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1. Introduction

1.1 Lane-Emden equation and engineering applications

Many problems in the literature of mathematical physics which occur on semi-
infinite interval are related to the diffusion of heat perpendicular to the parallel
planes. This problem can be distinctively are modeled by the heat equation

x−2d(x2 dy
dx)

dx
+ κf(x)g(y) = V (x), x ⩾ 0, (1)
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where f(x) and g(y) are some given functions of x and y, respectively.
For the case of steady- state, and for V (x) = 0, Eq. (1) is the generalized Emden-
Fowler equation [8] given by

d2y

dx2
+

2

x

dy

dx
+ κf(x)g(y) = 0, x ⩾ 0, (2)

subject to the conditions:

y(0) = A, y
′
(0) = B. (3)

When f(x) = 1 the Lane-Emden type equations becomes

d2y

dx2
+

2

x

dy

dx
+ κg(y) = 0, y(0) = A, y

′
(0) = B, x ⩾ 0, (4)

with specializing g(y) several phenomena in mathematical physics and astrophysics
such as the theory of stellar structure, the thermal behavior of a spherical cloud of
gas, isothermal gas sphere, and theory of thermionic currents. One of the important
fields of application of this equation is the analysis of the diffusive transport and
chemical reaction of species inside a porous catalyst particle. These equations are
also one of the basic equations in the theory of stellar structure and have been the
focus of many studies [3, 24].
Choosing f(x) = 1, g(y) = yM , A = 1 and B = 0, we get the standard Lane-Emden
equation of index n

d2y

dx2
+

2

x

dy

dx
+ κyM (x) = 0, x ⩾ 0, (5)

where M > 0 is constant.
The Lane-Emden equation can be analytically solved only for a few special, integer
values of the index n. The Lane-Emden equation has analytical solutions for M =
0, 1, and 5. In other cases, there is not any analytical solution for the standard
Lane-Emden equation.
For a polytropic system, the relation of pressure P and density ϱ is given by

P = Kϱγ ≡ Kϱ1+
1

M , (6)

where K is the polytropic constant, γ is the adiabatic index (a parameter charac-
terizing the behavior of the specific heat of a gas), and M is called the polytropic
index.
We begin with the equation of mass continuity and the equation of hydrostatic
equilibrium

1

ϱ

dQ

dr
= 4πr2ϱ, (7)

1

ϱ

dP

dr
= −GQ(r)

r2
(8)

where G is the constant of gravitation, P (r) denote the hydrostatic pressure at a
distance r from the center of a spherical cloud of gas and Q(R) is the mass of the
sphere at a certain radius r and ϱ is the density, at a distance r from the center of
the sphere.



E. Amini et al./ IJM2C, 10 - 03 (2020) 179-202. 181

Eliminating Q(r) between the continuity equation and the condition for hydrostatic
equilibrium, we get

1

r2
d

dr
(
r2

ϱ

dP

dr
) = −4πGϱ (9)

Replacing P by Kϱγ , we obtain that

1

r2
d

dr
(
r2K

ϱ
γϱγ−1dϱ

dr
) = −4πGϱ (10)

Now, we define the following quantities

ϱ ≡ λyM , γ ≡ M + 1

M
. (11)

Using the quantities (11), the Eq. (10) can be written as:

[
(M + 1)

4πG
Kλ

1

M
−1]

1

r2
d

dr
(r2

dy

dr
) = −yM . (12)

Eq. 12 can be partially alleviated by the introduction of a radial variable x, is given
by

x ≡ r

α
, α ≡

√
[
(M + 1)

4πG
Kλ

1

M
−1]. (13)

Inserting these relations into our previous equations, we derive the standard Lane-
Emden equation with g(y) = yM (x),

d2y

dx2
+

2

x

dy

dy
= −yM (x), (14)

where x and y denote the independent and dependent variables, respectively. It
must be solved with the original central conditions:

y(0) = 1,
dy

dx

∣∣∣∣
x=0

= 0, (15)

which will ensure the regularity of the solution at the center.

1.2 Methods have been proposed to solve Lane-Emden type equations

The solution of the Lane-Emden type equations as well as a variety of nonlinear
problems in astrophysics and quantum mechanics such as the scattering length
calculations in the variable phase approach are numerically challenging because of
singularity behavior at the origin.
The Lane-Emden type equations have been investigated due to their mathemat-
ical importance and the potential for applications in diversified applied sciences.
For instance, we refer here to a few. The approximate analytical solutions to the
Lane-Emden equations were presented by Mandelzweig and Tabakin [18], the au-
thors have compared the results obtained by the quasilinearization method with
the exact solutions. In 1993, Shawagfeh derived a nonperturbative approximate
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analytical solution for Lane-Emden equation, using the Adomian Decomposition
Method, the solution obtained by Shawagfeh [25] is in the form of a power series
with easily computable coefficients. In 2009, Chowdhury et al. presented a reliable
algorithm based on the homotopy perturbation method to solve singular IVPs of
time-independent Emden-Fowler type equations [4]. In 2008, Van Gorder et al. [26]
handled the Homotopy Analysis Method (HAM) to calculate numerical solutions
for Lane-Emden type equations, the author’s illustrated that the series solutions
obtained by the HAM converge in a larger interval than in the case of the cor-
responding traditional series solutions. Iqbal and Javed [17] applied the optimal
homotopy asymptotic method for the analytic solution of singular Lane-Emden
type equation. Authors in [9] applied the variational iteration method to approx-
imate solution of a differential equation arising in astrophysics. In [29], Yildirim
used the variational iteration method for solving singular IVPs of Lane-Emden
type. Parand et al. [22], proposed the sinc-collocation method for solving astro-
physics equations, the authors demonstrated that Sinc procedure converges with
the solution at an exponential rate. Authors of [21] proposed a collocation method
for solving some well-known classes of LaneEmden type equations. Bhrawy and
Alofi [2] introduced a shifted JacobiGauss collocation spectral method for solv-
ing nonlinear Lane-Emden type equations, The spatial approximation is based on

