International Journal of Mathematical Modelling & Computations Vol. 6, No. 4, Fall 2016, 277- 284

Common Fixed-Point Theorems For Generalized Fuzzy Contraction Mapping

N. Abbasi^{a,*} and H. Mottaghi Golshan^b and M. Shakori^a

^a Department of Mathematics, Lorestan University, P. O. Box 465, Khoramabad, Iran

^b Department of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian, Iran.

Abstract In this paper we investigate common fixed point theorems for contraction mapping in fuzzy metric space introduced by Gregori and Sapena [V. Gregori, A. Sapena, On fixedpoint theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245-252].

Received: 3 May 2016, Revised: 17 August 2016, Accepted: 24 October 2016.

Keywords: Fuzzy metric spaces, Generalized contraction mapping, Common fixed point.

Index to information contained in this paper

- 1 Introduction and Preliminaries
- 2 Main Results
- 3 Conclusions

1. Introduction and Preliminaries

George and Veeramani [3] modified the concept of fuzzy metric space, introduced by Kramosil and Michalek and obtained several classical theorems on this new structure. Actually, this topology is first countable and metrizable [6]. Also the theory of fuzzy metric space is, in this context, very diferent from the classical theory of metric completion and metric best approximation, e.g. see [5, 6] and [1], respectively. Fixed point theory has important applications in diverse disciplines of mathematics, statistics, engineering and economics in dealing with problems arising in: approximation theory, potential theory, game theory, mathematical economics, etc. Several authors [4, 7–9, 11, 13] have proved fixed point theorems for contractions in fuzzy metric spaces, using one of the two different types of completeness: in the sense of Grabiec [4], or in the sense of Schweizer and Sklar [3, 12]. Gregori and Sapena [7, 13] introduced a new class of fuzzy contraction mappings and proved several fixed point theorems in fuzzy metric spaces. Gregori and Sapena's results

^{*}Corresponding author. Email: naserabbasi_persia@yahoo.com.

extend classical Banach fixed point theorem and can be considered as a fuzzy version of Banach contraction theorem. In this paper, following the results of Gregori and Sapena we give a new common fixed point theorem in the two different types of completeness and by using the recent definition of contractive mapping of Gregori and Sapena [7] in fuzzy metric spaces.

Recall [12] that a continuous t-norm is a binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ such that $([0, 1], \leq, *)$ is an ordered Abelian topological monoid with unit 1. The two important t-norms, the minimum and the usual product, will be denoted by min and \cdot , respectively.

DEFINITION 1.1 ([3]) A fuzzy metric space is an ordered triple (X, M, *) such that X is a non empty set, * is a continuous t-norm and M is a fuzzy set of $X \times X \times (0, \infty)$ satisfying the following conditions, for all $x, y, z \in X, s, t > 0$:

 $\begin{array}{ll} (FM1) & M(x,y,t) > 0; \\ (FM2) & M(x,y,t) = 1 \ if \ and \ only \ if \ x = y; \\ (FM3) & M(x,y,t) = M(y,x,t); \\ (FM4) & M(x,z,t+s) \geqslant M(x,y,t) * M(y,z,s); \\ (FM5) & M(x,y,.) : (0,\infty) \to [0,1] \ is \ continuous. \end{array}$

If, in the above definition, the triangular inequality (FM4) is replaced by

(NAF) $M(x, y, \max\{t, s\}) \ge M(x, z, t) * M(y, z, s)$ $\forall x, y, z \in X, \forall t, s > 0,$

then the triple (X, M, *) is called a non-Archimedean fuzzy metric space. It is easy to check that the triangular inequality (NAF) implies (FM4), that is, every non-Archimedean fuzzy metric space is itself a fuzzy metric space.

Example 1.2 (George and Veeramani[3]) Let (X, d) be a (non-Archimedean) metric space. Let M_d be the fuzzy set defined on $X \times X \times (0, +\infty)$ by

$$M_d(x, y, t) = \frac{t}{t + d(x, y)}$$

Then (X, M_d, \min) is a (non-Archimedean) fuzzy metric space and called standard (non-Archimedean) fuzzy metric space.

