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Abstract. The nonlinear conjugate gradient method solves issues of the frame:
minimizef(z),z € R

employing an iterative plot, z(*+1) = g(*) 4 oekd““), where f is a non-polynomial function.
We utilized two variants of the optimum line search namely, direct and indirect methods,
to compute the step-length in this paper. Both line searches yielded great outcome when
employed to a few unconstrained non-polynomial test functions.
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1. Introduction

We intend to observe improvements in large-scale optimization recently. And like
to mention in any case that small-scale optimization is still a dynamic region of
investigation, and progresses in this domain of knowledge frequently translate into
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a new line of solutions for large-scale problems.
The problem beneath thought is the following unconstrained optimization issue:

minf(z),z € R" (1)

where f is a smooth function of n variables, " is an n-dimensional Euclidean vector
space. When n is large, say n > 5000, then (1) is called a large-scale unconstrained
optimization problem. These problems do emerge in numerous sectors namely min-
ing, economics, engineering, telecommunications, business, manufacturing, energy,
military planning, medicine, science and so on.

2. Methods of solution

Several strategies are accessible for tackling unconstrained optimization problem
(1) [26]. These strategies are gathered into two diverse groups as direct search
strategies and gradient-based strategies.

2.1 Direct search strategies

These are techniques for tackling optimization issues which any information about
the gradient of f is not required [21]. Unlike the conventional optimization methods
which utilize information about the gradient or higher derivatives to obtain the
optimum, these strategies solve an optimization problem by finding a set of points
close to the present point, then seeking for one where the value of f is lesser than the
value at the present point. The methods solve test function that is not differentiable,
or not continuous and they are most suitable for small scale problems. Examples
of direct search strategies are simplex search method, Hooke and Jeeves method,
Rosenbroock method and so on.

2.2 Gradient-based strategies

These types of methods which is also known as descent methods, seek the calcu-
lation of first-order and possibly higher order partial derivatives of f with respect
to each of its variables (), 23 ... 2(") and it is written as V f(z). Thus,

of (z) 0f(x) 3f(33))T
Ox1 = Oxzo ' Oz,

Vf(x) = ( ) (2)

V f(z) does possess an exceptionally vital property in it which portrays steepest as-
cent direction [20]. Regarding this relevant property, the negative of (2) is referred
to as the steepest descent direction. Therefore, any strategy which makes use of
(2) can be anticipated to examine the least point quicker than the one which does
not utilize it. Examples of gradient-based strategies that solve (1) are the Newton
method, quasi-Newton method, variable metric method, conjugate gradient meth-
ods and so on ([17], [1]). Hence, all the gradient methods that shall be discussed
require the gradient vector in finding the search direction.

2.2.1 Newton method

In optimization, this approach, named after Isaac Newton and Joseph Raphson,
is a strategy applied to find the roots of the derivative i.e., V f(x) = 0, which is
also referred as the stationary points of f [25]. The strategy is well known and
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broadly utilized due to its capability of giving the most accurate answers when
solving small-scale optimization problems [18]. The method converges exception-
ally quickly but the convergence can not be ensured because it needs expensive
computing memory facility and may not continuously provide slightest computing
time depending on the traits of the problem.

2.2.2  Quasi-Newton method

These methods are strategies utilized to obtain either zeroes or local extrema of
the objective functions, this serves as an alternative strategy to Newton’s method
[27]. The strategy can be employed if the Hessian is unavailable or is as well costly
to compute at each iteration. The major drawback of Newton’s method even after
modification to ensure convergence is that of the calculation of the second derivative
of f at every iteration. Thus, quasi-Newton approaches were introduced to define
efficient and very effective methods which do not involve the calculation of the
hessian during the computations [22].

2.2.3 Variable metric method

This strategy was first introduced in 1959 and later extended in 1963 ([7], [9]).
Variable metric methods are commonly utilized in connection with unconstrained
optimization since they have good theoretical and convergence properties. They are
regarded as the best general unconstrained optimization technique and the method
makes use of the derivative that is currently available.

