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Abstract. Using a generalized spherical mean operator, we obtain a generalization of Titch-
marsh’s theorem for the Dunkl transform for functions satisfying the (φ, p)-Dunkl Lipschitz
condition in the space Lp(Rd, wl(x)dx), 1 < p ⩽ 2, where wl is a weight function invariant
under the action of an associated reflection group.
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1. Introduction and Preliminaries

In [11], E.C.Titchmarsh’s characterizes the set of functions in L2(R) satisfying
the Cauchy-Lipschitz condition by means of an asymptotic estimate growth of the
norm of their Fourier transform, namely we have:

Theorem 1.1 [11] Let f ∈ L2(R). Then the following are equivalents:
(i) ∥f(x+ h)− f(x)∥2 = O (hη), as h → 0, 0 < η < 1,

(ii)

∫
|λ|⩾s

|f̂(λ)|2dλ = O
(
s−2η

)
, as s → ∞,

where f̂ stands for the Fourier transform of f .

In this paper, we obtain a generalization of theorem 1.1 for the Dunkl transform
on Rd in the space Lp(Rd, wl(x)dx), 1 < p ⩽ 2. For this purpose, we use a
generalized spherical mean operator.
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We consider the Dunkl operators Dj , 1 ⩽ j ⩽ d, on Rd which are the
differential-difference operators introduced by Dunkl in [4]. These operators
are very important in pure mathematics and in physics. The theory of Dunkl
operators provides generalizations of various multivariable analytic structures,
among others we cite the exponential function, the Fourier transform and the
translation operator. For more details about these operators see ([3]-[5]). The
Dunkl Kernel El has been introduced by Dunkl in [6]. This Kernel is used to
define the Dunkl transform.
Let R be a root system in Rd, W the corresponding reflection group, R+ a positive
subsystem of R ( see [3],[5],[7]-[10]) and l a non-negative and W-invariant function
defined on R. The Dunkl operator is defined for f ∈ C1(Rd) by

Djf(x) =
∂f

∂xj
(x) +

∑
α∈R+

l(α)αj
f(x)− f(σα(x))

< α, x >
, x ∈ Rd(1 ⩽ j ⩽ d).

Here <,> is the usual Euclidean scalar product on Rd with the associated norm
|.| and σα the reflection with respect to the hyperplane Hα orthogonal to α, and
αj =< α, ej >, (e1, e2, ..., ed) being the canonical basis of Rd.
We consider the weight function

wl(x) =
∏

ζ∈R+

| < ζ, x > |2l(α), x ∈ Rd,

where wl is W-invariant and homogeneous of degree 2γ where

γ = γ(R) =
∑
ζ∈R+

l(ζ) ⩾ 0.

The Dunkl kernel El on Rd × Rd has been introduced by C.F.Dunkl in [6]. For
y ∈ Rd, the function x 7→ El(x, y) is the unique solution on Rd of the following
initial problem {

Dju(x, y) = yju(x, y), if 1 ⩽ j ⩽ d,
u(0, y) = 0, for all y ∈ Rd,

El is called the Dunkl kernel.

Lemma 1.2 [3] Let z, w ∈ Cd and λ ∈ C
1. El(z, 0) = 1, El(z, w) = El(w, z), El(λz,w) = El(z, λw).
2. For all ν = (ν1, ..., νd) ∈ Nd,x ∈ Rd,z ∈ Cd, we have

|∂ν
zEl(x; z)| ⩽ |x||ν|exp(|x||Rez|),

where

∂ν
z =

∂|ν|

∂ν1
z1 ....∂

ν2
zd
, |ν| = ν1 + ....+ νd.

In particular |∂ν
zEl(ix; z)| ⩽ |x||ν| for all x, z ∈ Rd.
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We denote by Lp
l (R

d) = Lp(Rd, wl(x)dx), 1 < p ⩽ 2, the space of measurable

functions on Rd with the norm

∥f∥p,l =
(∫

Rd

|f(x)|pwl(x)dx

) 1

p

< ∞,

and ∆l the Dunkl Laplacian defined by

∆l =
d∑

i=1

D2
j .