shifted Jacobi polynomials P
(α,β)
T,n (x) with α, β ∈ (−1,∞), T > 0 and n is the

polynomial degree. In 2012, Gokdogan et al. solved Lane-Emden equations arising
in astrophysics using truncated shifted Chebyshev series together with the opera-
tional matrix [20]. Adibi and Rismani [1] used efficient and accurate a numerical
scheme based on the Legendre-spectral method for solving singular IVPs of Lane-
Emden type. Also, Parand et al. [23] obtained another approximate solution for
nonlinear differential equations of Lane-Emden type based on rational Legendre
pseudospectral approach.

1.3 Motivation of paper

Reproducing kernel theory has been recently emerged as a powerful framework in
numerical analysis, computational mathematics, image processing, machine learn-
ing, finance, and probability and statistics. In recent years, the reproducing kernel
method has increased its popularity and has been applied for a large spectrum of
distinct problems, there are broader interests in using reproducing kernels for the
solutions to several linear and nonlinear problems such as singular nonlinear second-
order periodic boundary value problems [14], nonlinear system of second-order
boundary value problems [13], one-dimensional variable-coefficient Burgers equa-
tion [12], the coefficient inverse problem of differential [7], nonlinear age-structured
population equation [5], singular second order three-point boundary value problems
[11], one-dimensional variable-coefficient Burgers equation [6], the generalized reg-
ularized long-wave equation [19], nonlinear delay differential equations of fractional
order [15], variational problems depending on indefinite integrals [10]. In this pa-
per, we will give the approximate of (2)-(3) in the reproducing kernel space. The
advantages of this method are as follows:

• The conditions (3) can be imposed on the reproducing kernel space and therefore
the reproducing kernel satisfying the conditions for determining the approximate
solution can be calculated.

• We can prove that the approximate solution obtained by the presented method
and its derivative are both uniformly convergent.

• The method can be easily implemented and its algorithm is simple and efficient
to approximate the solution.
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1.4 Structure of paper

The structure of this paper is organized as follows. In section 2, we present some
standard definitions and results used throughout this paper. In section 3, we present
our main results concerning to our method. In Section 4, we report our numerical
finding to demonstrate the accuracy and applicability of the proposed method by
considering five examples. Finally, we end the paper with few concluding remarks
in Section 5.

2. Reproducing kernel spaces

In this section, we refer the recent work of [10, 15] and present some useful
materials.

Definition 2.1 For a nonempty set X , let (H, ⟨., .⟩H) be a Hilbert space of real-
valued functions on some set X . A function K : X × X −→ R is said to be the
reproducing kernel of H if and only if

(1) K(x, .) ∈ H, ∀x ∈ X ,
(2) ⟨ξ,K(x, .)⟩H = ξ(x), ∀ξ ∈ H, ∀x ∈ X , (reproducing property).

Also, a Hilbert space of functions (H, ⟨., .⟩H) that possesses a reproducing kernel
K is a reproducing kernel Hilbert space and we denote it by (H, ⟨., .⟩H,K). In the
following we often denote by Kx the function K(x, .) : t 7−→ K(x, t).

Definition 2.2 W 3
2 [0, R] = {ξ | ξ′′ is an absolute continuous real-valued function

on the interval [0, R], ξ′′′ ∈ L2[0, R], ξ(0) = ξ
′
(0) = 0}. The inner product and the

norm in the function space W 3
2 [0, R] are defined as follows:

⟨ξ, ζ⟩W 3
2

= ξ′′(0)ζ ′′(0) +

∫ R

0
ξ′′′(x)ζ ′′′(x)dx, ||ξ||W 3

2
=

√
⟨ξ, ξ⟩W 3

2
.

Suppose that function Kx ∈ W 3
2 [0, R] satisfies the following generalized differen-

tial equations

{
(−1)3 ∂

6Kx(t)
∂t6 = δ(t− x),

∂4Kx(0)
∂t4 = 0, ∂2Kx(0)

∂t2 − ∂3Kx(0)
∂t3 = 0, ∂4Kx(R)

∂t4 = 0, ∂3Kx(R)
∂t3 = 0.

(16)

where δ is Dirac delta function, therefore the following theorem holds.

Theorem 2.1 Under the assumptions of Eq. (16), Hilbert space W 3
2 [0, R] is a

RKHS with the reproducing kernel function Kx, namely for any ξ ∈ W 3
2 [0, R] and

each fixed x ∈ [0, R],

⟨ξ,Kx⟩W 3
2

= ξ(x).
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Proof since Kx ∈ W 3
2 [0, R], applying integration by parts three times, we have

⟨ξ,Kx⟩W 3
2

= ξ′′(0)
∂2Kx(0)

∂t2
+

∫ R

0
ξ′′′(t)

∂3Kx(t)

∂t3
dt

= ξ′(0)
∂4Kx(0)

∂t4
+ ξ′′(0)[

∂2Kx(0)

∂t2
− ∂3Kx(0)

∂t3
]

+ ξ′′(R)
∂3Kx(R)

∂t3
− ξ′(R)

∂4Kx(R)

∂t4
−
∫ R

0
ξ(t)

∂6Kx(t)

∂t6
dt. (17)

Therefore, Eq. (16) implies that

⟨ξ,Kx⟩W 3
2

=

∫ R

0
ξ(t)δ(t− x) dt = ξ(x).

