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Abstract. The present essay scrutinizes the application of discrete mollification as a filtering
procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional
space. These problems are seriously ill-posed. So, we combine discrete mollification and space
marching method to address the ill-posedness of the proposed problem. Moreover, a proof of
stability and convergence of the aforementioned algorithm is provided. Finally, the results of
this paper have been illustrated by some numerical examples.

Received: 05 May 2017, Revised: 23 September 2017, Accepted: 04 November 2017.

Keywords: Nonlinear backward inverse heat conduction problem, Discrete mollification,
Space marching method, Stability, Convergence.

Index to information contained in this paper

1 Introduction

2 The Mathematical Formulation of the Problem

3 A Review on the Discrete Mollification Method

4 The Regularized Problem

5 The space marching algorithm

6 Stability and convergence of the scheme

7 Numerical examples

8 Conclusion

1. Introduction

The inverse heat conduction problems are widely practiced in many branches of
physics, science and engineering. In most of the problems related to conduction,
temperature distribution becomes obvious at the last moment of the process. The
question is that how it is possible to obtain the temperature distribution at the
beginning moment using this data. These types of problems are called backward
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inverse heat conduction problems (BIHCP) or final boundary value problems. BI-
HCP is practiced in a wide range of applied areas including thermophysics, me-
chanics of continuous media, contaminant transport, medical imaging, geophysics
and explorations and, etc; see e.g. [15-20]. These problems are seriously ill-posed, it
means that their solution (if it exists) does not continuously depend on the data. In
this case, some minor and partial changes in the data are directed into major and
remarkable changes in the computed solution. Holistically, the above mentioned
problems cannot be solved by classic numerical methods. Thus, the efficient and
effective regularization procedures are employed to solve them [8,13].
Within the last few years, various numerical and analytical methods have been in-
troduced to solve BIHCP such as regularization method based on generalization of
the BIHCP [9], modified integral equation method [10], variational approach [11],
modified Tikhonov regularization method [14], Euler and Crank-Nicolson methods
[22] and Shannon wavelet regularization method [23]. However, most of the essays
in this issue have been limited to the linear backward problems and just a few
studies have been done on the nonlinear backward inverse heat conduction prob-
lems (NBIHCP).
In this article, a NBIHCP in one dimensional space is considered. This research
aims at proposing a numerical algorithm based on discrete mollification and space
marching methods and assessing necessary conditions for creating its stability and
convergence. Mollification method is recognized as a reliable regularization method
based on convolution that has been widely applied to solve many ill-posed prob-
lems [5,12]. The idea of this method is very simple [21]: if the data of the problem
are not clear and only an approximate amount of data is accessible, it is recom-
mended to find out a sequence of mollification operators to map improper data
into well-posed classes of the problem (mollify the improper data). Consequently,
the intended problem will be a well-posed one.
This paper is organized as the following: The second section represents the back-
ward inverse heat conduction problem. The third section reviews the discrete mol-
lification method. In the forth one, we regularize the intended backward inverse
conduction problem. The regularized problem is solved in the fifth section. The
sixth section considers the stability and convergence proof of the space marching
numerical algorithm. Eventually, some numerical examples are defined in the last
section.

2. The Mathematical Formulation of the Problem

Let us consider a nonlinear initial boundary value heat conduction problem which
is governed by

∂u(x,t)
∂t − ∂

∂x{(a(x) + b(x)u2(x, t))∂u(x,t)∂x } = f(x, t), 0 < x < 1, 0 < t < T, (1)

u(x, 0) = ψ(x), 0 ≤ x ≤ 1, (2)

u(0, t) = g1(t), 0 ≤ t ≤ T, (3)

u(1, t) = g2(t), 0 ≤ t ≤ T, (4)

where u(x, t) is the unknown temperature in the range of (0, 1) × [0, T ]. Further-
more, a(x)+b(x)u2(x, t) identified as the diffusion coefficient is a positive function.
Moreover, source term f(x, t), the initial condition ψ(x) and the boundary condi-
tions g1(t), g2(t) are known functions in all their domains. T is also given. This
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problem is called direct heat conduction problem which can be solved by classic
numerical methods applied to solve PDEs. The existence and uniqueness of solu-
tion of problem (1)-(4) in homogeneous case are investigated in [24].
Corresponding to this problem, we consider an inverse problem in which the initial
condition ψ(x) and the boundary condition g2(t) are unknown. We suppose that
there is an extra set of the measured temperature at the final time t = T and the
heat flux at the boundary of x = 0:

u(x, T ) = φ(x), 0 ≤ x ≤ 1, (5)

