
Journal of
Linear and Topological Algebra
Vol. 03, No. 03, 2014, 131- 147

Tripled coincidence point under ϕ-contractions
in ordered Gb-metric spaces

R. Jalal Shahkoohia∗, S. A. Kazemipoura and A. Rajabi Eyvalia

aDepartment of Mathematics and Statistics, Aliabad Katoul Branch,
Islamic Azad University, Aliabad Katoul, Iran.

Received 27 July 2014; Revised 25 November 2014; Accepted 16 December 2014.

Abstract. In this paper, tripled coincidence points of mappings satisfying ψ-contractive
conditions in the framework of partially ordered Gb-metric spaces are obtained. Our results
extend the results of Aydi et al. [H. Aydi, E. Karapınar and W. Shatanawi, Tripled fixed
point results in generalized metric space, J. Applied Math., Volume 2012, Article ID 314279,
10 pages]. Moreover, some examples of the main result are given.
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1. Introduction and Preliminaries

Berinde and Borcut [7] introduced the concept of tripled fixed point and obtained some
tripled fixed point theorems for contractive type mappings in partially ordered metric
spaces. For a survey of tripled fixed point theorems and related topics we refer the reader
to [7, 8, 9, 17, 24, 25].

Definition 1.1 [7] An element (x, y, z) ∈ X3 is called a tripled fixed point of F : X3 →
X if F (x, y, z) = x, F (y, x, y) = y, and F (z, y, x) = z.

Definition 1.2 [8] An element (x, y, z) ∈ X3 is called a tripled coincidence point of
the mappings F : X3 → X and g : X → X if F (x, y, z) = g(x), F (y, x, y) = gy and
F (z, y, x) = gz.
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Definition 1.3 [8] An element (x, y, z) ∈ X3 is called a tripled common fixed point
of F : X3 → X and g : X → X if x = g(x) = F (x, y, z), y = g(y) = F (y, x, y) and
z = g(z) = F (z, y, x).

Definition 1.4 [17] Let X be a non-empty set. We say that the mappings F : X3 → X
and g : X → X are commutative if g (F (x, y, z)) = F (gx, gy, gz), for all x, y, z ∈ X.

Definition 1.5 ([7, 8]) Let (X ,⪯) be a partially ordered set, F : X 3 → X and g : X →
X .

We say that F has the mixed g-monotone property if F (x, y, z) is g-nondecreasing in
x, g-nonincreasing in y and g-nondecreasing in z, that is if, for any x, y, z ∈ X ,

x1, x2 ∈ X , gx1 ⪯ gx2 ⇒ F (x1, y, z) ⪯ F (x2, y, z),

y1, y2 ∈ X , gy1 ⪯ gy2 ⇒ F (x, y1, z) ⪰ F (x, y2, z)

and

z1, z2 ∈ X , gz1 ⪯ gz2 ⇒ F (x, y, z1) ⪯ F (x, y, z2).

The concept of a generalized metric space, or a G-metric space, was introduced by
Mustafa and Sims [20].
Czerwik in [12] introduced the concept of a b-metric space. Since then, several papers
dealt with fixed point theory for single-valued and multi-valued operators in b-metric
spaces.(for instance, see([10]) Cone metric spaces were introduced in ([14]). A similar
notion was also considered by Rzepecki in ([29]). After carefully defining convergence
and completeness in cone metric spaces, the authors proved some fixed point theorems
of contractive mappings. (for instance, see( [13], [18], [27], [23], [31], [33]).

Definition 1.6 ([12]) Let X be a (nonempty) set and s ⩾ 1 be a given real number. A
function d : X ×X → R+ is a b-metric if, for all x, y, z ∈ X, the following conditions are
satisfied:

(b1) d(x, y) = 0 iff x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, z) ⩽ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

It should be noted that the class of b-metric spaces is effectively larger than that of
metric spaces, since a b-metric is a metric if (and only if) s = 1. We present an easy
example to show that in general a b-metric need not be a metric.

Example 1.7 Let (X, ρ) be a metric space, and d(x, y) = (ρ(x, y))p, where p ⩾ 1 is a
real number. Then d is a b-metric with s = 2p−1.

Definition 1.8 ( [20]) Let X be a nonempty set and let G : X3 → R+ be a function
satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z;
(G2) 0 < G(x, x, y), for all x, y ∈ X with x ̸= y;
(G3) G(x, x, y) ⩽ G(x, y, z), for all x, y, z ∈ X with y ̸= z;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all three variables);
(G5) G(x, y, z) ⩽ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X (rectangle inequality).
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Then, the function G is called a G-metric on X and the pair (X,G) is called a G-metric
space.