■

While x ̸= t, the function Kx(t) is the solution of the following constant linear
homogeneous differential equation with 6 order,

∂6Kx(t)

∂t6
= 0, (18)

with the boundary condition:
∂4Kx(0)

∂t4 = 0, ∂
3Kx(R)
∂t3 = 0,

∂2Kx(0)
∂t2 − ∂3Kx(0)

∂t3 = 0, ∂
4Kx(R)
∂t4 = 0.

(19)

We know that Eq. (18) has characteristic equation λ6 = 0, and the eigenvalue
λ = 0 is a root whose multiplicity is 6. Hence, the general solution of Eq. (16) is

Kx(t) =


∑6

i=1 ci(x)ti−1, t ⩽ x,∑6
i=1 di(x)ti−1, t > x.

(20)

Now, we are ready to calculate the coefficients ci(x) and di(x), i = 1, . . . , 6. Since

∂6Kx(t)

∂t6
= −δ(t− x),

we have {
∂kKx(x+)

∂tk = ∂kKx(x−)
∂tk , k = 0, . . . , 4,

∂5Kx(x+)
∂t5 − ∂5Kx(x−)

∂t5 = −1.
(21)

Then, using Eqs. (19) and (21), the unknown coefficients of Eq. (20) are uniquely
obtained. Therefore,

K(x, t) =

{
k(x, t), t ⩽ x,
k(t, x), t > x,
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where

k(x, t) =
1

4
x2t2 +

1

12
x2t3 − 1

24
xt4 +

1

120
t5.

3. The new implementation of the method

In this section, we shall give the exact or approximate solution of Eq. (2) in the
reproducing kernel space W 3

2 [0, R]. We introduce the following transformation

ξ(x) = y(x) −A−Bx. (22)

Using the transformations (22), the equivalent problem of (4) can be written as:

ξ
′′
(x) +

2

x
ξ

′
(x) + κg(ξ(x)) = 0, ξ(0) = 0, ξ

′
(0) = 0. (23)

After multiplying Eq. (23) by x, we find that

xξ
′′
(x) + 2ξ

′
(x) + κxg(ξ(x)) = 0. (24)

We consider Eq. (24) as

 Lξ(x) = F (x, ξ(x)), 0 ⩽ x ⩽ R, (25)

where  Lξ(x) = x d2ξ
dx2 + 2 dξ

dx and F (x, ξ) = −xκf(x)g(ξ). We suppose that Eq.
(25) has a unique solution. In order to represent the analytical solution of Eq.
(2), it is easy to show that  L : W 3

2 [0, R] → W 1
2 [0, R] is a bounded linear

operator. Choosing a countable dense subset {xi}∞i=1 in the domain [0, R], setting
ρi(x) =  L∗Kxi

(x), i = 1, 2, · · · .

Lemma 3.1 For (25), if {xi}∞i=1 is dense on [0, R], then {ρi(x)}∞i=1 is the complete
system of W 3

2 [0, R] and ρi(x) =  LtR(x, xi), where the subscript t of the operator
 L indicates that the operator  L applies to the function of t.

The orthonormal system {ρi(x)}∞i=1 can be derived from the Gram-Schmidt or-
thogonalization process of {ρi(x)}∞i=1

ρi(x) =
i∑

k=1

βikρk(x), (βii > 0, i = 1, 2, ...). (26)

So {ρi(x)}∞i=1 is the orthonormalized sequence and βik are orthogonal coefficients.

Let S = {ρi(x)}∞i=1 and S⊥ be the orthogonal complement of S in W 3
2 [0, R], thus

W 3
2 [0, R] = S

⊕
S⊥.

Theorem 3.1 Suppose that the following conditions are satisfied

• {xi}∞i=1 be a countable dense subset in the domain [0, R],

• The solution of Eq. (25) be unique.
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Then the exact solution of Eq. (25) in W 3
2 [0, R] is given by

ξ(t) =
∞∑
i=1

i∑
k=1

βik[F (xk, ξ(xk)]ρi(x), (27)

Representation of approximate solution:
For numerical computation, we give initial function ξ0 ∈ W 3

2 [0, R] and by using
(25), an iterative sequence is constructed as{

 L[zn(t)] = F (x, ξn−1(x)),
ξn(x) = Pnzn(x),

(28)

where zn ∈ W 3
2 [0, R] is the solution of (25) and Pn : W 3

2 [0, R] →
span{ρ1(x), ρ2(x), ..., ρn(x)} is an orthogonal projection operator.

Theorem 3.2 Suppose that the following conditions are satisfied

• {xi}∞i=1 be a countable dense subset in the domain [0, R],

• The solution of Eq. (2) be unique.

Then the solution of Eq. (25) is given by

zn(x) =
∞∑
i=1

Hiρi(x), n = 1, 2, ..., (29)

where Hi =
∑i

k=1 βik[F (x, ξn−1(x)].

