3i

So, We must define g;,d;, e;, fi € R™ in such a way that

Hycj+ (df¢j) g+ (flcj) ei =0, j=1,---,3i42 (12)
and
Hyc; =0, j=1,---,3i. (13)
By defining
di = H Wip1, fi = H Wi, (14)

for some W41, w;+1 € R™, the conditions (12) and (13) are satisfied for j < 3i — 1
and j < 3¢ — 3, by the induction hypothesis, respectively. Letting j = 3¢ + 1 and
Jj=3i+2in (12), we get:

(dzT03i+1)gz‘ + (fz‘TC3i+1)€i = —Hj,c3i41,
(15)
(df csiv2)gi + ([l csiya)ei = —Hj czipa.
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We consider that the choices

e; = —Hyc3iv2, g9 = —Hjcsiq1, (16)
with
dlegivn =1, flesivn =0,
(17)
df csiy2 =0, flesiva =1,

satisfy (15). In order to have (17), w;+; and w;+1 may be defined as below:

w}, Hy e300 = 1, Wl Hycsi41 =0,
(18)

Wl Hyc3i40 =0, Wl Hycsi0 =1,
It is apparent that the system (18) has a solution if and only if the vectors Hj, 3,11
and Hj,c3;42 are linearly independent. Due to Theorem 2.3 to be seen later, if a;
are linearly independent, then H;a; for 7, 1 < i </l and j, 3i —2 < j < m are
nonzero and linearly independent. So Hj,c3;41 and Hj,c3;42 will also be linearly
independent and (18) will have a solution for all ¢ and hence H;11 and x;41 are

well defined for all i.
Therefore the updating formula for H; turns out to be

_T ~T
Hiyy = Hi, — Hy,c3i1w;  Hi, — Hyczipowiy Hi, (19)

where w; 1 and w; 41 can be any vectors satisfying (18). Now to satisfy (2.18) to
complete the induction, H; and H;, should be chosen so that

Hyay = Hyag = Hiag or Hyc;=0,7=1,2 (20)
and
Hycj=0,j=1,2,3 (21)

Let Hp be an arbitrary nonsingular matrix. We obtain H; from Hg by using a rank

two update and H;, from H; by using a rank one update. Let Hy = Ho—uv? —pq’.

Where u, v, p, g € R™ are chosen so that (20) is satisfied; that is
Hocj — (vTej)u— (¢hej)p=10,5=1,2
This equation is satisfied if we set
u = Hycy v:HoTﬁl p = Hpco q:ngl
for some w1, w; € R™ which in turn satisfies the condition
w! Hoey = 1, Wi Hocp = 0,

wi Hocg = 0, Wl Hoey = 1,
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It is easily seen that (22) can be held with a proper choice of w; and w; whenever
a1, as and ag are linearly independent. So we have

Hy = Hy — Hyoce\W1 Hy — Hocow? Hy, (23)

where w; and w; are arbitrary vectors satisfying (22), also the matrix H;, can be
computed by a rank one update as:

H;, =H; — HlagwlTHl =H; — H163w1TH1, (24)
where wy € R™ is an arbitrary vector satisfying
w! Hyaz =1 (wi Hicz = 1) (25)

Since a; being linearly independent, Hyas(Hics) is a nonzero vector and hence (24)
is well defined with a proper choice of w; € R".

Remark 2.2 For the matrices H; are generated by (19) and (23), we have:
CUi:xi—l_/\iHiTZz‘ i=1---,1

is a solution of the first 3i equations of the system.

To compute the general solution of each iteration, we need a matrix H;, with the
following properties:

Hja; =0, j=1--,31

It can be easily verified that the matrix H;, can be computed by a rank one update
as:

H), = H; — Hyaz;w! H; = H; — Hic;w! H;, i=1,---,1 (26)
where w; € R™ is an arbitrary vector satisfying
wlHiazi =1 (w] Hicz; = 1) (27)
Hence the general solution of the i-th iterate is given by
Ty, =T — Hgs

where s € R" is arbitrary.
Therefore, we proved Theorem 2.1.