Theorem 1.9 ([4]) Let (X,⪯) be a partially ordered set and (X,G) be a G-metric
space such that (X,G) is G-complete. Let F : X3 → X be a continuous mapping
having the mixed monotone property on X. Assume there exists ϕ ∈ Φ such that for all
x, y, z, u, v, w, r, s, t ∈ X, with x ⪯ u ⪯ r, y ⪰ v ⪰ s and z ⪯ w ⪯ t, we have,

G(F (x, y, z), F (u, v, w), F (r, s, t)) ⩽ ϕ(max{G(x, u, r), G(y, v, s), G(z, w, t)}).

Suppose there exist x0, y0, z0 ∈ X such that x0 ⪯ F (x0, y0, z0), y0 ⪰ F (y0, x0, y0) and
z0 ⪯ F (z0, y0, x0), then F has a tripled fixe point in X, i.e., there exist x, y, z ∈ X such
that F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = gz.

Also, they proved that the above theorem is still valid for F not necessarily continuous,
assuming the following hypothesis (see, Theorem 2.4 of [5]).

I. If {xn} is a nondecreasing sequence with xn → x, then xn ⪯ x, for all n ∈ N.
II. If {yn} is a nonincreasing sequence with yn → y, then yn ⪰ y, for all n ∈ N.
A partially ordered G-metric space (X,G) with the above properties is called regular.
In this paper, we obtain some tripled coincidence point theorems for nonlinear ϕ-

contractive mappings in partially ordered Gb-metric spaces. This results generalize and
modify several comparable results in the literature. First, we recall the concept of gen-
eralized b-metric spaces, or Gb-metric spaces.

Definition 1.10 [3] LetX be a nonempty set and s ⩾ 1 be a given real number. Suppose
that a mapping G : X3 → R+ satisfies:

(Gb1) G(x, y, z) = 0 if x = y = z,
(Gb2) 0 < G(x, x, y) for all x, y ∈ X with x ̸= y,
(Gb3) G(x, x, y) ⩽ G(x, y, z) for all x, y, z ∈ X with y ̸= z,
(Gb4) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z (symmetry),
(Gb5) G(x, y, z) ⩽ s[G(x, a, a) +G(a, y, z)] for all x, y, z, a ∈ X (rectangle inequality).

Then, G is called a generalized b-metric and the pair (X,G) is called a generalized
b-metric space or a Gb-metric space.

Obviously, each G-metric space is a Gb-metric space with s = 1. But, the following
example shows that a Gb-metric on X need not to be a G-metric on X.

Example 1.11 [3] Let (X,G) be a G-metric space and G∗(x, y, z) = G(x, y, z)p, where
p > 1 is a real number.

Note that G∗ is a Gb-metric with s = 2p−1.
Also, in the above example, (X,G∗) is not necessarily a G-metric space. For example,

let X = R and G-metric G be defined by

G(x, y, z) =
1

3
(|x− y|+ |y − z|+ |x− z|),

for all x, y, z ∈ R (see [20]). Then G∗(x, y, z) = G(x, y, z)2 =
1

9
(|x− y|+|y − z|+|x− z|)2

is a Gb−metric on R with s = 22−1 = 2, but it is not a G−metric. To see this, let

x = 3, y = 5, z = 7 and a =
7

2
. Hence, we get, G∗(3, 5, 7) =

64

9
, G∗(3,

7

2
,
7

2
) =

1

9
and

G∗(
7

2
, 5, 7) =

49

9
, therefore, G∗(3, 5, 7) =

64

9
≰

50

9
= G∗(3,

7

2
,
7

2
) +G∗(

7

2
, 5, 7).
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Example 1.12 [3] Let X = R and d(x, y) = |x− y|2 .We know that (X, d) is a b−metric
space with s = 2. LetG(x, y, z) = d(x, y)+d(y, z)+d(z, x), then (X,G) is not aGb−metric
space.

However, G(x, y, z) = max{d(x, y), d(y, z), d(z, x)} is a Gb−metric on R with s = 2.
Similarly, if d(x, y) = |x− y|p is selected with p ⩾ 1, then

G(x, y, z) = max{d(x, y), d(y, z), d(z, x)}

is a Gb−metric on R with s = 2p−1.

Now we present some definitions and propositions in a Gb−metric space.

Definition 1.13 [3] A Gb-metric G is said to be symmetric if G(x, y, y) = G(y, x, x),
for all x, y ∈ X.

Definition 1.14 [3] Let (X,G) be a Gb−metric space. Then for x0 ∈ X and r > 0, the
Gb-ball with center x0 and radius r is

BG(x0, r) = {y ∈ X | G(x0, y, y) < r}.