2.2.4  Conjugate gradient method (CGM)

The method CG has been an area of active research since 1952 [12]. This
approach is a capable one for solving optimization problems due to the conciseness
of its algebraic expression, simplicity of its analysis and ease of its implementation.
And due to its very moo memory necessity, quick convergence and so on, it remains
exceptionally prevalent for researchers who are curious in tackling large-scale
optimization issues ([13], [14], [23]).

CGMs are originally introduced for the solution of a strictly convex quadratic
function in the form

Fa) = fotaTa+ jat Az 3)

where fo € R, x,a € R" and A € R™" with the aim of accelerating its convergence
compared to the previously discussed methods.

2.3 Nonlinear CGMs

When the method CG is employed for solving non-quadratic functions, it is called
nonlinear CGM. For quadratic objective function defined in (3), the Hessian, A,
is constant. In any case, for a common nonlinear function, the Hessian is a matrix
which needs to be assessed at every iteration. This could be computationally costly.
Hence, efficient execution of the CG algorithm that disposes the Hessian evaluation
at each step is desirable [15].

The nonlinear CGM is a computational procedure that solves the unconstrained
optimization problem in (1) efficiently. It uses an iterative scheme of the form:

2D — g ®) 4 o gh) (@)
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where, z(**t1) is the new iterate point to be obtained, z(¥) is the present iterate
point, ag > 0 is the step-length which can be determined by various step-length
rules and d*), the search directions that are calculated by the rule

()

where ¢®) = Vf (.I‘(k)) and S is a scalar referred as the CG update parameter
([4] and [3]). Some common formulae for fj are given as Fletcher-Reeves (FR),
Polak-Ribiere-Polyak (PRP), Hestensee-Stifel (HS), Conjugate-Descent (CD), Dai-
Yuan (DY), Liu-Storey (LS), Bamgbola-Ali-Nwaeze (BAN), Hager-Zhang (HZ),
respectively defined by,

2
BT = W [10] (6)
PRP _ m [19] (7)
l9® ]
s _ W 1) ®)
B = —m, 8] )
O = W 6] (10)
LS _ _W, [16] (11)
pAN _ W, 5) (12)
g = (s - I

If f is given as in (3) and the line search is optimum, then the approach (4) and
(5) is referred as the linear CGM [24]. For the linear CGM, parameters (6)-(13) are
identical [1]. However, for the nonlinear CGM, parameters (6)-(13) lead to diverse
performance in practice which results in distinct CGMs ([28], [29]).

3. Optimum line search

The purpose of every line search rule is to get a positive aj, alongst the d®) on
the objective of guarantee an improving speed of convergence. Here, we consider
the approaches involve in calculating «j using an optimum line-search. Then to
accomplish this, we first set oy, = o, for,

o = arg min, .o f (2 + ad®) (14)
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i.e., o* is the value of aj which minimizes f along d*) [17]. Therefore, a* in (14)
can be determined by solving the following equation,

% F@® 4+ ad®) =0 (15)

The strategies employed in (15) results to an exact or optimum value for «j and
this is called an exact or optimum line search.

This work examines the numerical processes required in executing the optimum
line search for minimizing non-polynomial optimization problems only, using two
different approaches. The two approaches and their illustrations are discussed next.

3.1 Solution by conversion

This is also known as indirect approach for solving non-polynomial functions. For
a test function, we expand the function in Taylor’s series, then truncate the series
after a desired number of terms. Below is an example for the illustration.

Raydan 2 function

fl@) = lexp(z;) — ], = =1[1,1,...,1]
1=1
Solution
n l‘2 3 $4
f(x):;[ R R T TR Y]

Truncated form for the quatic: f(z) => 1 [1+ wQ; + % + %

Then the gradient is g(z;)[;_; = %f(:c) =z + 5+ 63
By using the technique of optimum line search dlscussed earlier to calculate ay,
i.e.,

f(@) = flzi+ ad) = f(o)

= flzi+ad) =", 1+ (%+§di) 4 @ +ad) . (xz-‘rad) }

_xn [q 2 7 2d; | 27 29250  odd | af
=>", 1+7+a:c,dz+a 7+§+axidzaa:idi+ -+ 5%

3d,
+252 4

a?z? atd}
L ]

