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1. Introduction

The uncertainty principle is a cornerstone in quantum phsysics. However, its prin-
ciples play an equally monumental role in harmonic analysis. To put it in one
sentence: A nonzero function and its Fourier transform cannot both be sharply
localized. While Heisenberg gave a clear physical interpretation of the uncertainty
principal in 1927 in [8]. As description of this, one has Hardy’s theorem [7], Mor-
gan’s theorem[9]. These theorems have been generalized to many other situations
(see, for example, [1, 2, 5]). In this paper we establish an analogous of Lp-Lq-version
of Morgan’s theorem for the generalized Fourier transform FΛ associated with as-
sociated with a Dunkl type operator Λ introduit and study in [3]. We prove that
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for 1 ⩽ p, q ⩽ ∞, a > 0, b > 0, γ > 2 and η = γ
γ−1 , then for all measurable

function f on R, the conditions

ea|x|
γ

f ∈ Lp
Q(R)

and

eb|λ|
ηFΛ(f)(λ) ∈ Lq

Q(R)

imply f = 0 if

(aγ)
1

γ (bη)
1

η >
(
sin

(π
2
(η − 1)

)) 1

η

.

The structure of the paper is as follows: In section 2 we set some notations and
collect some basic results about the first singular differential-difference operator Λ
and the generalized Fourier transform associated with Λ. In section 3 we state and
prove an Lp-Lq-version of Morgan’s theorem for the generalized Fourier transform
associated with Λ.

2. The Harmonic Analysis Associated with Λ

In this section we provide some facts about harmonic analysis related to Λ on the
real line. We cite here, as briefly as possible, some properties. For more details we
refer to [3]. Throughout this paper we assume that α > −1

2 and let

•

Q(x) = exp

(
−
∫ x

0
q(t)dt

)
, x ∈ R (1)

• Lp
α(R) the class of measurable functions f on R for which ∥f∥p,α < ∞, where

∥f∥p,α =

(∫
R
|f(x)|p|x|2α+1dx

) 1

p

, if p < ∞,

and ∥f∥∞,α = ∥f∥∞ = esssupx∈R|f(x)|.
• L1

Q(R) the class of measurable functions f on R for which ∥f∥p,Q = ∥Qf∥p,α <

∞, where Q is given by (1)

• M the map defined by Mf(x) = Q(x)f(x) is an isometry from Lp
Q onto Lp

α

We consider the first singular differential-difference operator Λ defined on R

Λf(x) = f ′(x) + (α+
1

2
)
f(x)− f(−x)

x
+ q(x)f(x) (2)

where q is a C∞ real-valued odd function on R. For q = 0 we regain the Dunkl
operator Λα associated with reflection group Z2 on R given by

Λαf(x) = f ′(x) + (α+
1

2
)
f(x)− f(−x)

x
.
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2.1 Generalized Fourier Transform

The following statements are proved in [3]

(1) For each λ ∈ C, the differential-difference equation

Λu = iλu, u(0) = 1

admits a unique C∞ solution on R, denoted by Ψλ, given by

Ψλ(x) = Q(x)eα(iλx), (3)

where eα denotes the one-dimensional Dunkl kernel defined by

eα(z) = jα(iz) +
z

2(α+ 1)
jα+1(z) (z ∈ C),

and jα being the normalized spherical Bessel function of index α given by

jα(z) = Γ(α+ 1)
∞∑
n=0

(−1)n( z2)
2n

n! Γ(n+ α+ 1)
(z ∈ C). (4)

(2) For all x ∈ R, λ ∈ C and n = 0, 1, ... we have

| ∂n

∂λn
Ψλ(x) |⩽ Q(x)|x|ne|Im λ||x|. (5)

In particular

| Ψλ(x) |⩽ Q(x)e|Im λ||x|. (6)

(3) For all x ∈ R, λ ∈ C, we have the Laplace type integral representation

Ψλ(x) = aαQ(x)

∫ 1

−1
(1− t2)α−

1

2 (1 + t)eiλxtdt, (7)

where aα = 2Γ(α+1)√
πΓ(α+ 1

2
)
.