Proposition 1.15 [3] Let X be a Gb−metric space. Then for each x, y, z, a ∈ X it
follows that:

(1) if G(x, y, z) = 0 then x = y = z,
(2) G(x, y, z) ⩽ s(G(x, x, y) +G(x, x, z)),
(3) G(x, y, y) ⩽ 2sG(y, x, x),
(4) G(x, y, z) ⩽ s(G(x, a, z) +G(a, y, z)).

Definition 1.16 [3] Let X be a Gb−metric space. We define dG(x, y) = G(x, y, y) +
G(x, x, y), for all x, y ∈ X. It is easy to see that dG defines a b−metric d on X, which we
call it the b−metric associated with G.

Proposition 1.17 [3] Let X be a Gb−metric space. Then for any x0 ∈ X and r > 0, if
y ∈ BG(x0, r), then there exists a δ > 0 such that BG(y, δ) ⊆ BG(x0, r).

From the above proposition the family of all Gb−balls

𝟋 = {BG(x, r) | x ∈ X, r > 0}

is a base of a topology τ(G) on X, which we call it the Gb−metric topology.

Proposition 1.18 [3] Let X be a Gb−metric space. Then for any x0 ∈ X and r > 0,
we have,

BG(x0,
r

2s+ 1
) ⊆ BdG

(x0, r) ⊆ BG(x0, r).

Thus every Gb−metric space is topologically equivalent to a b−metric space.

Definition 1.19 [3] Let X be a Gb−metric space. A sequence {xn} in X is said to be:

(1) Gb−Cauchy, if for each ε > 0, there exists a positive integer n0 such that for all
m,n, l ⩾ n0, G(xn, xm, xl) < ε;

(2) Gb−convergent to a point x ∈ X, if for each ε > 0, there exists a positive integer
n0 such that, for all m,n ⩾ n0, G(xn, xm, x) < ε.

Proposition 1.20 [3] Let X be a Gb−metric space. Then the following are equivalent:
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(1) the sequence {xn} is Gb-Cauchy.
(2) for any ε > 0, there exists n0 ∈ N such that G(xn, xm, xm) < ε, for all m,n ⩾ n0.

Proposition 1.21 [3] Let X be a Gb−metric space. The following are equivalent:
(1) {xn} is Gb-convergent to x.
(2) G(xn, xn, x) → 0, as n→ +∞.
(3) G(xn, x, x) → 0, as n→ +∞.

Definition 1.22 [3] A Gb−metric space X is called complete if every Gb-Cauchy se-
quence is Gb-convergent in X.

Definition 1.23 [21] Let (X,G) and (X ′, G′) be two Gb-metric spaces. Then a function
f : X → X ′ is Gb−continuous at a point x ∈ X if and only if it is Gb-sequentially
continuous at x, that is, whenever {xn} is Gb-convergent to x, {f(xn)} is G′

b-convergent
to f(x).

Mustafa and Sims proved that each G−metric function G(x, y, z) is jointly continuous
in all three of its variables (see proposition 8 in [20]). But in general, a Gb−metric
function G(x, y, z) for s > 1 is not jointly continuous in all its variables. Now, we present
an example of a discontinuous Gb−metric.

Example 1.24 Let X = N ∪ {∞} and let D : X2 → R be defined by,

D(m,n) =


0, if m = n,∣∣ 1

m − 1
n

∣∣ , if m,n are even or mn = ∞,
5, if m and n are odd and m ̸= n,
2, otherwise.

Then it is easy to see that for all m,n, p ∈ X, we have

D(m, p) ⩽ 3(D(m,n) +D(n, p)).

Thus, (X,D) is a b−metric space with s = 3 (see example 3 in [15]).
Let G(x, y, z) = max{D(x, y), D(y, z), D(z, x)}. It is easy to see that G is a Gb−metric

with s = 3. Now, we show that G(x, y, z) is not a continuous function. Take xn = 2n, yn =
zn = 1, then we have, xn → ∞, yn → 1 and zn → 1. Also,

G(2n,∞,∞) =max{D(2n,∞), D(∞,∞), D(∞, 2n)}

= max{D(2n,∞), D(∞,∞)} =
1

2n
→ 0,

and

G(yn, 1, 1) = G(zn, 1, 1) = 0 → 0.

On the other hand,

G(xn, yn, zn) = max{D(xn, 1), D(1, 1), D(1, xn)} = D(xn, 1) = 2,
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and

G(∞, 1, 1) = max{D(∞, 1), D(1, 1), D(1,∞)} = 1.

Hence, lim
n→∞

G(xn, yn, zn) ̸= G(x, y, z).

So, from the above discussion we need the following simple lemma about the Gb-
convergent sequences in the proof of our main result.