4 —|—
i . ”
=>in _1+%+% }—F Zl[asidi—i-:c?di—i—%]

+ 5 Zz 1 [ds }"‘%2?:1 d}

+a? >0, [d; + z;d? +
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Since g—g(xi + ad;) =0,
n

3 n 2 2 72 n 3
Z 2 7 di Z d; 2, Tid; 2 Z 3, Tid;

=1
+O‘—32n:d4—0
6 =1 L

Hence, we obtained our result using matlab program by imputing the following val-
ues for f(z), gi(x), f(a) and z(©) with eight different conjugate gradient methods.
And the result we obtained from the example above is shown in Table 1.

Table 1. Numerical solution for indirect method.

Indirect Method
Itr £ Norm g*

CGMs n. (Dim) Exc. Time

BAN 5000 1 5.00e003  2.7e-011 0.10
10000 1 1.00e.004  3.0e-011 0.08
FR 5000 1 5.00e003  2.7e-o0l1 0.05
10000 1 1.00e.004  3.0e-011 0.09
PR 5000 1 5.00e003  2.7e-o0l1 0.07
10000 1 1.00e.004  3.0e-011 0.09
HS 5000 1 5.00e003  2.7e-o0l1 0.07
10000 1 1.00e.004  3.0e-011 0.09
cD 5000 1 5.00e003  2.7e-o0l1 0.07
10000 1 1.00e.004  3.0e-011 0.09
DY 5000 1 5.00e003  2.7e-o0ll 0.07
10000 1 1.00e.004  3.0e-011 0.10
LS 5000 1 5.00e003  2.7e-o0l1 0.07
10000 1 1.00e.004  3.0e-011 0.10
H7 5000 1 5.00e003  2.7e-o0ll 0.07
10000 1 1.00e.004  3.0e-011 0.10

3.2 Direct method

This is an approach by applying the CG Algorithm on the given problem directly
to obtain the required solutions. We will also use the same example above for the
illustration of this method.

Raydan 2 function

flx) = Z lexp(z;) — x4, 20 = [1,1,...,1].

=1

Solution
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et —1
) e’ —1
g,(z) = axif () =
efr —1
el —1 el —1
1 1
e —1 e —1
g(0) — : ’ d(O) — fg(o) - _ :
el —1 el — 1
ag = arg minf@(o) + O@(O))
1 el —1
1 el —1
= arg minf -«
1 el —1
n
= ming Y [ — (14 a — ae')]
i=1

d o
%[n(elﬁ“’ €Y — (14 ap —ael)] =0

= n[(1 —ebeltrom®e _ (1 _el] =0

_ 1
= (1 —el)[ertoomae 1] =90
= 61+aofozoel —1=0
= 61+a07agel —1=¢Y

:>1+a0—a061:0
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e —1 0
-1 0
€
gV = g(a!) = ' = |.
e —1 0

Thus, z* = z(). So, substituting z* in the function f(zx) then, f* = n. Hence the
result for the example are tabulated below:

Table 2. Numerical solution for direct method.

. Direct Method
CE n. (Dim) i & To T

1 5000 1 5.0x10° 0
10000 1 1.0x10% 0

4. Numerical experiments

4.1 Nonlinear CGMs algorithm for optimum line search

Step 1: Pick the starting point, (%) € R”, ¢ > 0 (a small number called tolerance)
and set d© = —g(0) = —Vf(z0) k = 0.

Step 2: Terminate process if ||g(?|| < e, else, go to Step 3.

Step 3: Calculate oy, = arg minf(z® + ad®), a > 0.

Step 4: Set zFt1) = 2(k) 1 0, d®); if ||| < e, stop, else, move to the next
step.

Step 5: Find f; for the chosen CGM and d® using (5).

Step 6: Set k = k + 1, and move back to Step 3.

4.2 Computational details

Our aim is to perform the experiments using nonlinear CGMs to minimize non-
polynomial unconstrained optimization problems. To achieve this, ten test func-
tions extracted from [2] were utilized as numerical examples. The test functions
are mainly non-polynomial objective functions.