Theorem 2.1 Given m = 3l arbitrary linearly independent vectors ai,--- ,a,, €
R™ and an arbitrary nonsingular matrix Hy € R"*". Let H; be generated by (23)
with w; and w; satisfying (22) and the sequence of matrices H;, i = 2,---,1 be

generated by

Hi=H,_, — Hy,_ c3 oW, Hy,_, — Hy,_ c3; 10} Hy,_, (28)

—1
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with w; and w; € R™ satisfying

wl Hy, c3i—0=1 wl'H, ¢392 =10
(29)
wlHy, c3i-1 =10 wlI'H), 321 =1
also let the sequence of matrices H;,,--- , H;, be generated by (26) with w; € R"

satisfying (27), Then the following properties ((i) — (4¢7)) hold for ¢ =1,--- I
(1)Hj,aj =0, j=1,--- 31,

(it)Hiaz;—2 = Hiazi—1 = Hiaz; # 0

(t4i)Hy,c; = 0, j=1--- 3

also, for i = 2,--- , 1, we have

(tv)Hic; =0, j=1,---,3i —3 and for i = 1, we have Hiyc; =0 j =1,2
Remark 2.3 Before we present the algorithm, we need to explain the defi-
nition of A; based on the values of the residues of three new equations being
considered. We saw that \; must be nonzero when the corresponding residues
(rai—2(wi—1) = i, r3i—1(zi—1) = B; and rsi(zi—1) = ;) are nonzero. We use the

following strategy for the definition of A;:

(i) If a;Biy; # 0, then we let
azi—2 = Bivia3i—2 agi—1 = o;7;as;—1 as; = a;3;a3;
b3i—2 = Bivibsi—2 b3i—1 = a;7ibzi—1 b3 = a;3;bs;
and we have:

N @By B B
Y ST Heaai o 2P Hoan + 28 Hiqas
Z; 11;a3;—2 Z; 13031 Z; ;a3

(ii)) If (o = 0,8; =0 and ~; # 0) then we let:

a3i—2 = a3;—2 + as; azi—1 = a3;—1 + as; as; = as;

b3i—2 = b3;i—2 + bs; b3i—1 = b3i—1 + b3; bsi = b3;

and we have

N — Vi Vi i
vt T - T - T
Zz' Hiagi_g Zz' Hiagi_l ZZ- Hiagi
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(iii)If (a; # 0,8; =0 and ~; # 0) then we let
azi—2 = Y;a3i—2 as; = o;a3; asi—1 = azi—1 + as;
b3i—2 = Yib3i—2 bsi = a;bs; b3i—1 = b3i—1 + bs;

and we have:

Qi _ Qi _
zI'Hiasio 2zl Hiaziw 2z Hias

Ai =

(iv)If (; = 0,8; # 0 and ; #0), then we let

asi—1 = Y;03i—1 as; = Piaz; agi—2 = az;—2 + as;
b3i—1 = Yibsi—1 bs; = Biba; b3i—o = b3;i—2 + bs;
and we have:

N Bivi  Bvi B
Y ST Hoaai o 2l Hiaa 1 20 Hiqa,
Z; 11;a3;—2 Z; 11;a3;—1 Z; 11;a3;

Since we define c; based on the 3i-th equation, in each step, 7; must be nonzero
for all ¢ = 1,--- 1. So if we have v; = 0 and «; or (; (at least one of them ) be
nonzero, by proper interchanging as; and bs; by as;—2 and b3;_2 or as;—1 and bs;_1,
we have one of the before cases.

But if ay, 5; and ~;, all of them, be zero, then A; will be zero and x; will be set to
xi—1 so x;, will be set to z; as expected.

i—17

Now, we can present the steps of the new algorithm for solving full row rank
(and hence compatible) systems.

Algorithm 1.(Assume that A, has full row rank and m = 3l.)

(1) Let zp € R™ be an arbitrary vector and choose Hy € R™™" (an arbitrary
nonsingular matrix). Set i = 1.