Proof The proof is similar to Theorem 3.1. ■

Therefore considering the numerical computation, we define the n-term approx-
imation ξn(x) to ξ(x) by

ξn(x) = Pnzn(x) =

n∑
i=1

Hiρi(x), n = 1, 2, ..., (30)

where 
H1 = β11F (x1, ξ0(x1)),

H2 =
∑2

k=1 β2kF (xk, ξk−1(xk)),

H3 =
∑3

k=1 β3kF (xk, ξk−1(xk)),
...

(31)

3.1 The existence of solution

Now, we will prove that the solution of (25) exists, and {ξn}∞n=1 in the iterative
formula (30) is convergent to the exact solution ξ(x).

Lemma 3.2 (see [10]) For any ξ(x) ∈ W 3
2 [0, R], we have the following statement

∥ξ∥∞ ⩽ α ∥ξ∥W 3
2 [0,R], (32)
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where α, is a real constant.

Lemma 3.3 Suppose that, ∥ξ∥W 3
2 [0,R], is bounded, then there exists constant γ,

such that

∥ξ∥∞ ⩽ γ. (33)

Proof Since ∥ξ∥W 3
2 [0,R] is bounded, by Lemma 3.2, ∥ξ∥∞ is also bounded. ■

Lemma 3.4 B = {ξn(x)| ∥ξn∥W 3
2 [0,R] ⩽ γ} ⊂ C[0, R], is a bounded set, where γ,

is a real constant.

Proof From Lemma 3.3, there exists a positive constant γ < ∞, such that
∥ξn∥∞ ⩽ γ, for each x ∈ [0, R] and each ξn(x) ∈ B. ■

Lemma 3.5 B = {ξn(x)| ∥ξn∥W 3
2 [0,R] ⩽ γ} ⊂ C[0, R], is equicontinuous set, where

γ is a real constant.

Proof Based on Lemma 3.4, for an arbitrary ξn ∈ B, we deduce

|ξn(x
′
) − ξn(x)| = |⟨ξn(t), Rx′ (t) −Rx′′ (t)⟩W 3

2 [0,R]|

⩽ ∥ξn∥W 3
2 [0,R] ∥Rx′ −Rx′′∥W 3

2 [0,R]

⩽ ∥ξn∥W 3
2 [0,R] ∥

d

dx
Rt|x∈[x′ ,x′′ ]∥W 3

2 [0,R] |x
′ − x

′′ |

⩽ ω|x′ − x
′′ |,

(34)

where ω is a positive constant.
Choosing

δ =
ϵ

ω
,

gives that for all x
′
, x

′′ ∈ [0, R] with |x′ − x
′′ | < δ, we have

|ξn(x
′
) − ξn(x

′′
)| < ϵ, (35)

hence B is equicontinuous set. ■

Theorem 3.3 Suppose that the following conditions hold

• {xi}∞i=1 be a countable dense subset in the domain [0, R],

• B = {ξn(x)| ∥ξn∥W 3
2 [0,R] ⩽ γ} ⊂ C[0, R],

•  L is a invertible operator of ξ(x),

• f(x, ξ) is continuous as x ∈ [0, R] and ξ = ξ(x) ∈ R.

Then there exists subsequence {ξnκ
}∞κ=1 ⊆ B, which limκ→∞ ∥ξnκ

−ξ∥∞ = 0, where

ξ(x) =  L−1F (x, ξ(x) ∈ W 3
2 [0, R].

Proof Using (28), we have

 L[ξn(xk)] = F (xk, ξn−1(xk), n = 1, 2, · · · (36)

It follows by Lemmas 3.4 and 3.5 that B, is a pre-compact set. Then, any sequence
in B, has a uniformly convergent subsequence whose limit belongs to B. Applying
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this principle we find that there exists sequence {nκ}∞κ=1, such that subsequence
{ynκ

}∞κ=1, is uniformly convergent and limκ→∞ ∥ξnκ
−ξ∥∞ = 0. Using (36), we have

 L[ξnκ
(x)]|x=xk

= F (xk, ξnκ−1(xk)), κ = 1, 2, . . . . (37)

Since  L and f are continuous and {xi}∞i=1 is dense on [0, R], after taking limits for
both sides of (37), we have

 L[ξ(x)] = F (x, ξ(x))., asκ → ∞.

It follows that

ξ(x) =  L−1F (x, ξ(x)),

from the existence of  L−1.
Now, we prove that ξ(x) ∈ W 3

2 [0, R].
For arbitrary ϵ > 0, choose δ = ϵ

M . Let {(ak, bk)}nk=1 be a set of mutually disjoint
open intervals (ak, bk) ⊂ [0, R], satisfying

∑n
k=1(bk − ak) < δ. For ξ(x), we have

|ξ(bk) − ξ(ak)| = lim
κ→∞

|ξnκ
(bk) − ξnκ

(ak)|

= lim
κ→∞

|⟨ξnκ
(t),Kx(t)|x=bk −Kx(t)|x=ak

⟩|

⩽ lim
κ→∞

∥ξnκ
∥W 3

2 [0,R]∥∂xKx|xk∈[ak,bk]∥W 3
2 [0,R]|bk − ak|.