The nonlinear CGMs Algorithm 4.1 for optimum line search was implemented us-
ing indirect method and direct method in Subsections 3.1 and 3.2 respectively. It
suffices to say here that the dimensionality of the test functions were generally
taken to be very large (5000 and 10000). Also, we have assumed a tolerance of
10~° for the norm of ¢g* (the gradient at the optimum value of f).

4.3 Computational examples

4.3.1 Diagonal 3

n

fl@) = lexp(z;) —sin(z;)], 2@ =[1,1,..1]"

=1



4.3.2

4.3.3

4.3.4

4.8.5

4.3.6

4.3.7

4.3.8

4.3.9
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Full Hessian FH3

flz) = Zx2 + Z [ziexp(z;) — 22 — 2], 20 =[1,1,..1]7
=1 =1

Cosine function

f(z) = Z [cos(—.05z; +22)], 2@ =[1,1,..1]7
i=1
Diagonal 5
flz) = [In(exp(a:) + exp(—z;)], 2 =[1,1,..1)"
i=1
Diagonal 6
fl@) = lexp(@)) + (1 —a)], 2@ =[1,1,..17
=1
Sine function
fl@) = [sin(=.05z; +27)], 2@ =[1,1,..1]"
i=1
Diagonal 7
fl@) = lexp(ai) — 20 —2f], 2@ =[1,1,..1]"
=1
EG2
fla) = ; fsin(ai + 22 — 1) + %Sin(x%)], 2O = 1,1,..1)"
Raydan 1
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4.3.10 Diagonal 8

f(z) =

4.4 Computational results

n

Z [wiexp(z;) — 2x; — a7], 2

i=1

=[1,1,..1)F

The CGMs Algorithm 4.1 was implemented with the direct method to solve all
the numerical examples, and the results are presented in Table 3, while the same
Algorithm was also implemented with the indirect method for eight different non-
linear CGMs stated in Subsection 2.3 using MATLAB 1.8.0347 [R2009a] on a HP
laptop computer 620 with processor Pentium (R) Dual-core CPU T4500 @2.30GB
to solve five of the numerical examples, and their results were presented in Tables 4

to 11 using the following notations:

Itr (number of iterations), n (dimension), f* (optimal value of f), || ¢* || (norm of
the optimal value of the gradient), CE (computational examples) and TET (total

execution time in each CGM).

Table 3. Numerical solution for direct method.

Direct Method

CE n. (Dim) i 7 To T
591 5000 1 5.0 % 103 0
o 10000 1 1.0 * 10% 0
599 5000 1 1.0217 % 103 4.4865 % 10~
o 10000 1 —1.0435%10° 6.3448 % 1073
593 5000 1 —5.0% 103  6.4404 «+ 1078
o 10000 1 —1.0%107  9.1081 %107 %
594 5000 1 5.0 % 103 0
o 10000 1 1.0 * 107 0
£k 5000 1 5.0 % 103 0
10000 1 1.0 * 10% 0
596 5000 1 5.0 % 103 1.4755 %« 10~ 7
o 10000 1 1.0 10% 2.0866 x 10~°%
5o 5000 1 —4.0842%10% 2.4131 %107
o 10000 1 —8.1685x10° 3.4126 10~ 7
598 5000 1 2.5109 * 10>  3.1058 x 10~
o 10000 1 5.0217 « 10>  4.3923 %10 °
599 5000 1 5.0 % 10! 0
- 10000 1 1.0 % 102 1.3408 « 10~ 7
5910 5000 1 —2.4023%10° 0
o 10000 1 —4.8045% 10° 1.8962 % 107

4.5 Discusston on numerical results

From the tables of results, it can be observed that:

i: Both the direct and indirect methods produce accurate results and converge

very fast.
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The eight nonlinear CGMs used for solving the computational examples
gave the same results and utilized the same number of iterations although
with slightly varying execution time.

There were differences in the optimal value of f obtained by both direct
and indirect methods. The reason for this is as a result of the non-linearity
of the problems giving rise to multiple solutions.