(2) (a) Compute oy = r1(x0), f1 = ra2(xo) and y1 = rs(xo)
(b) If ;171 # 0, then we let

a1 = fiyiaq az = o1y1a2 a3 = ayfra3
b1 = B171b1 by = a171b2 b3 = a1 51b3
(c) If (aq = 0,61 =0 and 1 # 0), then we let

a; = a1 +as as = ag +as as = as

by =by + b3 by = by + b3 bs = b3
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(d) If (a1 #0,61 =0 and 1 # 0), then we let
ay = vy1a1 az = a3 az = az + as

b1 = v1b1 b3 = a1bs by = by + b3

(e) If (aq = 0,61 #0 and 1 # 0), then we let
az = y1a2 az = pras ai = ai + as
by = 11b2 bs = B1bs by = b1+ b3
(f) If v1 = 0 and «a; # 0, then we let
a1 = as as = as a3 = aq
b1 = b3 by = by bz = b

and go to (2).
(g) If vy = 0,1 = 0 and B # 0, then we let

al = aq a9 = asg az = az
and go to (2).
(3) (a) Let ¢; = a3 —ay and c2 = a3 — as
(b) Select wy,w; € R™ so that
W{H()Cl =1 @{Hocl =0
E’{HOCQ =0 ’LD{HOCQ =1
and compute

H{ = Hy — H()Cl@?Ho — HOCQ'II){HO

(c) Select w1 € R™ so that wi Hyaz = 1 and compute

Hll = H1 - Hlagwal

(d) Select z; € R™ so that 2! Hyaz # 0, and compute

AL = S i 0 Biy1 # 0

T
Zq Hlag’

AN = —5—, if (a1 = 0,61 =0 and 71 # 0)

T
Z3 H10437

A = —ripe—, if (a1 # 0,1 = 0 and 1 # 0)

T
zZ3 Hl(lg’
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A = A if (ay = 0,01 #0 and 1 # 0)

2T Hyasz?’
(4) (a) Let 21 = z0 — M H{ %
(b) Let x;, = x1 — Hlffs, where s € R™ is arbitrary.

(5) While 7 < % do step (6)-(9)
(6) (a) Compute a; = 7“31'72(%;1), B; = 7“31'71(931‘71) and y; = Tsi(%el)
(b) If «;8iy; # 0, then we let
azi—2 = Biviasi—2 azi—1 = O7Y;A3i—1 as; = o;B;a3;
bzi—2 = Bivibsi—2 b3i—1 = a;7yibsi—1 bz; = i B;bs;
(¢) If (a; =0,5; =0 and ~; #0), then we let

azi—2 = az;—2 + as; a3i—1 = G3i—1 + as; az; = ag;
b3i—2 = bzi—2 + bsi b3i—1 = bzi—1 + bsi bsi = b3;
(d) If (et #0,8; =0 and ~; # 0), then we let
azi—2 = 7ia3;—2 az; = q;a3; azi—1 = a3i—1 + az;
bsi—2 = Yibzi—2 bsi = aibs; bsi—1 = b3i—1 + bs;
(e) If (a; = 0,8; #0 and ~; #0), then we let
asi—1 = Y;a3i—1 az; = Biasz; asi—2 = az;i—2 + as;
bgi—1 = Vibsi—1 bsi = Bibsi bgi—2 = bsi—2 + bs;
(f) If v; = 0 and «; # 0, then we let
agi—2 = as; agi—1 = agi—1 as; = asi—2
bsi—2 = bs; b3i—1 = bzi—1 bsi = b3i—2

and go to (6).
(g) If v =0, a; =0 and §; # 0, then we let

a3i—2 = a3;—2 a3i—1 = a3; az; = azi—1

b3i—2 = b3i—2 b3i—1 = b3; bsi = b3i—1

and go to (6).
(7) (a) Let c3i—2 = ag; — asi—2 and c3,—1 = az; — azi—1
(b) Select w;, w; € R™ so that

1 ~T
wi Hliilcgi_Q =1 wi Hli,lcSi—Q =0

—T =T
w; Hy, c3;-1=0 w; Hy, 31 =1
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and compute
Hi=H, , — H, csiow; H, , — H, 31w} H, |
(c) Select w; € R™ so that wZTHiag,; =1 and compute
H), = H; — Hyaz;w! H;

(d) Select z; € R™ so that z;f H;as; # 0, and compute

Ai = %, if aifBivi #0

Ni = r— if (a; = 0,8 =0 and ~; # 0)

T
Z; H;as;

N = 2 if (0 # 0,6 =0 and v; # 0)

Z?Hiasi

Ai = ZT[;IWQS if (a; =0,8; #0 and ~; #0)
(8) (a) Let Ty = Tj—1 — )\lHZTZZ

(b) Let z;, = x; — Hgs, where s € R" is arbitrary.

