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On the Finite Groupoid G(n)
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Abstract. In this paper we study the existence of commuting regular elements, verifying
the notion left (right) commuting regular elements and its properties in the groupoid G(n) .
Also we show that G(n) contains commuting regular subsemigroup and give a necessary and
sufficient condition for the groupoid G(n) to be commuting regular.
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1. Introduction

We use S and G to denote a semigroup and a groupoid, respectively. An element x of a
semigroup S is called regular if there exists y in S such that, x = xyx [3]. Two elements
x and y of a semigroup S are commuting regular if for some z ∈ S, xy = yxzyx [2]. A
semigroup S is called commuting regular if and only if for each x, y ∈ S there exists an
element z of S such that xy = yxzyx [1]. In [2] Pourfaraj showed that the existence of
commuting regular elements for the loop ring Zt[Ln(m)] when t is an even perfect number
or t is the form of 2ip or 3ip, where p is an odd prime or in general, when t = pi1p2 ( p1
and p2 are distinct odd primes ). Define a binary operation * on G = Zn∪{e} as follows,

1) a ∗ a = a for all a ∈ G.
2) a ∗ e = e ∗ a = a for all a ∈ G.
3) a ∗ b = ta + ub (modn) , where t, u ∈ Zn are fix elements and a, b ∈ G (a ̸= b),

Zn = {0, 1, 2, ..., n− 1}, n ⩾ 3 and e ̸∈ Zn.

The properties of these groupoids denote by G(n) has been studied in [5].
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2. Commuting Regular Elements

Definition 2.1 Two elements a and b of a groupoid G are called left commuting regular
if for some c1 ∈ G, ab = ((ba)c1)(ba). Similarly, they are called right commuting regular
if for some c2 ∈ G, ab = (ba)(c2(ba)). Finally, two elements x and y are commuting
regular if they are both left and right commuting regular. [see 4]

Definition 2.2 A groupoid G is called left commuting regular groupoid if for each
a, b ∈ G there exists c1 ∈ G such that , ab = ((ba)c1)(ba). Similarly, right commuting
regular groupoid is defined. A groupoid G is called commuting regular groupoid if G is
both a left and right commuting regular groupoid.[see 4]

Example 2.3 The groupoid G(3) where t = 1 and u = 2 is given by the following table

∗ e 0 1 2
e e 0 1 2
0 0 e 2 1
1 1 1 e 2
2 2 2 1 e

We have:

(2 ∗ 1) ∗ (0 ∗ (2 ∗ 1)) = 1 ∗ (0 ∗ 1) = 1 ∗ 2.

So,1 and 2 are right commuting regular. On the other hand,

1 ∗ 2 ̸= ((2 ∗ 1) ∗ 0) ∗ (2 ∗ 1)

1 ∗ 2 ̸= ((2 ∗ 1) ∗ 1) ∗ (2 ∗ 1)

1 ∗ 2 ̸= ((2 ∗ 1) ∗ 2) ∗ (2 ∗ 1)

1 ∗ 2 ̸= ((2 ∗ 1) ∗ e) ∗ (2 ∗ 1).

Thus, 1 and 2 aren’t left commuting regular. 2 and 2 are commuting regular,

2 ∗ 2 = (2 ∗ 2) ∗ e ∗ (2 ∗ 2).

Proposition 2.4 Let the G(n) be a groupoid, where n = tu−1. Suppose that a, b ∈ G(n)
and pair of elements {b ∗ a, c1, (b ∗ a) ∗ c1} and {b ∗ a, c2, (b ∗ a) ∗ c2} are distinct. Then
a and b are commuting regular elements, where b ≡ au (mod n), c1 ≡ −bt3 − b (mod n)
and c2 ≡ −au3 − a (mod n).
Proof We consider two follows case:
Case1) If a ∗ b = b ∗ a then:

a ∗ b = (b ∗ a) ∗ (a ∗ b) ∗ (b ∗ a)

Case2) If a ∗ b ̸= b ∗ a then:
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((b ∗ a) ∗ c1) ∗ (b ∗ a) =
= ((bt+ au) ∗ c1) ∗ (bt+ au)
= ((bt+ au)t+ c1u) ∗ (bt+ au)
= bt3 + aut2 + c1tu+ btu+ au2

= bt3 + at+ bt3 − b+ b+ bu (since tu ≡ 1 (mod n) and b ≡ au (modn))
= at+ bu
= a ∗ b

Similarly,

a ∗ b = (b ∗ a) ∗ (c2 ∗ (b ∗ a)).