Lemma 1.25 [3] Let (X,G) be a Gb−metric space with s > 1, and Suppose that {xn},
{yn} and {zn} are Gb-convergent to x, y and z, respectively. Then we have,

1

s3
G(x, y, z) ⩽ lim inf

n−→∞
G(xn, yn, zn) ⩽ lim sup

n−→∞
G(xn, yn, zn) ⩽ s3G(x, y, z).

2. Main results

A mapping ϕ : [0,∞) → [0,∞) is called a comparison function if it is increasing and
ϕn(t) → 0, as n→ ∞ for any t ∈ [0,∞).

let Φ be the set of all comparison functions ϕ, that is,

Φ = {ϕ : [0,∞) → [0,∞) : ϕ is a comparison function}.

The following lemma is an essential result.

Lemma 2.1 ([19]) If ϕ : [0,∞) → [0,∞) is a comparison function, then:

(1) each iterate ϕk of ϕ, k ⩾ 1, is also a comparison function;
(2) ϕ is continuous at 0;
(3) ϕ(t) < t, for any t > 0.

In [4], Aydi et al. established some tripled coincidence point results for mappings
F : X3 → X and g : X → X involving nonlinear contractions in the setting of ordered
G-metric spaces.

Definition 2.2 ([3])Let X be a nonempty set.Then (X,G,⪯) is called partially ordered
Gb-metric space if G is a Gb-metric on partially ordered set (X,⪯).

Theorem 2.3 Let (X,⪯, G) be a partially ordered Gb-metric space with s ⩾ 1and
F : X3 → Xand g : X → X be such that F (X3) ⊆ g(X). Assume

sG(F (x, y, z), F (u, v, w), F (r, s, t)) ⩽ ϕ(max{G(gx, gu, gr), G(gy, gv, gs), G(gz, gw, gt)})
(1)

for every x, y, z, u, v, w, r, s, t ∈ X with gx ⪯ gu ⪯ gr, gy ⪰ gv ⪰ gs and gz ⪯ gw ⪯ gt,
or, gr ⪯ gu ⪯ gx, gs ⪰ gv ⪰ gy and gt ⪯ gw ⪯ gz, where ϕ ∈ Φ.
Assume
(1) F has the mixed g-monotone property.
(2) g is Gb−continuous and commutes with F .
Also, suppose,
(a) Either F is Gb-continuous and (X,G) is Gb−complete, or,
(b) (X,G) is regular and (g(X), G) is Gb-complete.



R. Jalal Shahkoohi et al. / J. Linear. Topological. Algebra. 03(03) (2014) 131-147. 137

If there exists x0, y0, z0 ∈ X such that gx0 ⪯ F (x0, y0, z0), gy0 ⪰ F (y0, x0, y0) and
gz0 ⪯ F (z0, y0, x0), then F and g have a tripled coincidence point in X.

Proof. Let x0, y0, z0 ∈ X be such that gx0 ⪯ F (x0, y0, z0), gy0 ⪰ F (y0, x0, y0) and gz0 ⪯
F (z0, y0, x0). Define x1, y1, z1 ∈ X such that gx1 = F (x0, y0, z0), gy1 = F (y0, x0, y0)
and gz1 = F (z0, y0, x0). Then, gx0 ⪯ gx1, gy0 ⪰ gy1 and gz0 ⪯ gz1. Similarly, define
gx2 = F (x1, y1, z1), gy2 = F (y1, x1, y1) and gz2 = F (z1, y1, x1). Since F has the mixed
g-monotone property, we have gx0 ⪯ gx1 ⪯ gx2, gy0 ⪰ gy1 ⪰ gy2 and gz0 ⪯ gz1 ⪯ gz2.

In this way, we construct the sequences {an}, {bn} and {cn} as

an = gxn = F (xn−1, yn−1, zn−1),

bn = gyn = F (yn−1, xn−1, yn−1)

and

cn = gzn = F (zn−1, yn−1, xn−1),

for all n ⩾ 1.
We will finish the proof in two steps.
Step I. We will show that {an}, {bn} and {cn} are Gb-Cauchy.
Let

δn = max{G(an−1, an, an), G(bn−1, bn, bn), G(cn−1, cn, cn)}.

As gxn−1 ⪯ gxn, gyn−1 ⪰ gyn and gzn−1 ⪯ gzn, from (1),

G(an, an+1, an+1) ⩽ sG(an, an+1, an+1)
= sG(F (xn−1, yn−1, zn−1), F (xn, yn, zn), F (xn, yn, zn))
⩽ ϕ(max{G(gxn−1, gxn, gxn), G(gyn−1, gyn, gyn), G(gzn−1, gzn, gzn)})
= ϕ(max{G(an−1, an, an), G(bn−1, bn, bn), G(cn−1, cn, cn)}),

(2)