The generalized Fourier transform associated with Λ for a function in L1
Q(R) is

defined by

FΛ(f)(λ) =

∫
R
f(x)Ψ−λ(x)x

2α+1dx. (8)

(1) Let f ∈ L1
Q(R) such that FΛ(f) ∈ L1

α. Then for allmost x ∈ R we have the
inversion formula

f(x) (Q(x))2 = mα

∫
R
FΛ(f)(λ)Ψλ(x)|λ|2α+1dλ,

where

mα =
1

22(α+1)(Γ(α+ 1))2
.
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(2) For every f ∈ L2
Q(R), we have the Plancherel formula∫

R
|f(x)|2 (Q(x))2 |x|2α+1dx = mα

∫
R
|FΛ(f)(λ)|2|λ|2α+1dλ.

(3) The generalized Fourier transform FΛ extends uniquely to an isometric
isomorphism from L2

Q(R) onto L2
α(R).

3. An Lp-Lq-Version of Morgan’s Theorem for FΛ

We start by getting the following lemma of Phragmen-Lindlöf type using the same
technique as in [4, 6]. We need this lemma to prove the main result of this paper.
Suppose that ρ ∈]1, 2[, q ∈ [1,∞], σ > 0 and B > σ sin

(
π
2 (ρ− 1)

)
. If g is an

entire function on C verifiying:

|g(x+ iy)| ⩽ C.eσ|y|
ρ

(9)

and

eB|x|ρg|R ∈ Lq
Q(R) (10)

for all x, y ∈ R then g = 0.
Let 1 ⩽ p, q ⩽ ∞, a > 0, b > 0, γ > 2 and η = γ

γ−1 , then for all measurable
function f on R, the conditions

ea|x|
γ

f ∈ Lp
Q(R) (11)

and

eb|λ|
ηFΛ(f)(λ) ∈ Lq

Q(R) (12)

imply f = 0 if

(aγ)
1

γ (bη)
1

η >
(
sin

(π
2
(η − 1)

)) 1

η

. (13)

Proof The function

FΛ(f)(λ) =

∫
R
f(x)Ψ−λ(x)x

2α+1dx.

is well defined, entirely on C and from (8) and (6), we have

|FΛ(f)(λ)| = |
∫
R
f(x)Ψ−λ(x)x

2α+1dx|,

⩽
∫
R
|f(x)|Q(x)e|x||ζ|x2α+1dx,

=

∫
R
|Mf(x)|e|x||ζ|x2α+1dx, ∀λ = ξ + iζ ∈ C
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Applying Hölder inequality and using (15), we get

|FΛ(f)(λ)| ⩽ |
(∫

R

(
Mf(x)|ea|x|γ

)p
x2α+1dx

) 1

p
(∫

R

(
|e−a|x|γe|x||ζ|

)p′

x2α+1dx

) 1

p′

,

⩽ C

(∫
R

(
|e−a|x|γe|x||ζ|

)p′

x2α+1dx

) 1

p′

.

where p′ is the conjugate exponent of p.

Let C ∈ I =](bη)
−1

η sin
(
π
2 (η − 1)

) 1

η , (aγ)
1

γ [.
Applying the convex inequality

|ty| ⩽ (
1

γ
)|t|γ + (

1

η
)|y|η

to the positive numbers C|x| and |ζ|
C , we obtain

|x||ζ| ⩽ (
Cγ

γ
)|x|γ + (

1

ηCη
)|ζ|η

and the following relation holds∫
R
e−ap′|x|γep

′|x||ζ|x2α+1dx ⩽ e
p′|ζ|η

ηCη

∫
R
e−p′(a−Cγ

γ
)|x|γx2α+1dx.

Since C ∈ I, then a > Cγ

γ , and thus the integral

∫
R
e−p′(a−Cγ

γ
)|x|γx2α+1dx

is finite. Moreover

|FΛ(f)(λ)| ⩽ Const.e
p′|ζ|η

ηCη , forallλ ∈ C. (14)

By virtue of relations (15), (16), (14) and Lemma 3, we obtain that Fα,nf = 0.
Then f = 0 by Theorem 2.1. ■

4. Conclusion

In this paper, using a generalized Fourier transform associated with a Dunkl type
operator, we obtained an Lp-Lq-version of Morgan’s. We proved that if 1 ⩽ p, q ⩽
∞, a > 0, b > 0, γ > 2 and η = γ

γ−1 , then for all measurable function f on R,
the conditions

ea|x|
γ

f ∈ Lp
Q(R) (15)

and

eb|λ|
ηFΛ(f)(λ) ∈ Lq

Q(R) (16)
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imply f = 0 if

(aγ)
1

γ (bη)
1

η >
(
sin

(π
2
(η − 1)

)) 1

η

. (17)

The demonstration of this result is based on the lemma of Phragmen-Lindlöf type.
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