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Abstract. In this paper, we propose a technique for determining a source term in an inverse
heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very
suitable instruments, the RBFs have been applied for solving Partial Differential Equations
(PDEs) by some researchers. In the current study, a stable meshless method will be proposed
for solving an (IHCP). The other advantage of the method is that can be applied to the
problems with various types of boundary conditions. The results of numerical experiments
are presented and compared with analytical solutions. The results demonstrate the reliability
and efficiency of the proposed scheme.
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1. Introduction

Inverse problems occur in many branches of engineering natural sciences. Such
problems are much more difficult to solve than direct ones, because inverse problems
are usually ill-posed [12]. On the other hand, methods of solving these kinds of
problems are very important for a wide range of problems that cannot be analyzed
by simple methods, directlly.
One of the most important inverse problems, appearing in some engineering science
is an inverse heat conduction problem (IHCP) that the various kinds of them have
been solved by some methods [1–3]. The inverse problem of determining a heat
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source in the heat conduction equation has been studied by researchers as Cannon,
DuChateau, Fatullayev and etc [5, 7, 9, 10]. Several numerical methods have been
proposed for solving the inverse source problem [4, 6, 8, 11]. We note that, even
though these methods are very effective for solving various type of these problems,
conditional stability of explicit finite difference procedures and the need to use large
amount of CPU time in implicit finite difference schemes limit the applicability of
these methods. Also, these methods provide the solution of the problem on the
mesh points only and the accuracy of these schemes may be decrese in nonsmooth
and nonregular domains. So, to avoid the mesh generation, in the recent years
meshless methods have been applied for solving a large numbers of problems by
some reseachers. The main advantage of these methods is that mesh generation
is not needed. In the circumstances, RBFs method is known as a powerful tool of
meshless methods which can be used for solving various kinds of problems such as
PDEs [13–16, 22–24].
In the present work we are dealing with the appoximated solution of the following
second-order parabolic problem:

∂u

∂t
− α∂

2u

∂x2
= F (t) (1)

namely, the heat source depends on the time variable only. Where α is a known
constant coefficient. The layout of the article is as follows. In Section 2, the global
radial basis functions are introduced. In Section 3, we will show that how we use
the RBFs for solving an IHCP. The results of numerical examples are presented in
Section 4. Section 5 is dedicated to a brief conclusion.

2. Global Radial Basis Functions

In this section, we cosider RBF method for interpolation of scattered data. Suppose
that x∗ and x be a fixed point and an arbitrary point in Rd, respectively. A radial
function φ∗ is defined via : φ∗ = φ∗(r) where : r =‖ x − x∗ ‖2 .i.e. the radial
function φ∗ depends only on the distance between x and x∗. This property implies
that the RBFs φ∗ are radially symmetric about x∗. Some well-known RBFs are
given in the table below:

Infinitely smooth RBFs φ(r)

Gaussian(GA) exp(−cr2)

Multiquadrics (MQ)
√
r2 + c2

Inverse multiquadrics (IMQ) (
√
r2 + c2)−1

Inverse quadric (IQ) φ(r) = (r2 + c2)−1

Let {x1,x2, ...,xN} be a given set of distinct points in domain Ω in Rd. The main
idea of using the RBFs is interpolation with a linear combination of RBFs of the
same types as follows :

Φ(x) =

N∑
k=1

λkφk(x) (2)

where φk(x) = φ(‖ x− xk ‖) and λk’s are unknown coefficients for k = 1, 2, ..., N.
Assume that we want to interpolate the given values fk = f(xk), k = 1, 2, ..., N.
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The unknown coefficients λk’s are obtained, so that Φ(xk) = fk, k = 1, 2, ..., N ,
which results in the following linear system of equations :

AΛ = b (3)

where Λ = [λ1, ..., λN ]T , b = [f1, ..., fN ]T and A = aij for i, j = 1, 2, ..., N with
entries aij = φj(xi). Generally, the matrix A has been shown to be positive definite
(and therfore nonsigular) for distinct interpolation points for GA, IMQ and IQ by
Schoenberg’s Theorem [20]. Also, using the Micchelli’s Theorem [21], we can show
that A is a invertible for distinct set of scattered nodes in the case of MQ.