Note that ∥∂j
xKx(t)∥W 3

2 [0,R] ⩽ c, limκ→∞ ∥ξnκ
∥W 3

2 [0,R] < ∞ and therefore

|ξ(bk) − ξ(ak)| ⩽ M |bk − ak|. (38)

Then, we have

n∑
k=1

|ξ(bk) − ξ(ak)| ⩽
n∑

k=1

M |bk − ak| < ϵ. (39)

So, ξ is absolutely continuous function.
Therefore f(x, ξ(x)) is absolutely continuous function.
Furthermore ∂xF (x, ξ(x)) ∈ L2[0, R]. Then F (x, ξ(x)) ∈ W 1

2 [0, R]. Consequently
 L−1F (x, ξ(x)) ∈ W 3

2 [0, R], and we must have

ξ(x) ∈ W 3
2 [0, R] .

This completes the proof. ■

Theorem 3.4 Suppose that the conditions of Theorem 3.3 hold, and the solution
of (25) is existence and uniqueness, then

∥ξn − ξ∥∞ → 0, as n → ∞. (40)

Proof Suppose {ξn}n⩾1 ⊂ B doesn’t converge to ξ. Then there exists a positive
number ϵ0, and a subsequence {ξnκ

(x)}κ⩾1 ⊂ B, such that

∥ξnκ
− ξ∥∞ ⩾ ϵ0, κ = 1, 2, ... (41)
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Since {ξn(x)}L⩾1 ⊂ B is a pre-compact set, there exists subsequence of {ξnκ
(x)}κ⩾1

in which converges uniformly to ŷ. Without of generality, we may assume that
{ξnκ

(x)}κ⩾1 converges uniformly to ξ̂:

∥ξnκ
− ξ̂∥∞ → 0, as κ → ∞, (42)

Since the solution of Eq. (25) is unique, we have ξ = ξ̂, and so (42) contradicts
(41). So the proof of Theorem 3.4 is completed. ■

Theorem 3.5 Suppose that the conditions of Theorem 3.4 hold, and the solution
of (25) is existence and uniqueness, then

∥ξ′

n − ξ
′∥∞ → 0, ∥ξ′′

n − ξ
′′∥∞ → 0, as n → ∞. (43)

Proof The proof of this theorem follows from the proof of Theorem 3.4. ■

4. Numerical examples and discussion

The method presented in this paper is applied on four examples to illustrate the
efficiency and the applicability of the proposed method. The LaneEmden problem
domain is [0,∞), we truncated the problem domain to [0, R]. The set of points in
the domain [0, R], are defined by

xi =
R

n
i, i = 0, 1, ..., n, (44)

where n is the number of interior points in the domain [0, R].
The exact solution are available for Examples 4.1, 4.2 and 4.3. Therefore, we report
the absolute error values which are defined as:

Er(i)n (x) = |y(i)n (x) − y(i)(x)| = |ξ(i)n (x) − ξ(i)(x)|, i = 0, 1, 2,

The exact solution is not available for Examples 4.4 and 4.5. Therefore, we report
the averaged residual error of the nth-order approximation which is defined by:

Ξ̃n =

√√√√ 1

n + 1

n∑
i=1

[∆n(xi]2, xi =
R

n
i, (45)

All the results are calculated by using the symbolic calculus software Maple.
Results obtained by the method are compared with the exact solution, and with
classical Tau method [20], the Hermite functions collocation method [21], the
Sinc-Collocation method [22] and the Adomian’s decomposition method [27].

Example 4.1 (see [21]) For κ = 1, f(x) = 1 and g(y(x)) = −6y(x)−4y(x)ln(y(x))
Eq. (2) will be one of the Lane-Emden type equations that is

y
′′
(x) +

2

x
y

′
(x) − 6y(x) − 4y(x)ln(y(x)) = 0, (46)
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subject to the boundary conditions

y(0) = 1, y
′
(0) = 0. (47)

The exact solution of (46) is given by y(x) = ex
2

.
We introduce the following transformation

ξ(x) = y(x) − 1. (48)

Using the transformations (48), the equivalent problem of (46)-(47) can be written
as:

ξ
′′
(x) +

2

x
ξ

′
(x) − 6(ξ(x) + 1) − 4(ξ(x) + 1)ln(ξ(x) + 1) = 0, ξ(0) = 0, ξ

′
(0) = 0.(49)

After multiplying Eq. (49) by x, we obtain

xξ
′′
(x) + 2ξ

′
(x) − 6x(ξ(x) + 1) − 4x(ξ(x) + 1)ln(ξ(x) + 1) = 0. (50)

Using the proposed method, we choose 150 points and 170 points on [0, 7]. For
a numerical computation, we define initial function ξ0(x0) = 0. We calculate the

error values Er
(i)
n (x), i = 0, 1, 2 in W 3

2 , the computational error values are plot-
ted in Figure 1. In Table 1 we compare the error values of the method with the

method [21]. The error values Er
(i)
n (x), i = 1, 2 for n = 150, 170 obtained by pro-

posed method are given in Table 2. From the numerical results, it is clear that the
approximate solution is in good agreement with the exact solution.