∂u(0,t)
∂x = 0, 0 ≤ t ≤ T. (6)

Equations (1)-(4) along with overspecified conditions of (5) and (6) are called a
NBIHCP.
In the following, a stable and convergent numerical algorithm based on discrete
mollification and space marching will be introduced to find the solution of problem
(1)-(6). Now, we suppose that functions φ(x) and g1(t) are not known exactly and
we only have an approximate amount of these functions presented as φε(x) and
gε1(t), respectively. In addition, these approximate functions are satisfied in the
following conditions:

∥φε(x)− φ(x)∥∞ ≤ ε,

∥gε1(x)− g1(x)∥∞ ≤ ε.

According to the fact that there are perturbation in the problem’s data and the
proposed problem is ill-posed, we first regularize the inverse problem by discrete
mollification method.
In the next part, we precisely review the discrete mollification method.

3. A Review on the Discrete Mollification Method

Discrete mollification method is a filtering procedure, based on convolution, which
has proven to be convenient for the regularization of a variety of ill-posed problems
and for stabilization of explicit space marching algorithms in the solution of PDEs
[3]. In this section from [6,7], the basic idea of discrete mollification method is
introduced. For more information about this method see [1].
Let G = {g(xj) = gj}Mj=1 be a discrete function defined on K = {xj , j = 1, ..,M} ⊂
[0, 1] satisfying

0 ≤ x1 < x2 < .. < xM−1 < xM ≤ 1.

Set

sj =


0, j = 0

1
2(xj + xj+1), j = 1, ..,M − 1

1, j =M.
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Let p > 0 is given. Then for any x ∈ Iδ = [pδ, 1−pδ] we define discrete mollification
of G as follows

JδG(x) =

M∑
j=1

(

∫ sj

sj−1

ρδ,p(x− s)ds)gj ,

where

ρδ,p(x) =

{
Apδ

−1 exp(−x2

δ2 ), |x| ≤ pδ
0, |x| > pδ,

such that Ap = (
∫ p
−p exp(−s

2)ds)−1 . We usually take p=3 and the radius of mol-

lification, δ is selected automatically by the GCV method (see more [1]). We note
that

M∑
j=1

∫ sj

sj−1

ρδ,p(x− s)ds =

∫ pδ

−pδ
ρδ,p(s)ds = 1.

Set

∆x = max
1≤j≤M−1

|xj+1 − xj | .

In sequence, we will introduce the main properties relating discrete mollification
method (see more [1,2]).

Theorem 1. ([1])
1. Let g(x) ∈ C0,1(R1) and G = {g(xj) = gj}Mj=1 be the discrete version of g and let

Gε = {gεj}Mj=1 be the perturbed discrete version of g satisfying ∥G−Gε∥∞,K ≤ ε.
Then there exists a constant C, independent of δ, such that

∥JδGε − Jδg∥∞ ≤ C(ε+∆x).

2. If g′(x) ∈ C0,1(R1), let G = {g(xj) = gj}Mj=1 and Gε = {gεj}Mj=1 satisfying
∥G−Gε∥∞,K ≤ ε, then

∥∥D(JδG
ε)− (Jδg)

′∥∥
∞ ≤ C

δ
(ε+∆x) + Cδ(∆x)

2.

3. Suppose that G = {g(xj) = gj}Mj=1 be the discrete function defined on K, and

Dδ
0 be a differentiation operator defined by Dδ

0(G) = D(JδG)(x) then∥∥∥Dδ
0(G)

∥∥∥
∞,K

≤ C

δ
∥G∥∞,K .

In order to compute JδG(x) throughout the domain [0, 1], we have to extend
discrete data function g to a bigger interval Iδ′ = [−pδ, 1 + pδ] or confine this
function to the Iδ = [pδ, 1 − pδ]. In this essay, the first approach described
in reference [1] is applied. An optimizing process is practiced to calculate the
extension function of g in the intervals of [−pδ, 0] and [1, 1 + pδ]. This process is
introduced by Mejia in the reference [4].
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4. The Regularized Problem

The regularized problem is described as

∂v(x, t)

∂t
− ∂

∂x
{(a(x) + b(x)v2(x, t))

∂v(x, t)

∂x
} = f(x, t), 0 < x < 1, 0 < t < T,

(7)

v(x, 0) = Jδψ(x), 0 ≤ x ≤ 1, (8)

v(0, t) = Jδ1g1(t), 0 ≤ t ≤ T, (9)

v(1, t) = Jδ′g2(t), 0 ≤ t ≤ T, (10)

with overspecified conditions

v(x, T ) = Jδ2φ(x), 0 ≤ x ≤ 1, (11)

∂v(0, t)

∂x
= 0, 0 ≤ t ≤ T. (12)

The aim of this problem is to find v(x, t) satisfying (7)-(12).