Seti=1i+1

Endwhile
(9) Stop (z; is a solution and x;, is the general solution of the system.)

Theorem 2.2 Assume that ay,-- -, a;, are linearly independent vectors in R™. Let
Hy € R™™ be an arbitrary nonsingular matrix, and for ¢ = 1,--- , [, the sequence
of matrices H; be generated by:

H; = H;—1 — Hi_1c3i—2W; Hi—1 — Hi_1c3i-1%] Hi—1 (30)
for some w;, w; € R™ satisfying the below conditions:

=1 _ ~T _
w; H¢,163i,2 =1 w; Hz;lch;Q =0

. . (31)
w; H; 1c3,_1=0 w; H, 1c3i.1=1

then for any 4, 1 < ¢ < [, and j, 31 — 2 < j < m, the vectors H;a; are nonzero
and linearly independent (or equivalently H;as;—2 and Hjaj, 3i +1 < j < m, are
nonzero and linearly independent).

Proof We proceed by induction. For ¢ = 1, the theorem is true, since if
m

ajHya; = 0, then
7j=3

m
Zo‘j (Ho — Hocrw] Hy — Hoco] Ho) a; = 0.
=3

m
BHoa1 + B'Hoaz — (8 + B’ — az) Hoaz + Z ajHoa; =0,
=4

where = > f; and §' = }_ .
=3 =3
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Now, since a1, - -, apn, are linearly independent and Hy is nonsingular, then Hpa;,
for 1 < j < m, are linearly independent.
Hence = =az3=---=a,, =0.

Therefore the vectors Hiaj, for 3 < j < m, are linearly independent. Now we
assume that the theorem is true up to 1 < k£ < [, and then we prove it to be true
for k + 1. From (30), for 3k + 1 < j < m, we have,

Hk+1aj = Hkaj - (@{Hkaj)ch;ng — (ngkaj)chngrZ (32)

We need to show that the relation

m
S ajHppa; =0, (33)
j=3k+1

implies that a;; = 0, for 3k + 1 < j < m. Using (32)we can write (33) as follows:

m m m
§ : § : —T § : ~T
aijaj— QWi Hkaj ch3k+1_ QW Hkaj Hk63k+2 =0.

j=3k+1 j=3k+1 j=3k+1
m m
By taking 81 = Y. «;w} Hya; and B2 = Y.  «;w} Hya;, we have
j=3k+1 j=3k+1

m
Z ajHpa; — f1Hy(agks3 — asg+1) — BoHy(asps — aspq2) = 0.
=341

or equivalently

m
Z ajHyaj + (agpy1 + 1) Hiasg+1
j=3k+3

+ (a3p4282) Hrazk 2
— (81 + B2)Hiasgkys = 0.

By the induction hypothesis, the vectors Hya;, for 3k — 2 < j < m, are linearly
independent, we have

B1 = P2 = a3k41 = Q3j42 = Q3}43 = -+ = Qi = 0.

Hence, the vectors Hyiqaj, for 3k +1 < j < m are linearly independent (the
statement in the parenthesis in Theorem 2.2 is now simply verified by the fact that
H;azi—2 = Hiazi—1 = H;az;). ]

Theorem 2.3 Assume that ai,--- ,a, are linearly independent vectors in R".
Let Hy € R™™ be an arbitrary nonsingular matrix, H; be defined as (23), and
for i = 2,---,1, the sequence of matrices H; be generated by (2.29) then for ¢,
1 <i <1 and j, 3i —2 < j < m, the vectors H;a; are nonzero and linearly
independent (or equivalently, H;as;—2 and H;aj, 3i +1 < j < m, are nonzero and
linearly independent).
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Proof The proof is same as the proof of Theorem 2.2. [ |
Corollary 2.4 For all 4, i = 1,---, %, if the vectors aj,az,--- ,a3; are linearly

independent, then H;as;—o = H;as;—1 = H;as; # 0, and there exists z; € R™ such
that ZiTHiCL?)Z' #0.

Considering the theorems 2.2 and 2.3, the following corollary is now immediately
at hand.