The Dunkl transform is defined for f ∈ L1
l (Rd) = L1(Rd, wl(x)dx) by

F(f)(ξ) = f̂(ξ) = c−1
l

∫
Rd

f(x)El(−iξ, x)wl(x)dx,

where the constant cl is given by

cl =

∫
Rd

e−
|z|2

2 wl(z)dz.

The Dunkl transform shares several properties with its counterpart in the classical
case, we mention here in particular that Plancherel’s theorem holds in L2

l (Rd),

when both f and f̂ are in L1
l (Rd), we have the inversion formula

f(x) =

∫
Rd

f̂(ξ)El(ix, ξ)wl(ξ)dξ, x ∈ Rd.

By Plancherel’s theorem and the Marcinkiewicz interpolation theorem (see [12]),
we get for f ∈ Lp

l (R
d) with 1 < p ⩽ 2 and q such that 1

p + 1
q = 1,

∥F(f)∥q,l ⩽ K∥f∥p,l, (1)

where K is a positive constant.
The generalized spherical mean value of f ∈ Lp

l (R
d) is defined by

Mhf(x) =
1

dl

∫
Sd−1

τxf(hy)dηl(y), x ∈ Rd, h > 0,

where τx Dunkl translation operator (see [10],[13]), η be the normalized surface
measure on the unit sphere Sd−1 in Rd and set dηl(y) = wl(y)dη(y) ηl is a W-
invariant measure on Sd−1 and dl = ηl(Sd−1).
We see that Mhf ∈ Lp

l (R
d) whenever f ∈ Lp

l (R
d) and

∥Mhf∥p,l ⩽ ∥f∥p,l,

for all h > 0.
For β ⩾ −1

2 , we introduce the Bessel normalized function of the first kind jβ defined
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by

jβ(z) = Γ(β + 1)

∞∑
n=0

(−1)n(z/2)2n

n!Γ(n+ β + 1)
, z ∈ C.

Lemma 1.3 (Analog of lemma 2.9 in [2]) The following inequality is true

|1− jβ(x)| ⩾ c,

with |x| ⩾ 1, where c > 0 is a certain constant which depend only on β.

Lemma 1.4 [8] Let f ∈ Lp
l (R

d). Then

M̂hf(ξ) = jγ+ d

2
−1(h|ξ|)f̂(ξ).

The first and higher order finite differences of f(x) are defined as follows

Zhf(x) = (Mh − I)f(x),

where I is the identity operator Lp
l (R

d).

Zk
hf(x) = Zh(Z

k−1
h f(x)) = (Mh − I)kf(x) =

k∑
i=0

(−1)k−i(ki )M
i
hf(x),

where M0
hf(x) = f(x), M i

hf(x) = Mh(M
i−1
h f(x)), i = 1, 2, .. and k = 1, 2, ...

Let W k
p,l, 1 < p ⩽ 2, be the Sobolev space constructed by the operator ∆l, i.e.,

W k
p,l = {f ∈ Lp

l (R
d) : ∆r

l f ∈ Lp
l (R

d); r = 1, 2, ..., k},

where ∆0
l f = f , ∆r

l f = ∆l(∆
r−1
l f).

In view ([3] or [5]) we can write

D̂jf(y) = iyj f̂(y), j = 1, ..., d; y ∈ Rd. (2)

From formula (2) and lemma 1.4, we obtain

Ẑk
h∆

r
l f(ξ) = |ξ|2r(jγ+ d

2
−1(h|ξ|)− 1)kf̂(ξ).

By (1) we get for f ∈ W k
p,l,∫

Rd

|ξ|2qr|1− jγ+ d

2
−1(h|ξ|)|

qk|f̂(ξ)|qwl(ξ)dξ ⩽ Kq∥Zk
h∆

r
l f(x)∥

q
p,l, (3)

where 1
p + 1

q = 1.