G(bn, bn+1, bn+1) ⩽ sG(bn, bn+1, bn+1)
= sG(F (yn−1, xn−1, yn−1), F (yn, xn, yn), F (yn, xn, yn))
⩽ ϕ(max{G(gyn−1, gyn, gyn), G(gxn−1, gxn, gxn)})
⩽ ϕ(max{G(gyn−1, gyn, gyn), G(gxn−1, gxn, gxn), G(gzn−1, gzn, gzn)})
= ϕ(max{G(an−1, an, an), G(bn−1, bn, bn), G(cn−1, cn, cn)})

(3)
and

G(cn, cn+1, cn+1) ⩽ sG(cn, cn+1, cn+1)
= sG(F (zn−1, yn−1, xn−1), F (zn, yn, xn), F (zn, yn, xn))
⩽ ϕ(max{G(gzn−1, gzn, gzn), G(gyn−1, gyn, gyn), G(gxn−1, gxn, gxn)})
= ϕ(max{G(an−1, an, an), G(bn−1, bn, bn), G(cn−1, cn, cn)}).

(4)
From the above inequalities, it follows that

max{G(an, an+1, an+1), G(bn, bn+1, bn+1), G(cn, cn+1, cn+1)}
⩽ ϕ(max{G(an−1, an, an), G(bn−1, bn, bn), G(cn−1, cn, cn)}).

(5)



138 R. Jalal Shahkoohi et al. / J. Linear. Topological. Algebra. 03(03) (2014) 131-147.

Repeating (5) n−times and using the fact that ϕ is non-decreasing, we get that

max{G(an, an+1, an+1), G(bn, bn+1, bn+1), G(cn, cn+1, cn+1)}
⩽ ϕ(max{G(an−1, an, an), G(bn−1), bn, bn), G(cn−1, cn, cn)})
⩽ ϕ2(max{G(an−2, an−1, an−1), G(bn−2, bn−1, bn−1), G(cn−2, cn−1, cn−1)})
· · ·
⩽ ϕn(max{G(a0, a1, a1), G(b0, b1, b1), G(c0, c1, c1)}).

(6)

from (5) we have δn+1 ⩽ ϕ(δn). Since ϕ(δn) < δn we have δn+1 < δn, that is, {δn} is a
non-increasing sequence of nonnegative real numbers. Thus, there is an r ⩾ 0 such that

lim
n→∞

δn = r.

Since limn→∞ ϕn(t) = 0 for all t > 0, we obtain from (6) that lim
n→∞

δn = 0.

Next, we claim that {an}, {bn} and {cn} are Gb-Cauchy.
We will show that for every ε > 0, there exists k ∈ N such that if m ⩾ n ⩾ k,

max{G(am, an, an), G(bm, bn, bn), G(cm, cn, cn)} < ε. (7)

Let ε > 0 be arbitrary. As lim
n→∞

δn = 0 and G(x, y, y) ⩽ 2sG(y, x, x) and 0 < ε−ϕ(ε) ⩽ ε

we conclude that

max{G(an+1, an, an), G(bn+1, bn, bn), G(cn+1, cn, cn)) <
ε− ϕ(ε)

s
⩽ ε. (8)

Therefore, 7 holds when m = n+ 1.
Now suppose that 7 holds for m = k. For m = k + 1, we have

G(ak+1, an, an) ⩽ s[G(ak+1, an+1, an+1) +G(an+1, an, an)]

< sG(F (xk, yk, zk), F (xn, yn, zn), F (xn, yn, zn)) + s. ε−ϕ(ε)
s

⩽ ϕ(max{G(ak, an, an), G(bk, bn, bn), G(ck, cn, cn))}) + s. ε−ϕ(ε)
s

⩽ ϕ(ε) + ε− ϕ(ε) = ε.

(9)

Consequently, {an} and similarly, {bn} and {cn} are Gb−Cauchy.
Step II. We will show that F and g have a tripled coincidence point.
First, let (a) holds, that is, F is Gb−continuous and (X,G) is Gb−complete.
Since X is Gb−complete and {an} is Gb−Cauchy, there exists a ∈ X such that,

lim
n→∞

G(an, an, a) = lim
n→∞

G(gxn, gxn, a) = 0. (10)

Similarly, there exist b, c ∈ X such that

lim
n→∞

G(bn, bn, b) = lim
n→∞

G(gyn, gyn, b) = 0 (11)

and

lim
n→∞

G(cn, cn, c) = lim
n→∞

G(gzn, gzn, c) = 0. (12)

Now, we prove that (a, b, c) is a tripled coincidence point of F and g.
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Gb−Continuity of g and Lemma 1.25 yields that,

0 =
1

s3
G(ga, ga, ga) ⩽ lim inf

n→∞
G(g(gxn), g(gxn), ga)

⩽ lim sup
n→∞

G(g(gxn), g(gxn), ga) ⩽ s3G(ga, ga, ga) = 0.