Corollary 2.5 If ay,--- ,a,, are linearly independent, then the system (18) has
solution for every i, 1 <@ <! —1, and H;y1, %41, H;,,, and xy,, , are well defined.
Similarly the system (2.23) has solution for i = 0, and Hy, x1, H;, and z;,, are well
defined.

The proof of the following lemma is obvious.

Lemma 2.6 The vectors aq,--- ,a,, are linearly independent if and only if the
vectors ci, - - - , ¢y, are linearly independent.

We can now easily prove the following theorem, using Lemma 2.6.

Theorem 2.4 For the matrices H; generated by (2.24) and (2.29) at Algorithm 1
and the matrices H;, given by (26), we have:

dmR(H;)=n—3i+1, 1<i<I
dmN(H) =3 —1, 1<i<l
dim R(H;,) = n — 31, 1<i<l
dim N(H;,) = 3i, 1<i<L
dim R(H},) =n —m,

dim N(H;,) = m.

An interesting question of concern arise when

H;az;—92 = H;a3;—1 = H;az; =0

Theorem 2.8 below shows this to be equivalent to the vectors aq,--- ,as; being
linearly dependent.

Theorem 2.5 Assume that aq,--- ,as; are linearly independent. Assume Hp can
be defined as Hj according to (2.24) and H; can be defined according to (2.29)
for i = 2,--- 1, that is the systems (2.30) and (2.23) has a solution for the cases
of H;, , and Hj respectively, then H;as;—o(= H;asi—1 = H;ag;) = 0, if and only if
ai,--- ,as; are linearly dependent.

Proof By corollary 2.4., if H;asi—o(= H;asi—1 = H;as;) = 0, then the vectors
ai,--- ,as; are linearly dependent.

To prove the converse, for i = 1, let ag = aay, a1 # 1 or ag = Bao, B # 1.

(for a = 8 = 1, it is easily verified that a; = a2 = ag, which can not allow the
definition of Hy). If ag = aay, a # 1, we have:

0= H101 = Hl(ag — al) = Hl(aal — al) = (a — 1)H1a1
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This implies that Hia; = Hiao = Hiaz = 0.
If ag = Bas, B # 1, similar to the previous case we have:

0= H102 = Hl(ag — CLQ) = Hl(ﬁaz — (12) = (B — 1)H1a2

and H1a1 = Hlag = H1a3 =0.

For ¢ > 1, since ay,---,as; are linearly independent, then the dependence of
ai, -+ ,as3; can happen in any one of the nonexclusive ways:

(i) agi—2 or as;—1 or as; is linearly dependent on ay,--- ,as;i—s,

or

(i) asi—2, as;—1 and ag; are linearly dependent.
In case (i), let’s assume, without loss of generality, that

3t—3
az; = E a;ay.
J=1

Then, using the fact that H;a; =0, j = 1,---,3i — 3, We have

3i—3 3i—3
Hz‘agi = Hi E ajaj = E Osziaj =0.
Jj=1 J=1

In case (ii), let’s assume, without loss of generality, that
asz; = aaz;i—2, o F 1

(For a = 1, we have a3; = ag;j_2, which implies that c3;_o = 0 and hence H; cannot
be defined Hj, ,, contradicting the assumption of the theorem.)
Then, Using the fact that H;cs;—o = 0, we have:

0 = Hjazi — Hiasi—2 = Hi(aaszi—2) — Hiasi—2 = (o — 1) Hjaz;—2,

which shows H;ag;—o = 0. [ ]

Remark 2.7 To reduce the compution time, the setting of zg and Hy as the zero
vector and the identity matrix I,,, respectively, are proper, in step (1) of Algorithm
1. Also, in this algorithm, we can select the w; € R*~3+1 2, € R"~3+3 considering
(2.28) and (2.7) respectively, for i = 2,--- |, by the following strategy: (The cases
wy € R"? and z; € R™ will be discussed)

We let d; = H;as;, and

djpr? '= JM
(2)i =
A i=gm
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where

\dj,,| = max{|d;| :i € {1,--- ,n}\{f1, -+ ,l3i—3} such that ] d = 1}
|}, | = max{|d;| : i € {1,--- ,n}\ {1, , €51} such that w] d = 1}

The rows ¢1 - - - £3;,_3 of H;, , and the rows ¢y - - - £3;,_1 of H; are all the zero vectors.
For i = 1, we define d = Hyas, where

iy L= JM
(21 =

d/.l » U=JM
(wi=1 "

0, i

|dj, | =
|d),, | = max{|d;| : i € {1, ,n}\{¢1, 65} such that w{d = 1}

max{|d;| :i € {1,--- ,n} such that 27 d = 1}

The rows #; and ¢ of Hy are zero as Theorem 2.7.