Proposition 2.5 Let the G(n) be a groupoid, where n ≡ tu+1 . Suppose that a, b ∈ G(n)
and pair of elements in {b∗a, c1, (b∗a)∗c1} and {b∗a, c2, (b∗a)∗c2} are distinct. Then a
and b are commuting regular elements, where, b ≡ au (mod n), c1 ≡ −2at+bt3−b (mod n)
and c2 ≡ −2at− 2bu+ au3 − a (mod n).
Example 2.6 Let G(20) where t = 3 and u = 7, then a = 11 and b = 17 are commuting
regular elements:

((17 ∗ 11) ∗ 4) ∗ (17 ∗ 11) = (17 ∗ 11) ∗ (16 ∗ (17 ∗ 11)) = 11 ∗ 17.

Note that 17 ≡ 11× 7 (mod 20).
Proposition 2.7 Let G(n) be a groupoid, where t ≡ −u (mod n), then a, b ∈ G(n) are
commuting regular elements, where at ≡ bt (mod n).
Proof Since at ≡ bt (mod n) and t ≡ −u (mod n) :

−au ≡ −bu (mod n).

So in G(n),

a ∗ b = at+ bu = bt+ au = b ∗ a.

And therefore:

a ∗ b = (b ∗ a) ∗ (a ∗ b) ∗ (b ∗ a).

So a and b are commuting regular.
Proposition 2.8 Let G(n) be a groupoid, where n = (t − u)k, k ∈ Z, if for some
a, b ∈ G(n), a− b ≡ k (mod n), then a and b are commuting regular elements.

Proof We have a− b =
n

t− u
(mod n) , so

(a− b)(t− u) ≡ 0 (mod n)

Therefore, in G(n):

at− au− bt+ bu = 0

at+ bu = bt+ au
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a ∗ b = b ∗ a

So:

a ∗ b = (b ∗ a) ∗ (a ∗ b) ∗ (b ∗ a)

Proposition 2.9 Let G(n) be a groupoid, then a, b ∈ G(n) are commuting regular
elements where at ≡ au (mod n) and bt ≡ bu (mod n).
Proof We have a ∗ b = at+ bu = bt+ au = b ∗ a So

a ∗ b = (b ∗ a) ∗ (a ∗ b) ∗ (b ∗ a)

Thus a and b are commuting regular elements.
Proposition 2.10 Let G(n) be a groupoid, where t + u = n. Suppose that a ∈ G(n)
and k ∈ Z. Then a and ka are commuting regular elements, where au ≡ −au (mod n).
Proof Since t ≡ −u (mod n) , for all a ∈ G(n) we have at ≡ −au (mod n) and by
au ≡ −au (mod n), at ≡ au (mod n) . So kat ≡ kau (mod n) . Now by the proposition
2.9, a and ka are commuting regular elements.

3. Commuting Regular Groupoids

Proposition 3.1 The groupoid G(n) for all a ∈ G(n) contains the commuting regular
subgroupoid {e, a}.
Proof The subgroupoid {e, a} given by the following table,

∗ e a
e e a
a a e

e ∗ a = (a ∗ e) ∗ a ∗ (a ∗ e)
a ∗ a = (a ∗ a) ∗ e ∗ (a ∗ a)
e ∗ e = (e ∗ e) ∗ e ∗ (e ∗ e)

Proposition 3.2 Let G(n) be a groupoid, where n = 2u, u2 ≡ u (mod n) and t = 1.
Then for every a in G(n), {e, a, a+ u} is a commuting regular groupoid.
Proof Let b = a+ u. If, we have:

x ∗ x = e , x ∗ e = e ∗ x = x

Also,

au =

{
0 a is even (mod n),
u a is odd (mod n),

a ∗ b = b ∗ a ≡ a+ u+ au ≡
{
b if a is even (mod n)
a if a is odd (mod n)
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So {e, a, b} is groupoid.
For all x, y ∈ {e, a, b} we have x ∗ y = y ∗ x. So

x ∗ y = (y ∗ x) ∗ (x ∗ y) ∗ (y ∗ x)

Thus {e, a, b} is a commuting regular groupoid.
Example 3.3 Let G(n) be a groupoid, where n = 6 , u = 3 and t = 1 is given by the
following table,