5. The space marching algorithm

Now, we solve regularized problem by the means of space marching method and
determine v(x, t) ∈ ([0, 1] × [0, T ]). For this purpose, we first discretize domain
[0, 1]× [0, T ] with the mesh points

xj = jh, j = 0, ..,M,

and

tn = nk, n = 0, .., N,

which h = 1/M , k = T/N are the space and time discretiza-
tion parameters. Let the numerical approximations of functions
v(jh, nk), vt(jh, nk), vx(jh, nk), f(jh, nk), a(jh) and b(jh) are indicated as
Unj ,W

n
j , R

n
j , f

n
j , aj and bj ,respectively.

The space marching scheme for (7)-(12) is

Unj+1 =U
n
j + hRnj , (13)

Rnj+1 =
1

aj+1 + bj+1(Unj+1)
2 {(aj + bj(U

n
j )

2)Rnj + h(Wn
j − fnj )}, (14)

Wn
j+1 =W

n
j + h(D0)t(Jδj3R

n
j ), (15)

where D0 is the centered difference operator denoting by

D0f(t) =
f(t+∆t)− f(t−∆t)

2∆t
.

The algorithm of this scheme is as follows
1. Choose the radii of mollification, δ1 and δ2 using GCV method.
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2. Compute mollification of gε1(nk) and φ
ε(jh) with respect to t and x, respectively.

Put
Un0 = Jδ1g

ε
1(nk), n = 0, .., N ,

UNj = Jδ2φ
ε(jh), j = 1, ..,M ,

Rn0 = 0, n = 0, .., N .
3. Compute D0(Jδ1g

ε
1(nk)) and put

Wn
0 = D0(Jδ1g

ε
1(nk)), n = 0, .., N.

4. Set j = 0 and do while j ≤M − 1

Unj+1 =U
n
j + hRnj , (n ̸= N),

Rnj+1 =
1

aj+1 + bj+1(Unj+1)
2 {(aj + bj(U

n
j )

2)Rnj + h(Wn
j − fnj )},

Wn
j+1 =W

n
j + h(D0)t(Jδj3R

n
j ).

This algorithm is applied to solve some examples in section 6.
In order to analyze stability and convergence of the numerical scheme, we assume
f(x, t) ∈ C([0, 1]× [0, T ]), a(x), b(x) ∈ C1[0, 1] and also u(x, t) ∈ C2([0, 1]× [0, T ]).

6. Stability and convergence of the scheme

In this section, we establish stability and convergence of the space marching scheme
(13)-(15). Sequentially, we bring a hypothesis that will be needed.
Hypothesis 1. Consider problem (7)-(12) and suppose that
1. For all (x, t) ∈ ([0, 1]× [0, T ]), a(x)+ b(x)u2(x, t) is increasing with respect to x.
2. For all j = 0, 1, ..,M and n = 0, 1, .., N , aj + bj(U

n
j )

2 is increasing with respect
to j.
From now on, we use the notation

|Yj | = max
n

∣∣Y n
j

∣∣ .
Theorem 2. (Stability theorem) Suppose that hypothesis 1 is held, then there exists
constant M1, such that

max{|UM | , |RM | , |WM | ,Mf} ≤ exp{M1}max{|U0| , |R0| , |W0| ,Mf}.

Proof From (13) and (14), we obtain∣∣Unj+1

∣∣ ≤ (1 + h)max{
∣∣Unj ∣∣ , ∣∣Rnj ∣∣}. (16)

Using theorem 1 and Eqn. (15), we achieve

∣∣Wn
j+1

∣∣ ≤ (1 + h
C

|δ|−∞
)max{

∣∣Rnj ∣∣ , ∣∣Wn
j

∣∣}, (17)

where C is a constant which is independent of δ and |δ|−∞ = min
j

(δj3).

