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Abstract. In this work, we consider the parabolic equation: ut−uxx = 0. The purpose of this
paper is to introduce the method of variational iteration method and radial basis functions
for solving this equation. Also, the method is implemented to three numerical examples. The
results reveal that the technique is very effective and simple.
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1. Introduction

Over the last decades several analytically/approximate methods have been devel-
oped to solve nonlinear equations. For initial-value problems in ordinary differential
equations, some of these technique include perturbation [15–17], variational [9–11],
decomposition [2–4] methods, etc [19]. In the recent years, radial basis function
collocation has become a useful alternative to finite difference and finite element
methods for solving elliptic partial differential equations. RBF collocation meth-
ods have been shown numerically (see for example [14]) and theoretically ([7, 8])
to be very accurate even for a small number of collocation points. The varia-
tional iteration method was proposed by He in 1998, and was successfully applied
to autonomous ordinary differential equation [12], to nonlinear partial differential
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equations with variable coefficients [13], and recently to nonlinear fractional dif-
ferential equations [18], and other fields [1, 5]. In this paper we present a good
approximation for solving a parabolic equation.

2. Preliminaries radial basis functions and variational iteration method

Radial Basis Functions (RBFs) are popular for interpolating scattered data since
the associated system of linear equations is guaranteed to be invertible under very
mild conditions on the location of the data points. For example, the thin-plate
spline used in this library only requires that the points are not co-linear. In
particular, Radial Basis Functions do not require that the data lie on any sort of
regular grid.
A radial basis function (RBF) is a function of the form:

s(x) = p(x) +
N∑
i=1

λiΦ(x− xi), (1)

where: s is the radial basis function (RBF for short) and p is a low degree
polynomial, typically linear or quadratic and the λi’s are the RBF coefficients and
Φ is a real valued function called the basic function and the xi ’s are the RBF
centres.

The RBF consists of a weighted sum of a radially symmetric basic function
φ located at the centres xi and a low degree polynomial p. Given a set of N points
xi and values fi, the process of finding an interpolating RBF, s, such that,

s(xi) = fi, i = 1, 2, ..., N,

is called fitting. The fitted RBF is defined by the λi, the coefficients of the basic
function in the summation, together with the coefficients of the polynomial term
p(x).

For a fixed point xj ∈ Rd , a radial basis function is defined:

φj(x) = φ(‖ (x− xj) ‖) (2)

which is function only dependents on the distance between xj ∈ Rd and the point
xj . We have GA, MQ, IMQ and IQ-RBF whit the following forms, respectively

φ(r) = exp(−cr2) (3)

φ(r) =
√
r2 + c2 (4)
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φ(r) = (
√
r2 + c2)−1 (5)

φ(r) = (r2 + c2)−1 (6)

where c is a shape parameter which should be considered suitably also the
Euclidean distance is considered for the RBF. [6]

Variational iteration method:
To illustrate the basic concepts of the variational iteration method, we consider
the following general nonlinear system:

Lu(x) +Nu(x) = f(x) (7)

where L is a linear operator part while N is the nonlinear operator part, and
f(x) is a known analytic function. According to the variational iteration method,
a correction functional can be constructed as follows:

un+1(x) = un(x) +

∫ x

0
λ{Lun(τ) +Nũ(τ)− f(τ)}dτ (8)

where λ is a general multiplier [13], which can be identified optimally via the
variational thory [13], the subscript n denotes the nth approximation, and ũn is
considered as a restricted variation, i.e., δũn = 0.
The initial guess can be freely chosen with possible unknown constants; it can also
be solved from its corresponding linear homogeneous equation

Lu0(x) = 0. (9)

3. Parabolic equations

The computational stage of all numerical methods for solving problem of any com-
plexity generally involves a great deal of arithmetic. It is usual therefore to arrange,
whenever possible, for one solution to suffice for a variety of different problems.
This can be done by expressing all equations in terms of non-dimensional variables.
Then all problems with the same non-dimensional mathematical formulation can
be dealt with by means of one solution. The problems need not, be dimensionally
different, but merely variations of the same type of problem, as we would have
with the calculation of the periods of oscillation of springs of different lengths l
supporting different masses m and having different stiffnesses s.
This non-dimensionalizing process is illustrated below with the parabolic equation

∂U

∂T
= k

∂2U

∂X2
, k constant (10)

the solution of which gives the temperature U at a distance X from one end of
a thin uniform rod after a time T . Let L represent the length of the rod and U0

some particular temperature such as the maximum or minimum temperature at
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zero time. Put

x =
X

L
and u =

U

U0
(11)

Then

∂U

∂X
=
∂U

∂x
.
dx

dX
=
∂U

∂x
.
1

L

and

∂2U
∂X2 = ∂

∂X ( ∂U
∂X ) = ∂

∂x( 1
L .