In the Algorithm 4.1, the norm of g* is define as,

n n
L= g <e=) g?<é.
i=1 =1

In case every components of g* have the same value, at that point

2
ng? < = gf < %Vi (16).

So, substituting for the values of n and € in (16), then we have

. 10—12 8.
so, if gy # 0 and g7 = OVi # k, i.e.,

g2<=>g2=vVe=10"

Hence, 1078 < g; < 1079, from which we conclude that || g* ||~ 0.

Table 4. Numerical solution for indirect method (TET=0.73).

CGMs n. (Dim) i f*BAN Norm gF Exc. Time
591 5000 1 5.00e003 4.2e-012 0.02
10000 1 1.00e.004 1.2e-011 0.02
594 5000 1 5.9375e003  7.2e-012 0.13
10000 1 1.1875e.004  3.5e-012 0.07
595 5000 1 1.00e003 2.7e-011 0.08
10000 1 2.00e.004  3.0e-011 0.06
59.7 5000 1 -1.5089e004  2.4e-10 0.17
10000 3 -3.0179e.004  9.6e-10 0.07
59.9 5000 1 5.00e001 4.3e-013 0.04
10000 1 1.00e.002  1.8e-013 0.07
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Table 5. Numerical solution for indirect method (TET=0.52).

FR

CGMs n. (Dim) i & Norm gF Exc. Time
59.1 5000 1 5.00e003 4.2e-012 0.02
10000 1 1.00e.004 1.2e-011 0.02
594 5000 1 5.9375e003  7.2e-012 0.07
10000 1 1.1875e.004  3.5e-012 0.07
595 5000 1 1.00e003 2.7e-011 0.10
10000 1 2.00e.004  3.0e-011 0.05
597 5000 1 -1.5089e¢004  2.4e-10 0.04
10000 3 -3.0179e.004  9.6e-10 0.06
599 5000 1 5.00e001 4.3e-013 0.04
10000 1 1.00e.002  1.8e-013 0.05

Table 6. Numerical solution for indirect method (TET=0.46).

CGMs n. (Dim) i & cD Norm g* Exc. Time
591 5000 1 5.00e003 4.2e-012 0.02
10000 1 1.00e.004 1.2e-011 0.02
59.4 5000 1 5.9375e003  7.2e-012 0.08
10000 1 1.1875e.004  3.5e-012 0.06
595 5000 1 1.00e003 2.7e-011 0.03
10000 1 2.00e.004 3.0e-011 0.05
597 5000 1 -1.5089e004  2.4e-10 0.04
10000 3 -3.0179e.004  9.6e-10 0.06
59.9 5000 1 5.00e001 4.3e-013 0.04
10000 1 1.00e.002 1.8e-013 0.06

Table 7. Numerical Solution for Indirect Method (TET=0.42).

CGMs n. (Dim) i & DY Norm gF Exc. Time
59.1 5000 1 5.00e003 4.2e-012 0.02
10000 1 1.00e.004 1.2e-011 0.02
594 5000 1 5.9375e003  7.2e-012 0.05
10000 1 1.1875e.004  3.5e-012 0.06
595 5000 1 1.00e003 2.7e-011 0.03
10000 1 2.00e.004  3.0e-011 0.05
597 5000 1 -1.5089e¢004  2.4e-10 0.04
10000 3 -3.0179e.004  9.6e-10 0.06
59.9 5000 1 5.00e001 4.3e-013 0.05
10000 1 1.00e.002  1.8e-013 0.06
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Table 8. Numerical solution for indirect method (TET=0.53).

HS

CGMs n. (Dim) i & Norm gF Exc. Time
59.1 5000 1 5.00e003 4.2e-012 0.02
10000 1 1.00e.004 1.2e-011 0.02
594 5000 1 5.9375e003  7.2e-012 0.05
10000 1 1.1875e.004  3.5e-012 0.06
595 5000 1 1.00e003 2.7e-011 0.08
10000 1 2.00e.004  3.0e-011 0.05
597 5000 1 -1.5089e¢004  2.4e-10 0.07
10000 3 -3.0179e.004  9.6e-10 0.05
599 5000 1 5.00e001 4.3e-013 0.06
10000 1 1.00e.002  1.8e-013 0.07

Table 9. Numerical solution for indirect method (0.47).