Hypothesis 1 and Eqn. (14) are directed to∣∣Rnj+1

∣∣ ≤ (
∣∣Rnj ∣∣+ hdj+1(

∣∣Wn
j

∣∣+ ∣∣fnj ∣∣)),
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consequently ∣∣Rnj+1

∣∣ ≤ (1 + dh)max{
∣∣Rnj ∣∣ , ∣∣Wn

j

∣∣ ,Mf}, (18)

where

dj+1 = min
n

{aj+1 + bj+1

∣∣Unj+1

∣∣2},
d = max

j
dj ,

and

Mf = max
(x,t)∈([0,1]×[0,T ])

|f(x, t)| ,

following (16)-(18)

max{|Uj+1| , |Rj+1| , |Wj+1| ,Mf} ≤ (1 + hM1)max{|Uj | , |Rj | , |Wj | ,Mf},

such that

M1 = max{1, C

|δ|−∞
, d}.

after M iteration of the last inequality, we obtain

max{|UM | , |RM | , |WM | ,Mf} ≤ (1 + hM1)
M max{|U0| , |R0| , |W0| ,Mf},

thus

max{|UM | , |RM | , |WM | ,Mf} ≤ exp(M1)max{|U0| , |R0| , |W0| ,Mf}.

So, the space marching scheme (13)-(15) is stable and proof is complete for fixed
M1.

Theorem 3. (Convergence theorem) For fixed δ, as h, k and ε tend to zero then
the numerical scheme (13)-(15) converge to the mollified exact solution.

Proof Let ∆Unj ,∆R
n
j and ∆Wn

j be the discrete error functions defined by

∆Unj = Unj − v(jh, nk),

∆Rnj = Rnj − vx(jh, nk),

∆Wn
j =Wn

j − vt(jh, nk),

then, we have

∆Unj+1= Unj+1 − v((j + 1)h, nk)

= ∆Unj + (Unj+1 − Unj )− (v(j + 1)h, nk)− v(jh, nk))

= ∆Unj + h(Rnj − vx(jh, nk)) +O(h2) (19)

= ∆Unj + h∆Rnj +O(h2),
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∆Wn
j+1=Wn

j+1 − vt((j + 1)h, nk)

= ∆Wn
j + (Wn

j+1 −Wn
j )− (vt((j + 1)h, nk)− vt(jh, nk)) (20)

= ∆Wn
j + h(D0(Jδj3R

n
j )− vxt(jh, nk)) +O(h2),

and

∆Rnj+1= Rnj+1 − vx((j + 1)h, nk)

= ∆Rnj + (Rnj+1 −Rnj )− (vx((j + 1)h, nk)− vx(jh, nk)).

Now, through applying Taylor series and using (14) we get

∆Rnj+1= ∆Rnj +
1

aj+1 + bj+1(Unj+1)
2 {(aj + bj(U

n
j )

2)Rnj + h(Wn
j − fnj )} −Rnj

− hvxx(jh, nk) +O(h2). (21)

From Eqn. (19), it is obtained that∣∣∆Unj+1

∣∣ ≤ ∣∣∆Unj ∣∣+ h
∣∣∆Rnj ∣∣+O(h2). (22)

Due to the theorem 1 and eqn. (20), it is concluded that

∣∣∆Wn
j+1

∣∣ ≤ ∣∣∆Wn
j

∣∣+ h(C

∣∣∣∆Rnj ∣∣∣+ k

|δ|−∞
+ Cδk

2) +O(h2), (23)

which C and Cδ are constants.
Finally, Eqn. (21) yields

∣∣∆Rnj+1

∣∣≤ ∣∣∆Rnj ∣∣+ ∣∣Rnj ∣∣
∣∣∣∣∣ aj + bj(U

n
j )

2

aj+1 + bj+1(Unj+1)
2 − 1

∣∣∣∣∣
+ h

1∣∣∣aj+1 + bj+1(Unj+1)
2
∣∣∣(
∣∣Wn

j

∣∣+ ∣∣fnj ∣∣) + h |vxx(jh, nk)|+O(h2)

≤
∣∣∆Rnj ∣∣+ l1 + hl2 +O(h2), (24)

where

l1 = sup
j,n

∣∣Rnj ∣∣
∣∣∣∣∣ aj + bj(U

n
j )

2

aj+1 + bj+1(Unj+1)
2 − 1

∣∣∣∣∣,

l2 = sup
j,n

{ 1∣∣∣aj+1 + bj+1(Unj+1)
2
∣∣∣(
∣∣Wn

j

∣∣+ ∣∣fnj ∣∣) + |vxx(jh, nk)|}.