Remark 1 ([3]) In fuzzy metric space (X, M, *), M(x, y, .) is non decreasing for all $x, y \in X$.

DEFINITION 1.3 ([4]) A sequence x_n in X is said to be convergent to a point x in X (denoted by $x_n \to x$), if $M(x_n, x, t) \to 1$, for all t > 0.

DEFINITION 1.4 Let (X, M, *) be a fuzzy metric space.

- (a) A sequence $\{x_n\}$ is called G-Cauchy if $\lim_{n\to\infty} M(x_{n+p}, x_n, t) = 1$ for each t > 0and $p \in \mathbb{N}$. The fuzzy metric space (X, M, *) is called G-complete if every G-Cauchy sequence is convergent [7].
- (b) A sequence $\{x_n\}$ in a fuzzy metric space (X, M, *) is a Cauchy sequence if for each $\epsilon \in (0, 1)$ and each t > 0 there exists $n_0 \in \mathbb{N}$ such that $M(x_n, x_m, t) > 1-\epsilon$, for all $n, m \ge n_0$. The fuzzy metric space (X, M, *) is called complete if every Cauchy sequence is convergent [3].

Proposition 1.5 ([7])

- (a) The sequence $\{x_n\}$ in the metric space X is contractive in (X,d) iff $\{x_n\}$ is fuzzy contractive in the induced fuzzy metric space $(X, M_d, *)$.
- (b) The standard fuzzy metric space (X, M_d, \min) is complete iff the metric space (X, d) is complete.

(c) If sequence $\{x_n\}$ is fuzzy contractive in (X, M, *) then it is G-Cauchy.

Remark 2 ([10]) Let (X, M, *) be a fuzzy metric space then M is a continuous function on $X \times X \times (0, \infty)$.

2. Main Results

In this section, we extend common fixed point theorem of generalized contraction mapping in fuzzy metric spaces. Our work is closely related to [2, 7]. Gregori and Sepena introduced notions of fuzzy contraction mapping and fuzzy contraction sequence as follows:

DEFINITION 2.1 ([7]) Let (X, M, *) be a fuzzy metric space.

(a) We call the mapping $T: X \to X$ is fuzzy contractive mapping, if there exists $\lambda \in (0, 1)$ such that

$$\frac{1}{M(Tx,Ty,t)} - 1 \le \lambda \left(\frac{1}{M(x,y,t)} - 1\right),$$

for each $x, y \in X$ and t > 0.

(b) A sequence $\{x_n\}$ is called fuzzy contractive if there exists $\lambda \in (0,1)$ such that

$$\frac{1}{M(x_n, x_{n+1}, t)} - 1 \le \lambda \left(\frac{1}{M(x_{n-1}, x_n, t)} - 1 \right),$$

for every $t > 0, n \in \mathbb{N}$.

For a family of generalized contraction mapping the following generalize Theorem 4.4 of [7].

PROPOSITION 2.2 ([7]) If sequence $\{x_n\}$ is fuzzy contractive in (X, M, *) then it is G-Cauchy.

THEOREM 2.3 Let (X, M, *) be a G-complete fuzzy metric space endowed with minimum t-norm and $\{T_{\alpha}\}_{\alpha \in J}$ be a family of self mappings of X. If there exists a fixed $\beta \in J$ such that for each $\alpha \in J$

$$\frac{1}{M(T_{\alpha}x, T_{\beta}y, t)} - 1 \leq \alpha_1 \left(\frac{1}{M(x, y, t)} - 1\right) + \alpha_2 \left(\frac{1}{M(x, T_{\alpha}x, t)} - 1\right) \\
+ \alpha_3 \left(\frac{1}{M(y, T_{\beta}y, t)} - 1\right) + \alpha_4 \left(\frac{1}{M(y, T_{\alpha}x, 2t)} - 1\right) \\
+ \alpha_5 \left(\frac{1}{M(x, T_{\beta}y, t)} - 1\right),$$
(1)

for each $x, y \in X, t > 0$ and for some $0 \leq \alpha_5$ and $0 \leq \alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 < 1$. Then all T_{α} have a unique common fixed point and if $0 \leq \alpha_5 < 1, 0 \leq \alpha_2 + \alpha_5 < 1$ then at this point each T_{α} is continuous.