Table 1. The error values of Example 1 for the x values and CPU time of the method for
n = 150, 170.

x Er150(x) Er170(x) Ref. [22]

0.00 0.00000E+0 0.00000E+0 0.000E+0
0.01 0.76552E-7 0.54395E-7 0.224E-7
0.02 0.89710E-7 0.61427E-7 0.158E-7
0.05 0.96673E-7 0.66480E-7 0.212E-7
0.10 0.10409E-6 0.75756E-7 0.179E-7
0.20 0.15333E-6 0.12705E-6 0.215E-7
0.50 0.39256E-6 0.37210E-6 0.305E-7
0.70 0.39256E-5 0.13451E-5 0.423E-7
0.80 0.57360E-5 0.44859E-5 0.514E-7
0.90 0.13812E-4 0.10870E-4 0.929E-7
1.00 0.28907E-4 0.22765E-4 0.881E-7

CPU-time (s) 22.901(s) 30.857(s) - -

Example 4.2 (see [21]) Consider the following homogeneous nonlinear Lane-
Emden equation

ξ
′′
(x) +

2

x
ξ

′
(x) − 4(2eξ(x) + e

ξ(x)

2 ) = 0, (51)
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Figure 1. (a) The error value Er150(x); (b) The error value Er170(x); (c) The error

value Er
′

150(x); (d) The error value Er
′

170(x); (e) The error value Er
′′

150(x), (f) The

error value Er
′′

170(x).
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Table 2. The error values Er
(i)
n (x), i = 1, 2 for n = 150, 170 obtained by using the

proposed method.

x Er
′

150(x) Er
′

170(x) Er
′′

150(x) Er
′′

170(x)

0.00 0.00000E+0 0.00000e+0 0.62087E-2 0.54611E-2
0.01 0.332231E-5 0.16539E-5 0.98416E-3 0.55577E-3
0.02 0.56013E-6 0.33127E-6 0.55371E-4 0.31941E-4
0.05 0.12117E-6 0.12837E-6 0.27804E-6 0.16291E-5
0.10 0.22201E-6 0.26305E-6 0.29680E-5 0.18707E-5
0.20 0.800827E-6 0.80695E-6 0.81457E-5 0.57705E-5
0.50 0.17076E-5 0.12613E-5 0.11034E-4 0.10443E-4
0.70 0.25778E-4 0.20467E-4 0.59189E-5 0.26857E-5
0.80 0.56384E-4 0.44672E-4 0.20104E-4 0.13151E-4
0.90 0.10981E-3 0.86707E-4 0.27919E-4 0.11772E-4
1.00 0.19953E-3 0.15707E-3 0.19891E-5 0.32898E-4

subject to the boundary conditions

ξ(0) = 0, ξ
′
(0) = 0. (52)

The exact solution of (51) is given by ξ(x) = −2ln(1 + x2).
After multiplying Eq. (51) by x, we obtain

xξ
′′
(x) + 2ξ

′
(x) − 4x(2eξ(x) + e

ξ(x)

2 ) = 0, ξ(0) = 0, ξ
′
(0) = 0. (53)

Using proposed method, we choose 190 points and 210 points on [0, 10], and define

initial function ξ0(x0) = 0. We calculate the error values Er
(i)
n (x), i = 0, 1, 2 for

n = 190, 210, the computational error values are plotted in Figure 2. In Table 3, we

compare our results with those reported in [21]. The error values Er
(i)
n (x), i = 1, 2

for n = 190, 210 obtained by proposed method are given in Table 4. The numerical
results show that the proposed method give us an approximate solution with a
high degree of accuracy for n = 190, 210.

Example 4.3 (see [20]) For κ = 1, f(x) = 1 and g(y(x)) = y5(x) Eq. (2) yields
the standard Lane-Emden equation that was originally used to model several phe-
nomena in astrophysics and mathematical physics.

y
′′
(x) +

2

x
y

′
(x) + y5(x) = 0,

subject to the boundary conditions

y(0) = 1, y
′
(0) = 0. (54)

The exact solution of (54) is given by y(x) = (1+ x2

3 )−
1

2 . We introduce the following
transformation

ξ(x) = y(x) − 1. (55)

Using the transformations (55), the equivalent problem of (54)-(54) can be written
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Figure 2. (a) The error value Er190(x); (b) The error value Er210(x); (c) The error

value Er
′

190(x); (d) The error value Er
′

210(x); (e) The error value Er
′′

190(x), (f) The

error value Er
′′

210(x).
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Table 3. The error values of Example 4.2 for the x values and CPU time of the method
for n = 190, 210.

x Er190(x) Er210(x) Ref. [22]

0.00 0.00000E+0 0.00000E+0 0.000E+0
0.01 0.28645E-5 0.26382E-5 0.293E-5
0.10 0.14263E-4 0.10298E-4 0.394E-5
0.50 0.18204E-4 0.53098E-4 0.302E-5
1.00 0.49996E-4 0.40102E-4 0.931E-6
2.00 0.15816E-3 0.13788E-3 0.500E-6
3.00 0.22097E-3 0.18808E-3 0.810E-6
4.00 0.20263E-3 0.17083E-3 0.769E-6
5.00 0.16249E-3 0.13601E-3 0.664E-6
6.00 0.12036E-3 0.99975E-4 0.548E-6
7.00 0.82185E-4 0.67532E-4 0.170E-6
8.00 0.49364E-4 0.39757E-4 0.109E-5
9.00 0.21802E-4 0.16492E-4 0.121E-4
10.00 0.10762E-5 0.27728E-5 0.383E-4

CPU-time (s) 36.520(s) 45.833(s) - -

Table 4. The error values Er
(i)
n (x), i = 1, 2 for n = 190, 210 obtained by using the

proposed method.

x Er
′

190(x) Er
′

210(x) Er
′′

190(x) Er
′′

210(x)