Hence,

lim
n→∞

G(g(gxn), g(gxn), ga) = 0 (13)

and similarly,

lim
n→∞

G(g(gyn), g(gyn), gb) = 0 (14)

and

lim
n→∞

G(g(gzn), g(gzn), gc) = 0. (15)

Since gxn+1 = F (xn, yn, zn), gyn+1 = F (yn, xn, yn) and gzn+1 = F (zn, yn, xn), the
commutativity of F and g yields that,

g(gxn+1) = g(F (xn, yn, zn)) = F (gxn, gyn, gzn), (16)

g(gyn+1) = g(F (yn, xn, yn)) = F (gyn, gxn, gyn), (17)

and

g(gzn+1) = g(F (zn, yn, xn)) = F (gzn, gyn, gxn). (18)

From the Gb−continuity of F and 16, 17 and 18 and Lemma 1.25, {g(gxn+1)} is
Gb−convergent to F (a, b, c), {g(gyn+1)} is Gb−convergent to F (b, a, b) and {g(gzn+1)}
is Gb−convergent to F (c, b, a). From 13, 14 and 15 and uniqueness of the limit, we have
F (a, b, c) = ga, F (b, a, b) = gb and F (c, b, a) = gc, that is, g and F have a tripled
coincidence point.

In what follows suppose that the assumption (b) holds. Following the proof of the
previous step, there exist u, v, w ∈ X such that

lim
n→∞

G(gxn, gxn, gu) = 0, (19)

lim
n→∞

G(gyn, gyn, gv) = 0 (20)

and

lim
n→∞

G(gzn, gzn, gw) = 0 (21)

as (g(X), G) is Gb-complete.
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Now, we prove that F (u, v, w) = gu, F (v, u, v) = gv and F (w, v, u) = gw.
Regularity of X yields that gxn ⪯ gu, gyn ⪰ gv and gzn ⪯ gw for all n ∈ N. If for

some n, gxn = gu, gyn = gv and gzn = gw, then

gu = gxn ⪯ gxn+1 ⪯ gu,

gv = gyn ⪰ gyn+1 ⪰ gv

and

gw = gzn ⪯ gzn+1 ⪯ gw

which implies that (xn, yn, zn) is a tripled coincidence point of F and g. Now, assume
that, for all n, (xn, yn, zn) ̸= (x, y, z). Thus, for each n,

max{G(x, x, xn), G(y, y, yn), G(z, z, zn)} > 0. (22)

From regularity of X and using 1, we have,

sG(F (xn, yn, zn), F (u, v, w), F (u, v, w))
⩽ ψ(max{G(gxn, gu, gu), G(gyn, gv, gv), G(gzn, gw, gw)}).

(23)

As {gxn} is Gb-convergent to gu, from Lemma 1.25, we have, lim
n→∞

G(gxn, gu, gu) = 0.

Analogously, lim
n→∞

G(gyn, gv, gv) = lim
n→∞

G(gzn, gw, gw) = 0.

Also, from 22 and 23, using the fact that ϕ(t) < t for all t > 0, we have

lim
n→∞

sG(F (xn, yn, zn), F (u, v, w), F (u, v, w)) = 0,

or, equivalently,

lim
n→∞

G(gxn+1, F (u, v, w), F (u, v, w)) = 0. (24)

Similarly,

lim
n→∞

G(gyn+1, F (v, u, v), F (v, u, v)) = lim
n→∞

G(gzn+1, F (w, v, u), F (w, v, u)) = 0. (25)

On the other hand,

G(gu, F (u, v, w), F (u, v, w) ⩽ sG(gu, gxn+1, gxn+1)
+sG(gxn+1, F (u, v, w), F (u, v, w)).

(26)

Taking limit when n→ ∞ and using 19 and 24, we get,

G(gu, F (u, v, w), F (u, v, w)) ⩽ lim
n→∞

sG(gu, gxn+1, gxn+1)

+ lim
n→∞

sG(gxn+1, F (u, v, w), F (u, v, w) = 0,
(27)

that is, gu = F (u, v, w).
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Analogously, we can show that gv = F (v, u, v) and gw = F (w, v, u).
Thus, we have proved that g and F have a tripled coincidence point. This completes

the proof of the theorem. ■

Remark 2.4 Taking s = 1 in the above theorem we obtain Theorem 2.1 of [5].

Corollary 2.5 Let (X,⪯) be a partially ordered set and (X,G) be a completeGb−metric
space with s ⩾ 1. Let F : X3 → X be a mapping with the mixed monotone property
such that,

(sG(F (x, y, z), F (u, v, w), F (r, s, t)
)
⩽ ϕ

(G(x, u, r) +G(y, v, s) +G(z, w, t)

3

)
(28)

for every x, y, z, u, v, w, r, s, t ∈ X with x ⪯ u ⪯ r, y ⪰ v ⪰ s and z ⪯ w ⪯ t, or,
r ⪯ u ⪯ x, s ⪰ v ⪰ y and t ⪯ w ⪯ z.