3. Method of solution of an IHCP

3.1 An inverse problem

In this section,first, we introducing the mathematical model of an inverse heat
conduction problem. Let us consider the problem of finding functions u = u(x, t)
and F = F (t) satisfying in one-dimensional heat conduction equation :

Lu(x, t) = F (t), (x, t) ∈ (0, l)× (0, T ) (4)

where T > 0 , (0, l) ⊂ R is an open spatial interval and L is a second-order linear
parabolic operator as follows :

 L := (
∂

∂t
− α ∂2

∂x2
) (5)

where α ∈ R, with the following initial and boundary conditions :

u(x, 0) = f(x), x ∈ [0, l] (6)

α1u(0, t)− β1ux(0, t) = p(t), t ∈ (0, T ] (7)

α2u(l, t) + β2ux(l, t) = q(t), t ∈ (0, T ] (8)

where αi’s, βi’s for i = 1, 2 are constant coiefficients and the functionsf, p and q
are regarded as being known in their domains. To solve the above problem, we
consider the extra condition as follows :∫ l

0
u(x, t)dx = E(t), t ∈ (0, T ] (9)

where E(t) is a known function in its domain. Existence, uniqeness and stability of
a direct problem of the same type, with the various kinds of boundary conditions
have been verified [1].

3.2 Analysis of the method

Now, we show that how we use the method of RBFs to approximate the solution
of the above problem. Since an one-dimensional heat conduction equation depends
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on both x and t, we consider N scattered nodes in the domain Ω = [0, l] × [0, T ].
So, let :

Ξ = {xk = (xk, tk)}Nk=1 ⊂ Ω (10)

be a given set of distinct points in domain Ω. Also, we consider two subsets of Ξ
as follows :

Ξ = Ξi ∪ Ξb (11)

Ξi = {xk}Ni

k=1 (12)

Ξb = {xk}Nb

k=1 (13)

whereN = Ni+Nb, Ξi and Ξb are the interior and the boundary points in domain Ω,
respectively. Using the radial basis collocation method, the solution of the problem
in Ω is looked for as :

ũ(x) =

N∑
k=1

λkφk(x) (14)

and

F̃ (t) =

Ni∑
j=1

µjψj(t) (15)

where φk = φ(‖ x − xk ‖) and ψj = ψ(| t − tk |) for given RBFs φ, ψ and Ni is
the number of the interior points in domain Ω. To determine the coeifficients in
(14), (15) we impose the approximate solutions ũ and F̃ to satisfy the given partial
differential equation with the other conditions at any x ∈ Ξ.

Remark 1
We assume that there are Nb < N boundary points, N − Nb interior points and
Ξ1, Ξ2 and Ξ3 are three subsets of the Ξi as follows:

Ξ1 = [0, l]× {0} (16)

Ξ2 = {0} × (0, T ] (17)

Ξ3 = {l} × (0, T ] (18)

Let ` be a boundary operator and `u is known for x ∈ Ξb.
So we have :

Lũ(x)− F̃ (t) = 0, x ∈ Ξi, t ∈ (0, T ) (19)
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`ũ(x) = f(x), x ∈ Ξ1 (20)

`ũ(x) = p(t), x ∈ Ξ2 (21)

`ũ(x) = q(t), x ∈ Ξ3 (22)

and ∫ l

0
ũ(x, t)dx = E(t), t ∈ (0, T ] (23)

which results the following linear system of equations :

AΛ = b (24)

where Λ = [λ1, ..., λN , µ1, ..., µN1
]T , b = [0, f, p, q, E]T and 0 is the zero matrix.

Thus the ((N +N1)× (N +N1)) matrix A can be subdivided into five submatrices
as follows:

A =



A1

−−−
A2

−−−
A3

−−−
A4


(25)

where

A1 = [Lũ(x)− F̃ (t)], x ∈ Ξi, t ∈ (0, T ) (26)

A2 = [`ũ(x)], x ∈ Ξ1 (27)

A3 = [`ũ(x)], x ∈ Ξ2,3 (28)

A4 = [

∫ l

0
ũ(x, t)dx], t ∈ (0, T ] (29)

By solving this linear system of equations, the unknown values λk, k = 1, ..., N and
µj , j = 1, ..., N1 will be found.