CGMs n. (Dim) i & LS Norm g* Exc. Time
591 5000 1 5.00e003 4.2e-012 0.02
10000 1 1.00e.004 1.2e-011 0.02
59.4 5000 1 5.9375e003  7.2e-012 0.06
10000 1 1.1875e.004  3.5e-012 0.07
595 5000 1 1.00e003 2.7e-011 0.04
10000 1 2.00e.004 3.0e-011 0.07
597 5000 1 -1.5089e004  2.4e-10 0.04
10000 3 -3.0179e.004  9.6e-10 0.06
59.9 5000 1 5.00e001 4.3e-013 0.04
10000 1 1.00e.002 1.8e-013 0.05

Table 10. Numerical solution for indirect method (0.56).

CGMs n. (Dim) i f*PRP Norm gF Exc. Time
59.1 5000 1 5.00e003 4.2e-012 0.02
10000 1 1.00e.004 1.2e-011 0.02
594 5000 1 5.9375e003  7.2e-012 0.05
10000 1 1.1875e.004  3.5e-012 0.07
595 5000 1 1.00e003 2.7e-011 0.08
10000 1 2.00e.004  3.0e-011 0.07
597 5000 1 -1.5089e¢004  2.4e-10 0.04
10000 3 -3.0179e.004  9.6e-10 0.05
59.9 5000 1 5.00e001 4.3e-013 0.04
10000 1 1.00e.002 1.8e-013 0.12
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Table 11. Numerical solution for indirect method (0.50).

CGMs n. (Dim) i & HZ Norm gF Exc. Time
59.1 5000 1 5.00e003 4.2e-012 0.02
10000 1 1.00e.004 1.2e-011 0.02
59.4 5000 1 5.9375e003  7.2e-012 0.08
10000 1 1.1875e.004  3.5e-012 0.07
59.5 5000 1 1.00e003 2.7e-011 0.04
10000 1 2.00e.004 3.0e-011 0.07
59.7 5000 1 -1.5089e004 2.4e-10 0.04
10000 3 -3.0179e.004  9.6e-10 0.06
59.9 5000 1 5.00e001 4.3e-013 0.04
10000 1 1.00e.002 1.8e-013 0.06
Conclusion

In this research work, an effort has been made to discuss various numerical strate-
gies available for solving unconstrained optimization problems of which CGM has
been given more attention. More so, two different methods were discussed for min-
imizing non-polynomial unconstrained optimization problems with optimum line
search technique using eight different nonlinear CGMs. The direct and indirect
methods were implemented on some test functions, the result of which were given
in Tables 1 to 11.

References

(1]
2]
(3]
(4]

(5]

[6]
[7]

(8]
(9]

(10]
(11]
(12]
(13]

(14]

(15]

(16]

K. Amini and P. Faramarzi and N. Pirfalah, A modified Hestenes-Stiefel conjugate gradient method
with an optimal property, Optimization Methods and Software, 34 (4) (2019) 770-782.

N. Andrei, Unconstrained optimization test functions unpublished manuscript, Advanced Modeling
and Optimization, 10 (2008) 147-161.

S. Babaie-Kafaki, On the sufficient descent condition of the Hager-Zhang conjugate gradient meth-
ods, 40R, 12(2014) 285-292.

S. Babaie-Kafaki, On the sufficient descent property of the Shannos conjugate gradient method,
Optimization Letters, 7 (4) (2013) 831-837.

O. M. Bamigbola and M. M. Ali and E. Nwaeze, An efficient and convergent method for un-
constrained nonlinear optimization, International Congress of Mathematicians, Hyderabad, India,
(2010).

Y. Dai and Y. Yuan, A nonlinear conjugate gradient with strong global convergence properties,
SIAM Journal on Optimization, 10 (2000) 177-182.

W. C. Davidon, Variable Metric Method of Minimization, Argonne National Laboratory Report,
(1959).

R. Fletcher, Practical method of Optimization, Second edition, John Wiley, New York, (1987).

R. Fletcher and M. J. D. Powell, A Rapidly Convergent Descent Method for Minimization, Computer
Journal, 6 (2) (1963) 163-168.