2. Main Result

In this section we give the main results of this paper. We need first to define
(φ, p)-Dunkl Lipschitz class.
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Definition 2.1 A function f ∈ W k
p,l is said to be in the (φ, p)-Dunkl Lipschitz

class, denoted by Lip(φ, p), if

∥Zk
h∆

r
l f(x)∥p,l = O (φ(h)) , as h → 0, γ ⩾ 0,

where
i) φ(t) a continuous increasing function on [0,∞),
ii) φ(0) = 0,
iii) φ(ts) = φ(t)φ(s) for all t, s ∈ [0,∞).

Theorem 2.2 Let f ∈ W k
p,l. If f(x) belong to Lip(φ, p), then

∫
|ξ|⩾s

|ξ|2qr|f̂(ξ)|qwl(ξ)dξ = O
(
φ(s−q)

)
, s → ∞,

where 1
p + 1

q = 1.

Proof Suppose that f ∈ Lip(φ, p). Then

∥Zk
h∆

r
l f(x)∥p,l = O (φ(h)) , h → 0.

From (3), we have

∥Zk
h∆

r
l f(x)∥

q
p,l =

∫
Rd

|ξ|2qr|1− jγ+ d

2
−1(h|ξ|)|

qk|f̂(ξ)|qwl(ξ)dξ.

If |ξ| ∈ [ 1h ,
2
h ] then h|ξ| ⩾ 1 and lemma 1.3 implies that

1 ⩽ 1

cqk
|1− jγ+ d

2
−1(h|ξ|)|

qk.

Then

∫
1

h
⩽|ξ|⩽ 2

h

|ξ|2qr|f̂(ξ)|qwl(ξ)dξ ⩽ 1

c2k

∫
1

h
⩽|ξ|⩽ 2

h

|ξ|2qr|1− jγ+ d

2
−1(h|ξ|)|

qk|f̂(ξ)|qwl(ξ)dξ

⩽ 1

c2k

∫
Rd

|ξ|2qr|1− jγ+ d

2
−1(h|ξ|)|

qk|f̂(ξ)|qwl(ξ)dξ

= O ((φ(h))q)

= O (φ(hq)) .

We obtain

∫
s⩽|ξ|⩽2s

|ξ|2qr|f̂(ξ)|qwl(ξ)dξ ⩽ C ′φ(s−q),
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where C ′ is a positive constant. Now,

∫
|ξ|⩾s

|ξ|2qr|f̂(ξ)|qwl(ξ)dξ =

∞∑
i=0

∫ 2i+1s

2is
|ξ|2qr|f̂(ξ)|qwl(ξ)dξ

⩽ C ′ (φ(s−q) + φ((2s)−q) + φ((4s)−q) + · · ·
)

⩽ C ′φ(s−q)
(
1 + φ(2−q) + φ((2−q)2) + φ((2−2)3) + · · ·

)
⩽ C ′φ(s−q)

(
1 + φ(2−q) + φ2(2−q) + φ3(2−q) + · · ·

)
⩽ Kφφ(s

−q),

where Kφ = C ′(1− φ(2−q))−1 since φ(2−q) < 1.
Consequently∫

|ξ|⩾s
|ξ|2qr|f̂(ξ)|qwl(ξ)dξ = O

(
φ(s−q)

)
, as s → ∞.

■

Corollary 2.3 Let f ∈ W k
p,l and let

∥Zk
h∆

r
l f(x)∥p,l = O (φ(h)) , as h → 0.

Then ∫
|ξ|⩾s

|f̂(ξ)|qwl(ξ)dξ = O
(
s−2qrφ(s−q)

)
, as s → ∞,

where 1
p + 1

q = 1.

3. Conclusions

In this work we have succeeded to generalize the theorem 1.1 for the Dunkl trans-
form in the space Lp(Rd, wl(x)dx). We proved that f(x) belong to Lip(φ, p) Then∫

|ξ|⩾s
|f̂(ξ)|qwl(ξ)dξ = O

(
s−2qrφ(s−q)

)
, as s → ∞,

where 1
p + 1

q = 1.
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[13] K. Trimèche, Paley-Wiener theorems for the Dunkl transform and Dunkl transform operators. Inte-

gral Transf. Spec. Funct, 13 (2002) 17-38.