∗ e 0 1 2 3 4 5
e e 0 1 2 3 4 5
0 0 e 3 0 3 0 3
1 1 1 e 1 4 1 4
2 2 2 5 e 5 2 5
3 3 3 0 3 e 3 0
4 4 4 1 4 1 e 1
5 2 5 2 5 2 5 e

{e, 0, 3}, {e, 1, 4} and {e, 2, 5} are commuting regular groupoids.
Proposition 3.4 Let G(n) be a groupoid, where t = 0 , n = 2u and u is an odd element.
Therefore groupoid G(n) contains commuting regular and commutative groupoids G1 =
{e, 1, 3, ..., n − 1} and G(2) = {e, 0, 2, ..., n − 2}. In particular, if u2 ≡ u (mod n), then
G1 and G2 are commuting regular and commutative semigroup.
Proof For all a, b ∈ G1 − {e}, if a ̸= b we have a ∗ b = b ∗ a = u. So, we have:

a ∗ b = (b ∗ a) ∗ (a ∗ b) ∗ (b ∗ a)

In particular, if u2 = u (mod n) for all a, b, c ∈ G1 we have:

(a ∗ b) ∗ c = bu ∗ c = cu

a ∗ (b ∗ c) = a ∗ cu = cu2

Therefore G1 is a semigroup. The proof for G2 is the same as above.
Corollary 3.5 Let G(n) be a groupoid, where u = 0, n = 2t and t is odd element.
Then groupoid G(n) contains commuting regular and commutative groupoids G1 =
{e, 1, 3, ..., n− 1} and G(2) = {e, 0, 2, ..., n− 2}. In particular, if t2 ≡ t (mod n) then G1

and G2 are commuting regular and commutative semigroup.
Proposition 3.6 Let G(n) be a groupoid, where t = 0, n = 3u and u = 3k + 1
for some k ∈ Z. Then groupoid G(n) contains commuting regular and commutative
groupoids G1 = {e, 2, 5, ..., n − 1}, G(2) = {e, 1, 4, ..., n − 2} and G3 = {e, 0, 3, ..., n −
3}. Inparticular, if u2 ≡ u (mod n), then G1, G2 and G3 are commuting regular and
commutative semigroups.
Theorem 3.7 Let G(n) be a groupoid, where t = 0, n = mu and u = mk+ 1, for some
m, k ∈ Z. Then groupoid G(n) contains commuting regular and commutative groupoids.
Inparticular, if u2 ≡ u (mod n) then G(n) contains commuting regular and commutative
semigroups.
Example 3.8 Let G(n) be a groupoid, where t = 0, u = 5 and n = 10 is given in the
following table,
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∗ e 0 1 2 3 4 5 6 7 8 9
e e 0 1 2 3 4 5 6 7 8 9
0 0 e 5 0 5 0 5 0 5 0 5
1 1 0 e 0 5 0 5 0 5 0 5
2 2 0 5 e 5 0 5 0 5 0 5
3 3 0 5 0 e 0 5 0 5 0 5
4 4 0 5 0 5 e 5 0 5 0 5
5 5 0 5 0 5 0 e 0 5 0 5
6 6 0 5 0 5 0 5 e 5 0 5
7 7 0 5 0 5 0 5 0 e 0 5
8 8 0 5 0 5 0 5 0 5 e 5
9 9 0 5 0 5 0 5 0 5 0 e

Clearly, the semigroups {e, 0, 2, 4, 6, 8}, {e, 1, 3, 5, 7, 9} are comuting regular and com-
mutative.
Theorem 3.9 Let G(n) be a groupoid, where t = u . If t2 ≡ t (mod n) then G(n) is a
commuting regular and commutative semigroup.
Proof Let a, b ∈ G(n)− {e},
1) If a ̸= b, then a and b are commuting regular elements [4, Theorem 3.8].
2) If a = b then a ∗ b = b ∗ a = e, so a ∗ b = (b ∗ a) ∗ e ∗ (b ∗ a),
3) If b = e then a ∗ e = e ∗ a = a, so a ∗ e = (e ∗ a) ∗ a ∗ (e ∗ a).
On the other hand,

a ∗ (b ∗ c) = a ∗ (bt+ ct) = at+ bt2 + ct2

(a ∗ b) ∗ c = (at+ bt) ∗ c = at2 + bt2 + ct.

So, the groupoid G(n) is a semigroup.
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