Also, suppose,
(a) Either F is Gb−continuous, or,
(b) (X,G) is regular.

If there exists x0, y0, z0 ∈ X such that x0 ⪯ F (x0, y0, z0), y0 ⪰ F (y0, x0, y0) and
z0 ⪯ F (z0, y0, x0), then F has a tripled fixed point in X.

Proof. If F satisfies (28), then by taking g(x) = IX , then F satisfies

sG(F (x, y, z), F (u, v, w), F (r, s, t)) ⩽ ϕ(max{G(gx, gu, gr), G(gy, gv, gs), G(gz, gw, gt)}).

So, the result follows from Theorem 2.3. ■

In Theorems 2.3, if we take ϕ(t) = kt for all t ∈ [0,∞), where k ∈ [0, 1), we obtain the
following result.

Corollary 2.6 Let (X,⪯) be a partially ordered set and (X,G) be a completeGb−metric
space with s ⩾ 1. Let F : X3 → X be a mapping having the mixed monotone property
and,

G(F (x, y, z), F (u, v, w), F (r, s, t)) ⩽ k

s
max{G(x, u, r), G(y, v, s), G(z, w, t)}, (29)

for every x, y, z, u, v, w, r, s, t ∈ X with x ⪯ u ⪯ r, y ⪰ v ⪰ s and z ⪯ w ⪯ t, or,
r ⪯ u ⪯ x, s ⪰ v ⪰ y and t ⪯ w ⪯ z. Also, suppose,
(a) Either F is Gb−continuous, or,
(b) (X,G) is regular.

If there exists x0, y0, z0 ∈ X such that x0 ⪯ F (x0, y0, z0), y0 ⪰ F (y0, x0, y0) and
z0 ⪯ F (z0, y0, x0), then F has a tripled fixed point in X.

Corollary 2.7 Let (X,⪯) be a partially ordered set and (X,G) be a completeGb−metric
space with s ⩾ 1. Let F : X3 → X be a mapping with the mixed monotone property
such that,

G(F (x, y, z), F (u, v, w), F (r, s, t)) ⩽ k

3s
(G(x, u, r) +G(y, v, s) +G(z, w, t)) (30)

for every x, y, z, u, v, w, r, s, t ∈ X with x ⪯ u ⪯ r, y ⪰ v ⪰ s and z ⪯ w ⪯ t, or,
r ⪯ u ⪯ x, s ⪰ v ⪰ y and t ⪯ w ⪯ z.
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Also, suppose,
(a) Either F is Gb−continuous, or,
(b) (X,G) is regular.

If there exists x0, y0, z0 ∈ X such that x0 ⪯ F (x0, y0, z0), y0 ⪰ F (y0, x0, y0) and
z0 ⪯ F (z0, y0, x0), then F has a tripled fixed point in X.

Proof. If F satisfies (30), of above corollary then F satisfies (29)therefore Fhas a fixed
point in X . ■

Note that if (X,⪯) be a partially ordered set, then we can endow X3 with the following
partial order relation:

(x, y, z) ⪯ (u, v, w) ⇐⇒ x ⪯ u , y ⪰ v, z ⪯ w,

for all (x, y, z), (u, v, w) ∈ X3. (see [7]).
In the following theorem, we give a sufficient condition for the uniqueness of the com-

mon tripled fixed point (Also, see e.g. [4], [5], [6] [11]).

Theorem 2.8 In addition to the hypotheses of Theorems 2.3 suppose that for ev-
ery (x, y, z) and (x∗, y∗, z∗) ∈ X × X × X, there exists (u, v, w) ∈ X3, such that
(F (u, v, w), F (v, u, v), F (w, v, u)) is comparable with (F (x, y, z), F (y, x, y), F (z, y, x))
and (F (x∗, y∗, z∗), F (y∗, x∗, y∗), F (z∗, y∗, x∗)). Then, F and g have a unique common
tripled fixed point.

Proof. From Theorems 2.3 the set of tripled coincidence points of F and g is non-empty.
We shall show that if (x, y, z) and (x∗, y∗, z∗) be tripled coincidence points, that is,

g(x) = F (x, y, z), g(y) = F (y, x, y), g(z) = F (z, y, x)

and

g(x∗) = F (x∗, y∗, z∗), g(y∗) = F (y∗, x∗, y∗), g(z∗) = F (z∗, y∗, x∗)

then gx = gx∗ and gy = gy∗ and gz = gz∗.
Choose an element (u, v, w) ∈ X3 such that (F (u, v, w), F (v, u, v), F (w, v, u)) is com-

parable with

(F (x, y, z), F (y, x, y), F (z, y, x))

and

(F (x∗, y∗, z∗), F (y∗, x∗, y∗), F (z∗, y∗, x∗)).