Proof Let $\alpha \in J$ and $x \in X$ be arbitrary. Consider a sequence, defined inductively

by $x_0 = x$ and $x_{2n+1} = T_{\alpha}x_{2n}, x_{2n+2} = T_{\beta}x_{2n+1}$ for all $n \ge 0$. From (1) we get

$$\frac{1}{M(x_{2n+1}, x_{2n+2}, t)} - 1 = \frac{1}{M(T_{\alpha}x_{2n}, T_{\beta}x_{2n+1}, t)} - 1$$

$$\leq \alpha_1 \left(\frac{1}{M(x_{2n}, x_{2n+1}, t)} - 1\right) + \alpha_2 \left(\frac{1}{M(x_{2n}, x_{2n+1}, t)} - 1\right)$$

$$\alpha_3 \left(\frac{1}{M(x_{2n+1}, x_{2n+2}, t)} - 1\right) + \alpha_4 \left(\frac{1}{M(x_{2n}, x_{2n+2}, 2t)} - 1\right)$$

$$+ \alpha_5 \left(\frac{1}{M(x_{2n+1}, x_{2n+1}, t)} - 1\right).$$
(2)

Since

$$\frac{1}{M(x_{2n}, x_{2n+2}, 2t)} - 1 \leq \frac{1}{\min\{M(x_{2n}, x_{2n+1}, t), M(x_{2n+1}, x_{2n+2}, t)\}} - 1$$

$$= \max\left\{\frac{1}{M(x_{2n}, x_{2n+1}, t)} - 1, \frac{1}{M(x_{2n+1}, x_{2n+2}, t)} - 1\right\}$$

$$\leq \left(\frac{1}{M(x_{2n}, x_{2n+1}, t)} - 1\right)$$

$$+ \left(\frac{1}{M(x_{2n+1}, x_{2n+2}, t)} - 1\right),$$
(3)

combine equations (2) and (3), we get

$$(1 - \alpha_3 - \alpha_4) \left(\frac{1}{M(x_{2n+1}, x_{2n+2}, t)} - 1\right) \le (\alpha_1 + \alpha_2 + \alpha_4) \left(\frac{1}{M(x_{2n}, x_{2n+1}, t)} - 1\right).$$

Hence,

$$\frac{1}{M(x_{2n+1}, x_{2n+2}, t)} - 1 \le \lambda \left(\frac{1}{M(x_{2n}, x_{2n+1}, t)} - 1\right),$$

where, by the asumtion, $\lambda = \frac{\alpha_1 + \alpha_2 + \alpha_4}{1 - \alpha_3 - \alpha_4}$ belongs to (0, 1). Similarly, we get that

$$\frac{1}{M(x_{2n}, x_{2n+1}, t)} - 1 \le \lambda \left(\frac{1}{M(x_{2n-1}, x_{2n}, t)} - 1 \right).$$

So $\{x_n\}$ is fuzzy contractive, thus, by Proposition 2.2 is G-Cauchy. Since X is G-complete, $\{x_n\}$ converges to u for some $u \in X$. From (1) we have

$$\begin{aligned} \frac{1}{M(T_{\beta}u, x_{2n+1}, t)} &- 1 = \frac{1}{M(T_{\beta}u, T_{\alpha}x_{2n}, t)} - 1 \\ &\leq \alpha_1 \left(\frac{1}{M(u, x_{2n}, t)} - 1\right) + \alpha_2 \left(\frac{1}{M(u, T_{\beta}u, t)} - 1\right) \\ &+ \alpha_3 \left(\frac{1}{M(x_{2n}, x_{2n+1}, t)} - 1\right) + \alpha_4 \left(\frac{1}{M(u, x_{2n+1}, 2t)} - 1\right) \\ &+ \alpha_5 \left(\frac{1}{M(x_{2n}, T_{\beta}u, 2t)} - 1\right). \end{aligned}$$