0.00 0.00000E+0 0.00000e+0 0.69854E-1 0.65291E-1
0.01 0.51277E-3 0.46795E-3 0.33774E-1 0.29477E-1
0.10 0.85706E-4 0.52299E-3 0.11844E-1 0.12107E-1
0.50 0.28899E-4 0.21687E-3 0.26552E-3 0.27421E-3
1.00 0.15856E-3 0.14826E-3 0.24594E-3 0.22923E-3
2.00 0.14004E-3 0.11538E-3 0.25668E-3 0.21717E-3
3.00 0.69695E-5 0.35569E-5 0.67307E-4 0.55759E-3
4.00 0.34579E-4 0.30456E-4 0.12515E-4 0.98748E-5
5.00 0.42783E-4 0.36773E-4 0.24680E-5 0.25377E-5
6.00 0.40612E-4 0.34585E-4 0.62396E-5 0.54695E-5
7.00 0.35555E-4 0.30120E-4 0.65974E-5 0.56917E-5
8.00 0.30113E-4 0.25432E-4 0.60072E-5 0.51116E-5
9.00 0.25107E-4 0.21147E-4 0.04560E-5 0.42697E-5
10.00 0.20747E-4 0.17422E-4 0.42394E-5 0.35803E-5

as:

ξ
′′
(x) +

2

x
ξ

′
(x) + (ξ(x) + 1)5 = 0, ξ(0) = 0, ξ

′
(0) = 0. (56)

After multiplying Eq. (56) by x, we obtain

xξ
′′
(x) + 2ξ

′
(x) + x(ξ(x) + 1)5 = 0, ξ(0) = 0, ξ

′
(0) = 0. (57)

Using proposed method, we choose 80 points and 100 points on [0, 7], and define

initial function ξ0(x0) = 0. We calculate the error values Er
(i)
n (x), i = 0, 1, 2 for

n = 80, 100, the computational error values are plotted in Figure 3. In Table 5, we
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compare our results with those reported in [20]. The error values Er
(i)
n (x), i = 1, 2

for n = 80, 100 obtained by proposed method are given in Table 6. The numerical
results show that the proposed method give us an approximate solution with a
high degree of accuracy for n = 80, 100.

Table 5. The error values of Example 4.3 for the x values and CPU time of the method
for n = 80, 100.

x Er80(x) Er100(x) Ref. [20](Ne = 6) Ref. [20](Ne = 7)

0.00 0.00000E+0 0.00000E+0 0.550000E-8 0.50000E-11
0.20 0.48061E-5 0.84502E-6 0.123534E-5 0.103920E-7
0.40 0.96997E-5 0.95173E-6 0.170817E-5 0.641001E-7
0.60 0.14544E-5 0.41714E-5 0.779963E-6 0.106438E-6
0.80 0.98436E-5 0.10207E-4 0.013216E-6 0.779280E-7
1.00 0.18497E-4 0.14113E-4 0.204581E-7 0.45062E-10
1.50 0.16480E-4 0.90643E-5 - -
2.00 0.63368E-5 0.75983E-5 - -
2.50 0.29412E-4 0.23052E-4 - -
3.00 0.45314E-4 0.33206E-4 - -
3.50 0.54214E-4 0.38585E-4 - -
4.00 0.58139E-4 0.40683E-4 - -
4.50 0.58927E-4 0.40764E-4 - -
5.00 0.57869E-4 0.39690E-4 - -
5.50 0.55794E-4 0.38001E-4 - -
6.00 0.53209E-4 0.36025E-4 - -
6.50 0.50423E-4 0.33958E-4 - -
7.00 0.47622E-4 0.31913E-4 - -

CPU-time (s) 10.233(s) 33.275(s) - -

Table 6. The error values Er
(i)
n (x), i = 1, 2 for n = 80, 100 obtained by using the proposed

method.

x Er
′

80(x) Er
′

100(x) Er
′′

80(x) Er
′′

100(x)

0.00 0.00000E+0 0.00000E+0 0.10071E-1 0.85317E-3
0.50 0.44444E-4 0.25647E-4 0.21752E-3 0.32418E-4
1.00 0.30865E-4 0.11477E-4 0.18191E-3 0.10597E-3
1.50 0.32437E-4 0.27060E-4 0.52937E-3 0.80761E-4
2.00 0.50964E-4 0.34893E-4 0.17798E-4 0.82889E-5
2.50 0.39685E-4 0.25909E-4 0.22927E-4 0.19846E-4
3.00 0.24188E-4 0.15067E-4 0.28192E-4 0.19531E-4
3.50 0.12130E-4 0.69876E-5 0.17537E-4 0.11589E-4
4.00 0.41691E-5 0.18375E-5 0.12996E-4 0.74320E-5
4.50 0.60101E-6 0.12110E-5 0.84191E-4 0.48755E-5
5.00 0.33293E-5 0.29007E-5 0.34413E-5 0.29804E-5
5.50 0.47994E-5 0.37522E-5 0.16027E-5 0.15329E-5
6.00 0.54482E-5 0.40979E-5 0.12325E-5 0.85376E-6
6.50 0.56247E-5 0.41453E-5 0.18108E-6 0.21510E-6
7.00 0.55345E-4 0.40200E-5 0.79007E-6 0.62098E-6

Example 4.4 (see [22]) For κ = 1, f(x) = 1 and g(y(x)) = y3(x) Eq. (2) will be
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Figure 3. (a) The error value Er80(x); (b) The error value Er100(x); (c) The error

value Er
′

80(x); (d) The error value Er
′

100(x); (e) The error value Er
′′

80(x), (f) The

error value Er
′′

100(x).
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one of the standard Lane-Emden type equations that is

y
′′
(x) +

2

x
y

′
(x) + y3(x) = 0, (58)

subject to the boundary conditions

y(0) = 1, y
′
(0) = 0. (59)