R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, Computer Journal, 7
(1964) 149-154.

W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an
effiecient line search, STAM Journal on Optimization, 16 (2005) 170-172.

M. R. Hestenes and E. Stiefel, Methods of conjugate gradient for solving linear equations, Journal
of research of the National Bureau of Standards, 49 (1952) 409-436.

A. A. Ishaq, T. Latunde and K. B. Akande, A step-length for conjugate gradient methods, Malaysian
Journal of Computing, 5 (1) (2020) 403-413.

H. Jinhong and Z. Genjiao, A conjugate gradient method without line search and the convergence
analysis, In: Fourth International Conference on Emerging Intelligent Data and Web Technologies,
Granzhoul, Jiangxi 341000, China, (2013) 37-86.

H. Kobayashi and Y. Narushima and H. Yabe, Descent three-term conjugate gradient methods based
on secant conditions for unconstrained optimization, Optimization Methods and Software, 32 (6)
(2017) 1313-1329.

Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, Journal of Optimization
Theory and Application, 69 (1992) 129-137.



(17]

(18]

(19]
(20]

(21]

(22]

(23]

[24]

(25]
[26]

27]

(28]

(29]

A. A. Ishaq et al./ IJM?C, 10 - 04 (2020) 295-309. 309

P. Mtagulwa and P. Kaelo, A convergent modified HS-DY hybrid conjugate gradient method for
unconstrained optimization problems, Journal of Information and Optimization Sciences, 40 (1)
(2019) 97-113.

L. Muhammad and M. Y. Waziri, An alternative three-term conjugate gradient method algorithm for
systems of non-linear equations, International Journal of Mathematical Modeling and Computations,
7 (2) (2017) 145-157.

E. Polak and G. Ribiere, Note sur la convergence de directions conjugees, Rev. Francaise Informat
Recherche Operationelle, 16 (1969) 35-43.

S. S. Rao, Engineering Optimization, Theory and Practice, Fourth Edition, John Wiley and Sons
Inc., New York, (2009).

M. L. Robert and T. Virginia and W. T. Micheal, A sufficient descent LiuStorey conjugate gradient
method and its global convergence, Journal of Computational and Applied Mathematics, 124 (1-2)
(2000) 191-207.

A. Z. M. Sofi, M. Mamat and I. Mohd, An improved BFGS search using exact line search for solving
unconstrained optimization problems, Journal of Mathematical Sciences, 7 (2013) 73-85.

Z. Sun, H. Li, J. Wang and Y. Tian, Two modified spectral conjugate gradient methods and their
global convergence for unconstrained optimization, International Journal of Computer Mathematics,
95 (10) (2018) 2082-2099.

N. Wataru, N. Yasushi and Y. Hiroshi, Nonlinear conjugate gradient methods with sufficient descent
properties for unconstrained optimization, Journal of Industrial and Management Optimization, 9
(2013), 595-619.

T. J. Ypma, Historical development of the Newton-Raphson method, Society for Industrial and
Applied Mathematics, 37 (1995) 521-551.

G. Yuan, B. Wang and Z. Sheng, The Hager-Zhang conjugate gradient algorithm for large-scale
nonlinear equations, International Journal of Computer Mathematics, 96 (8) (2019) 1533-1547.
U. K. M. Yusof, M. A. H. Ibrahim, M. Rivaie, M. Mamat, M. A. Mohammed and P. L. Ghazali,
Hybrid quasi-Newton with new conjugate gradient method using exact line search, International
Journal of Recent Technology and Engineering, 7 (2019) 651-655.

B. Zhang, Convergence of modified conjugate gradient methods without line search, Second Interna-
tional Conference on Computational Intelligence and Natural Computing (CINC), Feixian School,
Linyi Normal University, China, (2010).

K. Zhang and H. Liu and Z. Liu, A Dai-Liao conjugate gradient method with optimal parameter
choice, Numerical Functional Analysis and Optimization, 40 (2) (2019) 194-215.