Set

∆j = max{
∣∣∆Unj ∣∣ , ∣∣∆Rnj ∣∣ , ∣∣∆Wn

j

∣∣}.
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From Eqns. (22)-(24), we result that

∆j+1 ≤ ∆j(1 + hl) + hl′ + l1 +O(h2),

which

l = max{1, C

|δ|−∞
},

and

l′ = l2 +
Ck

|δ|−∞
+ Cδk

2.

Therefore, after M iteration, we derive

∆M ≤ ∆0(1 + hl)M+(hl′+ l1)(1 + hl)M−1+ ...+(hl′+ l1)(1+hl)+(hl′+ l1). (25)

Theorem 1 is directed to the following inequality

|∆Un0 | ≤C(ε+ k),

|∆Qn0 | ≤C(ε+ k),

|∆Wn
0 | ≤

C

|δ|−∞
(ε+ k) + Cδk

2,

so as ε and k tend to zero, ∆0 → 0.
Then according to above explanation and stability of the scheme (13)-(15) as h, k →
0, we see that l1 tend to zero.
Consequently, as ε, h and k tend to zero the right hand side of (25) tend to zero
and convergence of the scheme (13)-(15) readily follows.

7. Numerical examples

In this section, we present two numerical examples to demonstrate the effectiveness
and stability of our proposed method. Stability of the method with respect to noise
in the data is investigated using noisy data. The noisy discrete data functions are
generated by adding a random perturbation to the exact data functions. The radii
of mollification are chosen automatically by the GCV method. For checking the
accuracy of our algorithm, we use relative weighted l2-norm. In these examples, we
take T = 1. To verify the convergence rate, we use the following definition

CO = log2

∥∥ψ − ψ2ε
∥∥

∥ψ − ψε∥
.

We apply Mathematica 10.3.1 software for computation.
Example 1 It is easy to observe that

a(x) = 0.01 + x2ex,

b(x) = 1 + x2,
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Figure 1. A comparison between the exact and regularized solutions for ψ(x) with ε = 0.001 and h = k =
1
20

for Example 1.

are satified in problem (1)-(6) with the boundary conditions

u(0, t) = ux(0, t) = 0,

and final data

u(x, 1) = x2ex.

f(x, t) is taken so that the exact solution is u(x, t) = (2− t)x2ex.
In order to investigate the impact of the ”inverse crime”, we consider the following
two cases for solving the proposed problem [25].
Case 1: We take u(x, 1) = x2ex and ux(0, t) = 0 and solve this problem by the
space marching algorithm with discrete mollification. Then, we carry out the nu-
merical results in Figs. 1-3 for ψ(x) and g2(t). Table 1 illustrates relative l2 errors
for computed u with different noise levels ε = 0.001, 0.01 and 0.1. In Table 2, we
show that the order of convergence of the proposed method for two noise levels
ε = 0.05, 0.1 is about 1 as we expected.

Case 2: We first solve a direct problem to obtain the input data u(x, 1) and ∂u(0,t)
∂x

then solve the inverse problem using the proposed method [25]. Errors of the
method are shown in Table 3.
From Table 1 and 3, we can see that at fix noise level ε, the accuracy of our algo-
rithm will be increased by decreasing h and we do not observe the impact of the
”inverse crime”. Figs. 1-3 reveal the efficiency of discrete mollification method as
a regularization procedure. Holistically, we can see as h declines, the accuracy of
approximated solutions will enhance.

Example 2 Consider the problem (1)-(6) with the following exact data functions

a(x) = 0.001 + xsin(x),

b(x) = 1 + x,
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Figure 2. A comparison between the exact and regularized solutions for ψ(x) with ε = 0.001 and h = k =
1
40

for Example 1.

Figure 3. A comparison between the exact and regularized solutions for g2(t) with ε = 0.001 and h = k =
1
64

for Example 1.

with the boundary conditions

u(0, t) = ux(0, t) = 0,

and final data

u(x, 1) = (2 + e)x3(1 + sin(x)).

f(x, t) is taken so that the exact solution is u(x, t) = (2 + et
2

)x3(1 + sin(x)).
The relative l2 errors for computed u are listed in Table 4 with three noise levels
ε = 0.001, 0.01 and 0.1. This table illustrates that at fix noise level ε, as h de-
crease the accuracy of algorithm will improve. In Table 5, we show that the order
of convergence of the proposed method for two noise levels ε = 0.05, 0.1 is about
1 as we expected. Conclusively, the comparison between the exact solution and its
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Table 1. Relative l2 error norms for regularized solution u for Example 1, Case 1.