Remark 2.8 If H;as;_o = 0, it is clear that neither x; nor H; can be defined,
so x;, and H;, can not be defined too. In this case one should identify the case
and propose alternative steps to define z; and H; and resultly z;, and H;,. (of
course one can always make use of the regular rank one or rank two ABS steps
as alternatives). We also not that H; fails to be defined if and only if the systems
(2.30) and (22) lacks a solution, that is the vectors H;cs;—o and H;cs;—1 are linearly
dependent. A similar argument, is given in the proof for Theorem 2.8., shows that
this can happen if and only if aq,--- ,as; are linearly dependent.

In this section we discussed ABS type methods for solving m linear equations
by 3 steps, extentively. Now, we are ready to present the main formula (param-
eters) for solving full row rank (and hence compatible) systems by 7' steps for
k=1,--- ,m.

3. ABS Type Methods for Solving Full Row Rank Systems by - Steps

Assume that ay,- -, ay, are linearly independent vectors in R™.

Let zp € R™ be an arbitrary vector and Hy € R™ "™ be an arbitrary nonsingular
matrix.

At first we explain how to compute the stepsize, based on the values of the residues
of the k new equations being considered. If we call the stepsize of the i-th iterate
by «;, we use the following strategy for the definition of «;.

Without loss of the generality assume that the residues values of the k-th equation
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be nonzero in each steps.

(1) I rpi—(ke—1) (Tim1)Thi— (k—2) (Tim1) - = TRi(wi—1) # O then we let
ki (k—1) = Thi—(k—2) (i 1)Thi— (k—3) (Ti=1) = Thi (Ti—1) Qi (k1)
Oki—(k=1) = Thi—(k=2)(Ti—1)Thi—(k—3)(Ti-1) -+ * Thi (Ti—1)Opi— (k1)

ki (k—2) = Thi— (k—1) (Tim1)Thi— (k—3) (Ti=1) = Thi (Ti—1) Qi (h—2)

i (k—2) = Thi—(k—1) (Tie1)Thi—(k—3) (Ti=1) * i (Ti1) bpi—(h—2)

Aki—1 = Thie(k—1)(Tim1)Tki—(k—2) (Tiz1) = Thi—2(Ti—1)Tki (Ti—1) Qg1
bki—1 = Thi—(k—1)(Ti—1)Thi—(k—2) (Ti=1) -+ Thi—2(Ti—1) ki (Ti—1)Dki—1
ki = Thie(h—1)(Tim1)Thi—(k—2) (Ti—1) = Thi—2(Ti—1)Thi—1(Ti—1) Ok

bri = Thie(k—1)(Tim1)Thi—(k—2) (Ti-1) =+ Thi—2(Ti1)Thi—1(Ti—1)bki
and the stepsize is given by:

o — Thie (k—1) (Tim1)Thi—(h—2) (Ti—1) -+ Thi—1 (V1) ki (Ti—1)
' ZlTHzakl

(34)

z; and H;, will be defined, too.

(1) I rpi—(e—1)(Ti1)Thiz(k—2)(Ti-1) - Tki(zi—1) = 0, and all of the k residues
values are zero o; will be zero and x; will be set to ;1 as expected so, x;, will be set
to z;,_,. Now we assume, without loss of generality, that the first p residues values
are zero and the others are nonzero. At first we must compute which equations that
their residues values of them are nonzero, then we compute the other equations
based on the k-th equation. We emphasize again that the k-th equation has nonzero
residual value.