280

Taking the limit as infinity we obtain

$$\frac{1}{M(T_{\beta}u, u, t)} - 1 \le \alpha_2 \left(\frac{1}{M(u, T_{\beta}u, t)} - 1\right).$$

Thus M(u, Tu, t) = 1, hence, $T_{\beta}u = u$. Now we show that u is a fixed point of all $\{T_{\alpha} \in J\}$. Let $\alpha \in J$. From (1) and Remark 1, we have

$$\begin{aligned} \frac{1}{M(u,T_{\alpha}u,t)} - 1 &= \frac{1}{M(T_{\beta}u,T_{\alpha}u,t)} - 1 \\ &\leq \alpha_2 \left(\frac{1}{M(u,T_{\alpha}u,t)} - 1\right) + \alpha_4 \left(\frac{1}{M(u,T_{\alpha}u,2t)} - 1\right) \\ &\leq (\alpha_2 + \alpha_4) \left(\frac{1}{M(u,T_{\alpha}u,t)} - 1\right). \end{aligned}$$

Hence $T_{\alpha}u = u$, since α is arbitrary all $\{T_{\alpha}\}_{\alpha \in J}$ have a common point.

Suppose that v is also a fixed point of T_{β} . Similar to above, v is a common fixed point of all $\{T_{\alpha}\}_{\alpha \in J}$. Form (1) we get

$$\frac{1}{M(v, u, t)} - 1 = \frac{1}{M(T_{\beta}v, T_{\alpha}u, t)} - 1 \le \alpha_2 \left(\frac{1}{M(u, T_{\alpha}u, t)} - 1\right).$$

Thus u is a unique common fixed point of all $\{T_{\alpha}\}_{\alpha \in J}$. It remains to show each T_{α} is continuous at u. Let $\{y_n\}$ be a sequence in X such that $y_n \to u$ as $n \to \infty$. From (1) we have

$$\frac{1}{M(T_{\alpha}y_n, T_{\alpha}u, t)} - 1 = \frac{1}{M(T_{\alpha}y_n, T_{\beta}u, t)} - 1$$

$$\leq \alpha_1 \left(\frac{1}{M(y_n, u, t)} - 1\right) + \alpha_2 \left(\frac{1}{M(y_n, T_{\alpha}y_n, t)} - 1\right)$$

$$+ \alpha_4 \left(\frac{1}{M(y_n, u, 2t)} - 1\right) + \alpha_5 \left(\frac{1}{M(u, T_{\alpha}y_n, t)} - 1\right)$$
(4)

and similar to (3) we have

$$\frac{1}{M(y_n, T_\alpha y_n, t)} - 1 \le \max\left\{ \left(\frac{1}{M(y_n, u, t/2)} - 1\right), \left(\frac{1}{M(T_\alpha y_n, u, t/2)} - 1\right) \right\}.$$
 (5)

Combine (4) and (5) we deduce

$$\frac{1}{M(T_{\alpha}y_{n}, T_{\alpha}u, t)} - 1 \leq \frac{\alpha_{1}}{1 - \alpha_{5}} \left(\frac{1}{M(y_{n}, u, t)} - 1\right) \\
+ \frac{\alpha_{4}}{1 - \alpha_{5}} \left(\frac{1}{M(y_{n}, u, 2t)} - 1\right) \\
+ \frac{\alpha_{2}}{1 - \alpha_{5}} \max\left\{ \left(\frac{1}{M(y_{n}, u, t/2)} - 1\right), \left(\frac{1}{M(T_{\alpha}y_{n}, u, t/2)} - 1\right) \right\}, \quad (6)$$

for all $t > 0, n \in \mathbb{N}$. So by (6) and Remark 1 we have

$$\liminf_{n \to +\infty} M(T_{\alpha}y_n, T_{\alpha}u, t) \ge \frac{1 - \alpha_5}{\alpha_2} \limsup_{n \to +\infty} M(T_{\alpha}y_n, T_{\alpha}u, t/2)$$
$$\ge \frac{1 - \alpha_5}{\alpha_2} \limsup_{n \to +\infty} M(T_{\alpha}y_n, T_{\alpha}u, t), \tag{7}$$

for all t > 0. Thus

$$\lim_{n \to +\infty} M(T_{\alpha}y_n, T_{\alpha}u, t) = \lim_{n \to +\infty} M(T_{\alpha}y_n, T_{\alpha}u, t/2) = L,$$
(8)

exists, for all t > 0, and then L equals 1, since in opposite case, applying (6)-(8), one can easily concluded that $\alpha_2 + \alpha_5 \ge 1$, contrary to assumption. Thus T_{α} is continuous at a fixed point.