Remark 2
If T be sufficiently small value, we can apply this algorithm to determine the
approximate solutions of the problem in the upper levels via replacing Ω to Ωk =
[0, l]× [(k − 1)T, kT ] for k = 1, 2, 3, ....

Remark 3
Although, the matrix A is nonsingular in the following examples, usually it is very
ill-conditioned, i.e. the condition number of A as Ki(A) =‖ A ‖i‖ A−1 ‖i, i = 1, 2, ...
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is a very large number for a fixed number of interpolation points. The condition
number of A depend on the shape parameter c, on the other hand, it grows with
N for fixed values of the shape parameter c. In practice, the shape parameter must
be adjusted with the number of interpolating points. Despite various reseach works
which are done, the optimal choice of its is still an open problem [17–19].

4. Numerical results

In this section we present some numerical results to test the efficiency and accuracy
of the scheme for solving the above inverse heat conduction problem.

Example 4.1
In this example, we consider the problem (4−9) with α = 2/π2 and Ω = [0, 1]×[0, 2].
Practicing the exact solutions which can be resulte as: u(x, t) = exp(−2t)
(cos(πx) + 1), F (t) = 2 exp(−2t) initial, the Dirichlet boundary conditions (α1 =
α2 = 1, β1 = β2 = 0) and the extra condition can be achived.
Using the obtained scheme in the previous section and considering c = 1 as the
shape parameter in GA, IQ and IMQ-RBFs, we will find u(x, t) and F (t) numer-
ically. The values of the RMS errors and the maximum absolute errors for GA,
IQ and IMQ-RBF method are introduced in the below tables. In Table 1 we give
the errors for x ∈ Ω1 = [0, 1] × [0, 0.5] for GA, IQ and IMQ-RBF method. Due
to closeness of accuracy of GA, IQ and IMQ-RBF, in Table 2 only the results of
GA-RBF will be shown on the other levels. The plots of the error functions for
x ∈ Ω1 and Ω4 are given in Figure 1 and Figure 4.
The maximum absolute errors: E∞1 = max |u(x)− ũ(xk)|, E∞2 = max |F (t)− F̃ (tj)|
are obtained.

Table 1. The RMS and absolute errors GA, IQ and IMQ-RBFs for N=100, x ∈ Ω1.

error GA IQ IMQ

RMS error of u 5.5163e-005 5.4514e-005 4.7659e-005
RMS error of F 4.0323e-005 1.8952e-004 1.3555e-004
E∞1 5.6379e-004 5.2078e-004 4.3279e-004
E∞2 9.9058e-005 5.7306e-004 3.1860e-004

Table 2. The RMS and the maximume absolute errors GA-RBF for x ∈ Ωk = [0, 1] ×
[(k − 1)× 0.5, k × 0.5], k = 2, 3, 4.

Ωk RMS error of u RMS error of F E∞1 E∞2
Ω2 2.3333e-005 5.7405e-004 5.7405e-004 1.7795e-003
Ω3 1.2625e-005 1.4476e-004 1.3727e-004 4.4654e-004
Ω4 1.1857e-005 1.9755e-004 1.4207e-004 5.3676e-004

Example 4.2
As another example, let us consider the problem (4 − 9) as follows : α = 1/π2,
Ω = [0, 1] × [0, 2] and α1 = α2 = 1, β1 = β2 = 1. By these assumptions, the
analytical solutions are given as: u(x, t) = exp(−t)(sin(πx)−t), F (t) = exp(−t)(1−
t). Applying the mentioned method, we will find the estimated solutions. Similar
to previous example, in Tables 3 and 4 we give the RMS errors and the maximume
absolute errors for GA, IQ and IMQ-RBF method for x ∈ Ω1 and x ∈ Ωk, k =
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Figure 1. The errors of the approximated solutions for x ∈ Ω1.