∂U
∂X ). dxdX = 1

L2 .
∂2U
∂x2

so equation (10) transforms to

∂(uU0)

∂T
=

k

L2
.
∂2(uU0)

∂x2

i.e.

1

kL−2
.
∂u

∂T
=
∂2u

∂x2

Writing t = kT
L2 and applying the function of a function rule to the left side yields

∂u

∂t
=
∂2u

∂x2
(12)

as the non-dimensional form of (10).
It should be noted that the number representing the length of the rod is 1. [20]

To illustrate the basic concepts of this technique, consider the approxima-
tion solution as:

ũ(xi, ti) ≡
N∑
j=1

cjφj(xi, ti) (13)

which cj ’s are constants and the φj ’s are radial basis functions. where

φ(r) = (
√
r2 + c2)−1 is a radial basis function on r = ‖(x, t)‖.

With substituting equation (13) into equation (8), by considering N = 0 and
f(x, t) = ut − uxx, we have:

N∑
j=1

c
(k+1)
j φj =

N∑
j=1

c
(k)
j [φj +

∫ t

0
(cjφj − f)dτ ] (14)

For simplicity we consider

αj(xi, ti) = φj(xi, ti) +

∫ t

0
cj [(φj)t(x, τ)− (φj)xx(x, τ)− g(x, τ)]dτ

which is a system of equations.
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For solving, we assume N = N1 +N2 that N1 denotes the number of
boundary points and N2 shows the number of interior points.
Suppose that the following sets contain a collocation of scattered nodes in every
levels of interpolation

Ξ1 = {(xi, ti) ∈ Ω̄× [0, T1], i = 1, ...,m}, T > T1. (15)

Ξk = {(xi, ti + (k − 1)T1); (xi, ti) ∈ Ξ1, i = 1, ...,m, k = 2, 3, ...} (16)

and the problem has a solution in Ω̄× [(k− 1)T1, kT1]. We have a linear system of
equations:

HΛ = q

where H = [hij ], Λ = [λj ].

4. Numerical examples

To illustrate the effectiveness of the present method, several test examples are
consider in this section. We draw Figures in .... step, and obtain good error graphs
for this approximation that are shown in Figures.

Example 4.1 Consider the following partial differential equation:

f(x, t) =
−3t2x

(4 + t3)2
(17)

with initial conditions, 
u(0, t) = 0

u(1, t) = 1
4+t3

u(x, 0) = x
4

(18)

The exact solution is:

u(x, t) =
x

4 + t3
(19)

By considering,

φ(r) = (
√
r2 + c2)−1 (20)

with c = 2, N = 10, 0 6 x 6 1, we obtain good error graphs:

Example 4.2 We assume,

f(x, t) =
−3t2(x+ 2)

(2 + t3)2
(21)
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Figure 1. Error function (k = 1).

Figure 2. Error function (k = 2).

Figure 3. Error function (k = 3).

with initial conditions, 
u(0, t) = 2

2+t3

u(1, t) = 3
2+t3

u(x, 0) = x+2
2

(22)

The exact solution is:

u(x, t) =
x+ 2

2 + t3
(23)
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As stated before, using equation (20), and by taking c = 2, N = 10, 0 6 x 6 1 we
have Figures for function,

Figure 4. Error function (k = 1).

Figure 5. Error function (k = 2).

Figure 6. Error function (k = 3).

We can be applied the present method to other problem.

Example 4.3 Consider the following problem:

f(x, t) =
−3t2 sin (x)

(2 + t3)2
+

sin (x)

2 + t3
(24)
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by using initial conditions: 
u(0, t) = 0

u(1, t) = sin (1)
2+t3

u(x, 0) = sin (x)
2

(25)

The exact value is:

u(x, t) =
sin (x)

2 + t3
(26)

Using the method and according to the equation (20), by taking c = 2, N = 10,
0 6 x 6 1 see Figures for function,

Figure 7. Error function (k = 1).

Figure 8. Error function (k = 2).

5. Conclusions

Variational iteration method and radial basis function have been known as a pow-
erful tool for solving many equations. In this article, we have presented a general
framework of the VIM and RBF method for the partial differential equations like
the parabolic equations. The present work shows the validity and great potential
of this technique for solving the parabolic equations. All of examples show that
the results of the method are in excellent agreement with those obtained by other
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Figure 9. Error function (k = 3).

methods. In this type of problems, if we take care in selection of approximation
radial basis functions and their shape parameter, we can obtain more accurate
solution with less error.
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