• The mapping in the preceding theorem is called generalized contraction mapping (see [2]). Note that every fuzzy contractive mapping satisfies condition (1).

THEOREM 2.4 Let (X, M, *) be a complete non-Archimedean fuzzy metric space endowed with minimum t-norm and $\{T_{\alpha}\}_{\alpha \in J}$ be a family of self mappings of X. If there exists a fixed $\beta \in J$ such that for each $\alpha \in J$

$$\frac{1}{M(T_{\alpha}x, T_{\beta}y, t)} - 1 \le \alpha_1 \left(\frac{1}{M(x, y, t)} - 1\right) + \alpha_2 \left(\frac{1}{M(x, T_{\alpha}x, t)} - 1\right)$$
$$+ \alpha_3 \left(\frac{1}{M(y, T_{\beta}y, t)} - 1\right) + \alpha_4 \left(\frac{1}{M(x, T_{\beta}y, t)} - 1\right)$$
$$+ \alpha_5 \left(\frac{1}{M(y, T_{\alpha}x, t)} - 1\right),$$

for each $x, y \in X, t > 0$ and for some $0 < \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 < 1$. Then all T_{α} have a unique common fixed point and at this point each T_{α} is continuous.

Proof The proof is very similar to Theorem 2.3. In stead of the equation (3) we have

$$\frac{1}{M(x_{n-1}, x_{n+1}, t)} - 1 \le \frac{1}{\min\{M(x_{n-1}, x_n, t), M(x_n, x_{n+1}, t)\}} - 1$$
$$= \max\left\{\frac{1}{M(x_{n-1}, x_n, t)} - 1, \frac{1}{M(x_n, x_{n+1}, t)} - 1\right\}.$$

Proceed as the proof of the Theorem 2.3 then we conclude sequence $\{x_n\}$ is fuzzy contractive, thus by [7, Proposition 2.4] and [8, Lemma 2.5], $\{x_n\}$ converges to u for some $u \in X$. Proceed as the proof of the Theorem 2.3.

The following provide a converse to Theorem 2.3.

THEOREM 2.5 Let (X, M, *) be a G-complete fuzzy metric space endowed with minimum t-norm. The following property is equivalent to G-completeness of X:

If Y is any non empty closed subset of X and $T: Y \to Y$ is any generalized contraction mapping then T has a fixed point in Y.

Proof The sufficient condition follows from Theorem 2.3. Suppose now that the property holds, but (X, M, *) is not complete. Then there exists a Chuchy sequence

 $\{x_n\}$ in X which does not converge. We may assume that $M(x_n, x_m, t) < 1$ for all $m \neq n$ and for some t > 0. For any $x \in X$ define

$$r(x) = \inf \left\{ \frac{1}{M(x_n, x, t)} - 1; x_n \neq x, n = 0, 1, \dots \right\}.$$

Clearly for all $x \in X$ we have r(x) > 0, as $\{x_n\}$ has not a convergent subsequence. Let $\alpha_1 = \alpha_2 = \alpha_3 = 2\alpha_4 = \alpha_5 = 1/8$. We choose a subsequence $\{x_{i_n}\}$ of $\{x_n\}$ as follows. We define inductively a subsequence of positive integer greater than i_{n-1} and such that $\frac{1}{M(x_i, x_k, t)} - 1 \leq \alpha_1 r(x_{i_{n-1}})$ for all $i, k \geq i_n, n \geq 1$. This can done, as $\{x_n\}$ is a Chuchy sequence.