Figure 2. The errors of the approximated solutions for x ∈ Ω4.

2, 3, 4, respectively. Also, the plots of the estimated solutions on the levels Ω1 and
Ω4 are given in Figures 3 and 4.

Table 3. The RMS and absolute errors GA, IQ and IMQ-RBFs for N=100, x ∈ Ω1.

error GA IQ IMQ

RMS error of u 1.4110e-004 1.9003e-004 1.3194e-004
RMS error of F 4.2432e-005 1.4615e-004 5.3797e-004
E∞1 1.4220e-003 1.9561e-003 1.5455e-003
E∞2 9.8357e-005 3.9446e-004 8.7500e-004

Table 4. The RMS and the maximume absolute errors GA-RBF for x ∈ Ωk = [0, 1] ×
[(k − 1)× 0.5, k × 0.5], k = 2, 3, 4.

Ωk RMS error of u RMS error of F E∞1 E∞2
Ω2 6.9110e-005 1.4483e-003 1.7629e-003 4.4924e-003
Ω3 4.8475e-005 3.7855e-004 7.6842e-004 1.1736e-003
Ω4 3.7282e-005 4.8028e-004 7.1946e-004 1.4907e-003

Example 4.3
In this example, we apply the new method to find the solution of the problem
(4 − 9) with α = 8/π2 and Ω = [0, 1] × [0, 2]. With the known initial, Neumann
boundary conditions (α1 = 0, α2 = 0, β1 = −1, β2 = 1, ) and extra condition, we
will find the exact solutions of this problem as:
u(x, t) = exp(−2t)(sin((πx/2)) + cos(t)), F (t) = exp(−2t)(2 cos(t) + sin(t)).
The values of RMS errors and the maximum absolute errors for GA, IQ and IMQ-
RBFs for x ∈ Ω1 = [0, 1]× [0, 0.5] and x ∈ Ωk, k = 2, 3, 4 are introduced in Tables
5 and 6, as well. For GA-RBFs, the plots of the estimated solutions on the levels
Ω1 and Ω4 are given in Figure 5 and 6, respectively.
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Figure 3. The errors of the approximated solutions for x ∈ Ω1.

Figure 4. The errors of the approximated solutions for x ∈ Ω4.

Table 5. The RMS and absolute errors GA, IQ and IMQ-RBFs for N=100, x ∈ Ω1.

error GA IQ IMQ

RMS error of u 9.7797e-006 2.2820e-004 2.7616e-004
RMS error of F 1.7974e-005 3.7984e-003 3.4079e-003
E∞1 1.0247e-004 2.0437e-003 2.3844e-003
E∞2 4.7279e-005 4.3207e-003 3.9366e-003

Table 6. The RMS and the maximume absolute errors GA-RBF for x ∈ Ωk = [0, 1] ×
[(k − 1)× 0.5, k × 0.5], k = 2, 3, 4.

Ωk RMS error of u RMS error of F E∞1 E∞2
Ω2 3.9047e-006 1.0436e-004 1.0206e-004 3.2842e-004
Ω3 4.1055e-006 3.8108e-005 6.7689e-005 1.1961e-004
Ω4 1.2688e-006 3.7304e-005 3.5714e-005 1.1673e-004

5. Conclusion

In this work, we discussed on an inverse heat conduction problem. we proposed a
numerical scheme to solve this problem using collocation points and approximating
directly the solutions using the radial basis functions. The numerical result given
in the previous section demonstrate the good accuracy of the scheme proposed in
this study. Clearly, the method proposed in this work can be extended to solve the
varios kinds of the inverse heat conduction problems.

References

[1] J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, (1984).
[2] J. R. Cannon and J. A. Vander Hoke, Implicit finite difference scheme for the diffusion of mass

in porous media, in: Numerical Solution of Partial Differential Equations, North Holland, (1982)
527-539.

[3] J. R. Cannon and A. L. Matheson, A numerical procedure for diffusion subject to the specification
of mass, Int. J. Eng. Sci, 31 (1993) 347-355.