(iti) If rgi(o—1)(Tim1)Thi—(k—2)(®iz1) - - - Thi(zi—1) = 0 and some of the & residues
values be nonzero, without loss of the generality, assume that the k-th equation
has nonzero residual value. At first we must compute which equations that their
residues values of them are nonzero based on the k-th equation, in each iterate.
(Similar to Remark 2.3) and, the step size is given by:

The product of nonzero residues values
o =
ZlTHzakl
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Now, by defining c; as the next relation

api — aj, j # ki
¢j = (35)
Ay ] = ki
we have:
Hi =Hy— H()Cl@,{HO — H()CQ’(Z)EHO — = HOCk—luA)g_lHO (36)
with Wy, ws, -+ ,Wr_1 € R™ satisfying the following conditions:
@{chl = l,ng()Cl =0,--- ,UAJ%LlH()Cl =0,
E{HOCQ = O,?I}gHOCQ =1,--- ,Zf)g_lHoCQ =0,
W1 Hocp—1 = 0,2 Hocp—1 = 0,--- , i Hocp_1 =1,
(37)
and for all i = 2,--- [, we let
Hi = Hli—l - Hli71Ck'i—(k‘—l)wgi—(k—l)Hli—l - H17:71Cki—(k—?)ﬁ)g;—(k—Q)Hlifl
-t Hli—lcki_lwlz;leli—l
(38)
with Wy (k—1), Wki—(k—2), "+ » Wki—1 € R" satisfying the following conditions:
Wi o1y Hi_, Chie(ee1) = L0 ooy Hi_\Crim (1) = 0, -+ W1 Hi,_, Cri— (1) = 0,
@Zi—(k—l)Hliflcki—(k—@ = O,ﬁ;_(k_z)Hli,lcm_(k_z) =1, ih  Hi Cpi(o—2) =0,
(39)
and H, for all ¢ =1,---,[ is written as:
H,, = H; — Hiapwi, H; = H; — Hicpywi, H; (40)
where w; € R™ is an arbitrary vector satisfying
wiTHiaki = w;-‘FHicki =1 (41)

It is easily proved that if a; being linearly independent, H;ax; is a nonzero vector
and hence (40) is well defined with a proper choice of w;. Hence if z; be a solution
of the first ki equations, for all 4, ¢ = 1,--- ,[, we have:

T = w1 — o Hl 2 (42)
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where z; € R" is selected so that
T
Z; Hiakl- 7é 0 (43)

and the general solution of the first ki equations is given by (44), for all ¢, i =
1,1

x, =x; — Hl's (44)

where s € R" is arbitrary.

Remark 3.1 To reduce the computation time and space we can select z as the
zero vector and Hy as the identity matrix. Also we can select z; € R (Ki—k) for all

1 =1,---,1 such that, z; has only one nonzero component and le H;ap; = 1. The
other ways to reduce the compution time and space are selecting w;, w;,--- ,w; €
R~ k=k) for all i = 2,---,1 as (39) and Wy, Wy, --- , w1 € R™ as (37) and w; €

R*k+1 for all i = 1,--- ,n as (41), by extenting Remark 2.4.

Remark 3.2 All of the theorem in section 2 are proveable (extensive-able) for k
steps.

Remark 3.3 We know that for &K = m we have one step. In this case if we have
xq the zero vector and p of the residues values are nonzero and the others are zero,
by proper interchenching rows of A and b, we have two systems:

(i) A system with rank p

(ii) A system with rank m —p

Now it is sufficient to compute (i) because the solution of (ii) is the zero vector.

Theorem 3.1 For the matrices H; in (38) and the matrices H;, generated by (40),
we have:

dimR(H;) =n—ki+1 1<i<l
dim N(H;) = ki — 1 1<i<
dim R(H;,) =n — ki 1<i<l
dim N(H;,) = ki 1<i<l
dim R(H;,) =n—m

dim N(H;,) =m

4. Computational and Numerical Results

Assume that A, x,(m = kl) is a full row rank matrix. We can compute the num-
ber of multiplications as follows, at the worst case. The major work is shown in
Table 1; by considering Remark 3.1. Notice that we need @ +(k-1)2 - @

multiplications only for computing Egi_(k_l), e ,u?%;fl, in each step.
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Table 1. Numbers of multiplications required for solving m linear equations in 7* steps,

for the main parameters.