Now define $Tx_{i_n} = x_{i_{n+1}}$ for all n. Then for any $n > m \ge 0$ we have

$$\begin{split} \frac{1}{M(Tx_{i_n},Tx_{i_m},t)} &-1 = \frac{1}{M(x_{i_{n+1}},x_{i_{m+1}},t)} - 1\\ &\leq \alpha_1 r(x_{i_m}) \leq \alpha_1 \left(\frac{1}{M(x_{i_n},x_{i_m},t)} - 1\right)\\ &\leq \alpha_1 \left(\frac{1}{M(x_{i_n},x_{i_m},t)} - 1\right) + \alpha_2 \left(\frac{1}{M(x_{i_n},x_{i_{n+1}},t)} - 1\right),\\ &+ \alpha_3 \left(\frac{1}{M(x_{i_m},x_{i_{m+1}},t)} - 1\right) + \alpha_4 \left(\frac{1}{M(x_{i_n},x_{i_{m+1}},2t)} - 1\right)\\ &+ \alpha_5 \left(\frac{1}{M(x_{i_m},x_{i_{m+1}},t)} - 1\right)\\ &= \alpha_1 \left(\frac{1}{M(x_{i_m},x_{i_m},t)} - 1\right) + \alpha_2 \left(\frac{1}{M(x_{i_n},Tx_{i_n},t)} - 1\right)\\ &+ \alpha_3 \left(\frac{1}{M(x_{i_m},Tx_{i_m},t)} - 1\right) + \alpha_4 \left(\frac{1}{M(x_{i_n},Tx_{i_m},2t)} - 1\right)\\ &+ \alpha_5 \left(\frac{1}{M(x_{i_m},Tx_{i_m},t)} - 1\right) + \alpha_4 \left(\frac{1}{M(x_{i_m},Tx_{i_m},2t)} - 1\right). \end{split}$$

Thus T is a general contraction mapping on $Y = \{x_{i_n}\}$. Clearly, Y is closed and T has not a fixed point in Y. Thus we get a contradiction.

3. Conclusions

In this paper, a theorem on the existence of a common fixed point is proved which characterizes G-completeness of fuzzy metric spaces.

References

- N. Abbasi and H. Mottaghi Golshan, On best approximation in fuzzy metric spaces, *Kybernetica* (*Prague*), **51 (2)** (2015) 374–386.
- [2] L. B. Cirić, On a family of contractive maps and fixed points, Publ. Inst. Math (Beograd) (N.S), 17 (31) (1974) 45-51.
- [3] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (3) (1994) 395–399.
- [4] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (3) (1988) 385–389.
- [5] V. Gregori and S. Romaguera, On completion of fuzzy metric spaces, *Fuzzy Sets and Systems*, Theme: Fuzzy intervals, **130** (3) (2002) 399–404.

- [6] V. Gregori and S. Romaguera, Characterizing completable fuzzy metric spaces, Fuzzy Sets and [7] V. Gregori and S. Romagacia, "Characterizing completable fuzzy metric spaces," *I azzy Sets and Systems*, **144 (3)** (2004) 411–420.
 [7] V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, *Fuzzy Sets and Systems*,
- **125 (2)** (2002) 245–252.
- [8] D. Mihet, Fuzzy ψ -contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, **159** (6) (2008) 739–744.
- [9] E. Pap, O. Hadžić and R. Mesiar, A fixed point theorem in probabilistic metric spaces and an application, J. Math. Anal. Appl, 202 (2) (1996) 433-449.
- [10] J. Rodríguez-López and S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147 (2) (2004) 273–283.
- [11] S. Romaguera, A. Sapena and P. Tirado. The Banach fixed point theorem in fuzzy quasi-metric [11] S. Romagaera, R. Sapona and P. Finado. The Banden inter point difference in Rule, quart responses with application to the domain of words, *Topology Appl*, **154** (10) (2007) 2196–2203.
 [12] B. Schweizer and A. Sklar, Statistical metric spaces, *Pacific J. Math.*, **10** (1960) 313–334.
- [13] R. M. Tardiff, Contraction maps on probabilistic metric spaces, J. Math. Anal. Appl, 165 (2) (1992) 517-523.