M. Arghand/ IJM2C, 07 - 03 (2017) 175-183. 183

Figure 5. The errors of the approximated solutions for x ∈ Ω1.

Figure 6. The errors of the approximated solutions for x ∈ Ω4.

[4] J. R. Cannon and P. DuChateau, Structural identification of an unknown source term in a heat
equation, Inverse Problems, 14(3) (1998) 535-551.

[5] A. G. Fatullayev, Numerical solution of the inverse problem of determining an unknown source
term in a two-dimensional heat equation, Applied Mathematics and Computation, 152 (3) (2004)
659-666.

[6] A. Farcas and D. Lesnic, The boundary-element method for the determination of a heat source
dependent on one variable, Journal of Engineering Mathematics, 54 (4) (2006) 375-388.

[7] L. Ling, M. Yamamoto, Y. C. Hon, and T. Takeuchi, Identification of source locations in two-
dimensional heat equations, Inverse Problems, 22 (4) (2006) 1289-1305.

[8] Zh. Yi and D. A. Murio, Source term identification in 1-D IHCP, Computers & Mathematics with
Applications, 47 (12) (2004) 1921-1933.

[9] L. Yan, C. L. Fu, and F. L. Yang, The method of fundamental solutions for the inverse heat source
problem, Engineering Analysis with Boundary Elements, 32 (3) (2008) 216-222.

[10] M. Dehghan and M. Tatari, Identifying an unknown function in a parabolic equation with overspec-
ified data via He’s variational iteration method, Chaos, Solitons & Fractals, 36 (1) (2008) 157-166.

[11] A. G. Fatullayev, Numerical method of identification of an unknown source term in a heat equation,
Mathematical Problems in Engineering. Theory, Methods and Applications, 8 (2) (2002) 161-168.

[12] J. V. Beck, B. Black well and C. R. St-Clair. Inverse Heat Conduction Ill-Posed problems, John
Wiley Int.Sc., (1985).

[13] M. D. Buhmann, Radial basis functions, Cambridge University Press, Cambridge, (2003).
[14] M. Dehghan, On the solution of an initial-boundary value problem that combines Neumann and

integral condition for the wave equation. Numerical Methods Partial Differential Equations, 21
(2005) 24-40.

[15] E. J. Kansa, Exacticit time integration of hyperbolic partial differential equations with mesh free
radial basis functions. Engineering Analysis Boundary Elements, 31 (2007) 577-85.

[16] G. E. Fasshauer, Meshfree approximation methods with Matlab. Interdisciplinary mathematical
sciences, Singapore world scientific publishers, (2007).

[17] G. E. Fasshauer and J. G. Zhang, On choosing ”optimal” shape parameters for RBF approximation,
Numerical Algorithms, 45 (2007) 346-68.

[18] R. E. Carlson and T. A. Folery, The parameter r2 in multiquadric interpolation, Computers and
Mathematical with Applications, 21 (1991) 29-42.

[19] G. E. Fasshauer, Solving partial differential equations by collocation with radial basis functions, In:
A. Le Mhaur, C. Rabut and L. L. Schumaker (eds), Surface fitting and multiresolution methods.
Nashville, TN: Vanderbilt University Press, (1997).

[20] I. J. Schoenberg, Metric spaces and completly monotonic functions, Ann. Math, 39 (1938) 811-41.
[21] H. Wendland, Piecewise polynomial positive definite and compactly supported radial functions of

minimal degree, Advances in computational mathematics, 4 (1995) 389-396.
[22] M. Tatari and M. Dehghan, On the solution of the non-local parabolic partial differential equations

via radial basis functions, Appl. Math. Modeling, 33 (2009) 1729-38.
[23] M. Tatari and M.Dehghan, A method for solving partial differential equations via radial basis func-

tions, Application to the heat equation, Engin. Anal. with boundary Elements, 34 (2010) 206-212.
[24] E. Larsson and B. Fornberg, A numerical study of some radial basis function based solution methods

for elliptic PDEs, Comput. Math. Appl, 46 (2003) 891-902.