The number of multiplications in each step
residues values kn
aki,(k,l), ey Qg kn(k — 2), k = 2
bri—(k—1)> """ bri k
H; (k —1)(2n* — 2nki + 3nk — n)
H;. 2n? — 2nki + 3n
stepsize 1

Hence the total number of multiplications for the [ iteration is:

l
N = Z[kn + kn(k —2) + k + (k—1)(2n? — 2nki + 3nk — n)
i=1

+(2n? — 2nki 4 3n) +1+n+ 1+ O(m)

)
N = 2n*m — nm? + 3knm — 5nm + % + O(m) (45)

We saw [4] that the algorithm of Huang, when implemented with care, requires

%mn2 + O(mn) multiplications, and the algorithm by % step as [4, 5], requires

3mn? — Zmzn + ém:g +O(m?) + O(n?).

comparing this with our results, we see that our new class of algorithm for 7+ steps,
when m gets close to n requires less work than the previous methods.

In fact for the square systems (m = n), the leading terms is %n3 for Huang’s
method and 1In3 for the method in [4, 5]. But the leading terms for our new
method amount to n® as apposed to the two previous methods. Of course, when
m and n are not too large, the lower order terms of the computation time will also
affect the efficiency.

5. Numerical Example

Example 5.1
r3 2 1 2 47 (37
10 ~ 10 10 10 10
~i5 1% 0 1 5
A=| & 0 -3 L, b= |4
~i6 1 10 10 0 4
[~ 1 ~15 0 o 0]
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Asy5 has full row rank. For solving this system we use two steps. At the first step
we have m = 3l and at last we have m = 21.
By considering

0 (3212 4]
0 —2101-5
o= |0/, Hy=|10-131
0 21320
0| | —15 1 0-3]

‘We have

107.52 24
Wl = [ 0 o}

~ (399367 416"
9 -1
NT_
= [41.6’41.6’0’0’0]

and the matrix H; is as follows

0 0 0 0 0

0 0 0 0 0
H, — | 67584 _ 4608 _ 49152 737.28  1413.12
1= | 39936 ~ 399.36 ~ 399.36 39936  399.36

6919.68 5107.2 3417.6  5506.56  7534.08
399.36  399.36 399.36 399.36 399.36

_ 6796.8 _ 3648 _ 2127.36 _ 5644.8 _ 8348.16
399.36  399.36 399.36 399.36 399.36

and zp is as follows

399.36

T
—10,0,0,0, - 2222
A1 Y T 10808

ri(zo)ra(xo)rs(o) _

= —160 and we have
Zq H1a3

The step size is

- 354
39

190
39

x1 = xo — (stepsize) x Hi 2z = 1108

204
39

434.8
L 39 J
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We see that x; satisfies the first three equations.
| = (w{ Hiaz = 1) thus we have

Now, we let wlT = [0,0,0

707

_399.36
119308

Hl1 = H1 - H1a3w?H1

0.134
0.13

0.217
0.13

0

0.34

0.13

0.57

0.13

0

0 0 0
0 0 0
0.2708 _ 0.054 0.0252
0.13 0.13 0.3
0.4754  0.102 _ 0.0476
0.13 0.13 0.13
0 0 0
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and the general solution of the first three equation is: z;, = x1—H, E s, where s € R"
is arbitrary.

1=2:
289.4 83.6 289.4
ra(T1) = =575 4 = —97504 as = —975 45
e ,
_ 836 _ 836 _ 2894
r5(z1) = —g75 by = —g75ba bs = — %975 s

0.01845 0.1025 0.14309 0.0492 _ 0.02296
0.5863 0.5863 0.5863 0.5863 0.5863

0 0 0 0 0

consequently we have
10

10
10

Ty = x1 — (stepsize) x H zo = which is the exact solution of the system

10

10
and we have

- 571.6425

= 10,0, — " 0,0| = wi Hyaz =1
2 " T 105973727 Wz H205
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[00000]
00000
H,, = Hy — Hyazwi Hy = {00000

00000

100000 |

The general solution of the system is:

x

=x9— H lf s, when s € R” is an arbitrary vector.

Remark 5.2 If we let H;ar; = d; and

‘de| = max{‘di| S {17 T 7n}\{£17 T 76/%'—1}}

for reducing the time of compution we can let

1
ZT:w?: 0707"' 707770707'” 70

7
IM

originally we can select z; as intersection space with w;.

6.

Conclusion

In this work we proposed an ABS method for solving a system of linear equations.
We showed that this method has less complexity than the previous methods.
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