We introduce the following transformation

ξ(x) = y(x) − 1. (60)

Using the transformations (60), the equivalent problem of (58)-(59) can be written
as:

ξ
′′
(x) +

2

x
ξ

′
(x) + ξ3(x) = 0, ξ(0) = 0, ξ

′
(0) = 0. (61)

After multiplying Eq. (61) by x, we obtain

xξ
′′
(x) + 2ξ

′
(x) + xξ3(x) = 0. (62)

Using proposed method, we choose 130 points and 150 points on [0, 6], and define
initial function ξ0(x0) = 0. Table 7 shows the values of y(x) obtained by the pro-
posed method for standard Lane-Emden equation, and those obtained by Parand
[22] and Horedt [16]. The resulting graph of LaneEmden equation for n = 130, 150
are shown in Figure 4.

Table 7. Approximation of y(x) for the present method and solutions obtained by Parand
[22] and Horedt [16] and CPU time of the method for n = 130, 150.

x y130(x) y150(x) Ref. [22] Ref. [16]

0.000 1.000000 1.000000 1.000000 1.000000
0.010 0.998338 0.998337 0.998354 0.998336
0.500 0.959841 0.959841 0.959951 0.959839
1.000 0.855063 0.855062 0.855165 0.855058
1.500 0.719508 0.719506 - -
2.000 0.582852 0.582851 - -
2.500 0.461120 0.461121 - -
3.000 0.359214 0.359216 - -
3.500 0.276245 0.276249 - -
4.000 0.209261 0.209266 - -
4.500 0.155047 0.155052 - -
5.000 0.110797 0.110802 0.110618 0.110820
5.500 0.074263 0.074268 - -
6.000 0.043715 0.043720 0.043688 0.043738

CPU-time (s) 15.553(s) 20.576(s) - -

Remark 4.1 In Example 4.4, when n = 130, the averaged residual error is
0.44662E − 8. When n = 150, the averaged residual error is 0.93561E − 9.
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Example 4.5 (see [27]) For κ = 1, f(x) = 1 and g(y(x)) = sinh(y(x)) Eq. (2) will
be one of the Lane-Emden type equations that we solve

y
′′
(x) +

2

x
y

′
(x) + sinh(y(x)) = 0, (63)

subject to the boundary conditions

y(0) = 1, y
′
(0) = 0. (64)

We introduce the following transformation

ξ(x) = y(x) − 1. (65)

Using the transformations (65), the equivalent problem of (63)-(64) can be written
as:

ξ
′′
(x) +

2

x
ξ

′
(x) + sinh(ξ(x)) = 0, ξ(0) = 0, ξ

′
(0) = 0. (66)

After multiplying Eq. (66) by x, we obtain

xξ
′′
(x) + 2ξ

′
(x) + x sinh(ξ(x)) = 0. (67)

Using proposed method, we choose 90 points and 110 points on [0, 3], and define
initial function ξ0(x0) = 0. Table 8 shows the values of y(x) obtained by the pro-
posed method for standard Lane-Emden equation, and those obtained by Wazwaz
[27]. The resulting graph of LaneEmden equation for n = 90, 110 are shown in
Figure 5.

Table 8. Approximation of y(x) for the present method and solutions obtained by Wazwaz
[27] CPU time of the method for n = 90, 110.

x y90(x) y110(x) Ref. [27]

0.000 1.000000000 1.000000000 1.000000000
0.400 0.969045293 0.969044650 0 .969043758
0.450 0.960949308 0.960948655 0 .960947741
0.500 0.951962708 0.951962041 0 .951961101
0.600 0.931398824 0.931398119 0 .931397142
0.700 0.907532465 0.907531707 0 .907530823
0.800 0.880566466 0.880565644 0 .880565336
0.900 0.850724118 0.850723222 0 .850724891
0.920 0.844431359 0.844430447 0.844432883
1.000 0.818245502 0.818244525 0.818251666
1.300 0.707569410 0.707568187 0.707679500
1.500 0.625442463 0.625441109 0.625891607
1.510 0.621209567 0.621208208 0.621688632
2.000 0.406626820 0.406625380 0.413669103
2.500 0.193297045 0.193295903 -
3.000 0.011274538 0.011274023 -

CPU-time (s) 7.176(s) 11.076(s) -
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Remark 4.2 In Example 4.5, when n = 90, the averaged residual error is
0.10304E − 6. When n = 110, the averaged residual error is 0.89256E − 7.

Figure 4. Approximation of y(x) for the present method and its derivatives for n =
130, 150.
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Figure 5. Approximation of y(x) for the present method and its derivatives for n =
90, 110.
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5. Conclusions

In this manuscript an efficient method in reproducing kernel space is developed to
solve Lane-Emden equations. The numerical examples are presented to show the
accuracy of the proposed method. Based on the obtained results of the proposed
method for illustrative examples, we have the following conclusions:

• By using this method, we introduced an iterative sequence which converges uni-
formly to exact solution. The results of the proposed method for Lane-Emden
equations clearly indicate that method is accurate even when the singularity
occurs at the boundary.

• The results obtained by using the proposed method compared with the existing
method show that the present method is valid.

• The numerical results demonstrate the relatively rapid convergence of the pro-
posed method.

• By increasing the value of n we get better results.

• We should also point out that the examples studied in the previous section show
that method is very effective and convenient for solving astrophysics equations.
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