ε h k Relative l2 error for u
0.001 2−4 2−4 0.1570810
0.001 2−4 2−5 0.1585340
0.001 2−5 2−5 0.0776185
0.001 2−5 2−6 0.0809734
0.001 2−5 2−7 0.0812005
0.001 2−6 2−6 0.0417975
0.001 2−6 2−7 0.0419530
0.001 2−7 2−7 0.0234503
0.01 2−4 2−4 0.1574020
0.01 2−4 2−5 0.1594970
0.01 2−5 2−5 0.0783974
0.01 2−5 2−6 0.0825739
0.01 2−5 2−7 0.0836425
0.01 2−6 2−6 0.0447928
0.01 2−6 2−7 0.0451941
0.01 2−7 2−7 0.0273820
0.1 2−4 2−4 0.1805120
0.1 2−4 2−5 0.1866360
0.1 2−5 2−5 0.1168900
0.1 2−5 2−6 0.1146340
0.1 2−5 2−7 0.1207490
0.1 2−6 2−6 0.0854462
0.1 2−6 2−7 0.0964583
0.1 2−7 2−7 0.0814588

Table 2. The rate of Convergence for Example 1.

ε h k CO
0.05 30 30 0.754962
0.05 35 35 0.875326
0.05 40 40 0.907374
0.1 30 30 0.699285
0.1 35 35 0.854781
0.1 40 40 0.912398

Table 3. Relative l2 error norms for regularized solution u for Example 1, Case 2.

ε h k Relative l2 error for u
0.001 2−4 2−4 0.5932642
0.001 2−5 2−5 0.4085852
0.001 2−5 2−6 0.4839570
0.001 2−5 2−7 0.4563291
0.01 2−4 2−4 0.6328715
0.01 2−5 2−5 0.4358147
0.01 2−5 2−6 0.4724916
0.01 2−5 2−7 0.4787219

regularized solution with discrete mollification method for ψ(x) and g2(t) are illus-
trated in Figs. 4-6. These figures demonstrate effectiveness of discrete mollification
method.

8. Conclusion

In this paper, a nonlinear backward inverse heat conduction problem in one dimen-
sional space is considered. A numerical algorithm based on discrete mollification
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Figure 4. A comparison between the exact and regularized solutions for ψ(x) with ε = 0.001 and h = k =
1
20

for Example 2.

Figure 5. A comparison between the exact and regularized solutions for ψ(x) with ε = 0.001 and h = k =
1
40

for Example 2.

and space marching methods is proposed and the stability and convergence of the
aforementioned algorithm are provided. Numerical results demonstrate effective-
ness of discrete mollification method as a reliable method for solving the mentioned
problem.
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Figure 6. A comparison between the exact and regularized solutions for g2(t) with ε = 0.001 and h = k =
1
64

for Example 2.

Table 4. Relative l2 error norms for regularized solution for Example 2.

ε h k Relative l2 error for u
0.001 2−4 2−4 0.1491700
0.001 2−4 2−5 0.1529740
0.001 2−5 2−5 0.0783948
0.001 2−5 2−6 0.0794999
0.001 2−5 2−7 0.0800352
0.001 2−6 2−6 0.0408504
0.001 2−6 2−7 0.0410051
0.001 2−7 2−7 0.0215161
0.01 2−4 2−4 0.1497810
0.01 2−4 2−5 0.1538540
0.01 2−5 2−5 0.0808071
0.01 2−5 2−6 0.0817251
0.01 2−5 2−7 0.0826516
0.01 2−6 2−6 0.0444123
0.01 2−6 2−7 0.0446082
0.01 2−7 2−7 0.0266623
0.1 2−4 2−4 0.1710070
0.1 2−4 2−5 0.1775330
0.1 2−5 2−5 0.1062610
0.1 2−5 2−6 0.1090910
0.1 2−5 2−7 0.1118110
0.1 2−6 2−6 0.0716435
0.1 2−6 2−7 0.0732865
0.1 2−7 2−7 0.0667013
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