Let u0 = u, v0 = v, w0 = w and choose u1, v1, w1 ∈ X so that gu1 = F (u0, v0, w0) and
gv1 = F (v0, u0, v0) and gw1 = F (w0, v0, u0). Then, similarly as in the proof of Theorem
2.3, we can inductively define sequences {gun}, {gvn} and {gwn} such that gun+1 =
F (un, vn, wn), gvn+1 = F (vn, un, vn) and gwn+1 = F (wn, vn, un). Since (gx, gy, gz) =
(F (x, y, z), F (y, x, y), F (w, y, x)) and (F (u, v, w), F (v, u, v), F (w, v, u)) = (gu1, gv1, gw1)
are comparable, we may assume that (gx, gy, gz) ⪯ (gu1, gv1, gw1). Then gx ⪯ gu1,
gy ⪰ gv1 and gz ⪯ gw1. Using the mathematical induction, it is easy to prove that
gx ⪯ gun, gy ⪰ gvn and gz ⪯ gwn, for all n ⩾ 0.
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Let γn = max{G(gx, gx, gun), G(gy, , gy, gvn), G(gz, , gz, gwn)}. We will show that
lim
n→∞

γn = 0. First, assume that γn = 0, for an n ⩾ 1.

Applying (2), as gx ⪯ gun, gy ⪰ gvn and gz ⪰ gwn one obtains that

smax{G(gx, gx, gun+1), G(gy, gy, gvn+1), G(gz, gz, gwn+1)}
= smax{G(F (x, y, z), F (x, y, z), F (un, vn, wn)), G(F (y, x, y), F (y, x, y), F (vn, un, vn)),
G(F (w, y, x), F (w, y, x), F (wn, vn, un))})
⩽ ϕ

(
max{G(gx, gx, gun), G(gy, gy, gvn), G(gz, gz, gwn)}

)
= ϕ(γn) = ϕ(0) = 0.

(31)
So, we deduce that γn+1 = 0. Repeating this process, we can show that γm = 0, for all
m ⩾ n. So, lim

n→∞
γn = 0.

Now, let γn ̸= 0, for all n and let γn < γn+1, for some n.
From (31)

sγn = smax{G(gx, gx, gun), G(gy, , gy, gvn), G(gz, , gz, gwn)}
⩽ sγn+1

= smax{G(gx, gx, gun+1), G(gy, gy, gvn+1), G(gz, gz, gwn+1)}
⩽ ϕ

(
max{G(gx, gx, gun), G(gy, gy, gvn), G(gz, gz, gwn)}

)
= ϕ(γn)
⩽ ϕ(sγn) < sγn,

which is a contradiction.
Hence, if we proceed as in Theorem 2.3, we can show that

lim
n→∞

max{G(gx, gun, gun), G(gy, gvn, gvn), G(gz, gwn, gwn)} = 0,

that is, {gun}, {gvn} and {gwn} are Gb−convergent to gx, gy and gz, respectively.
Similarly, we can show that

lim
n→∞

max{G(gx∗, gun, gun), G(gy∗, gvn, gvn), G(gz∗, gwn, gwn)} = 0.

that is, {gun}, {gvn} and {gwn} are Gb−convergent to gx∗, gy∗ and gz∗, respectively.
Finally, since the limit is unique, gx = gx∗ and gy = gy∗ and gz = gz∗.

Since gx = F (x, y, z), gy = F (y, x, y) and gz = F (z, y, x), by commutativity of F and
g, we have g(gx) = g(F (x, y, z)) = F (gx, gy, gz), g(gy) = g(F (y, x, y)) = F (gy, gx, gy)
and g(gz) = g(F (z, y, x)) = F (gz, gy, gx). Let gx = a, gy = b and g(z) = c. Then,
ga = F (a, b, c), gb = F (b, a, b) and gc = F (c, b, a). Thus (a, b, c) is another tripled
coincidence point of F and g. Then, a = gx = ga, b = gy = gb and c = gz = gc.
Therefore, (a, b, c) is a tripled common fixed point of F and g.

To prove the uniqueness, assume that (p, q, r) is another tripled common fixed point
of F and g. Then, p = gp = F (p, q, r), q = gq = F (q, p, q) and r = gr = F (r, p, q). Since
(p, q, r) is a tripled coincidence point of F and g, we have gp = gx, gq = gy and gr = gz.
Thus, p = gp = ga = a, q = gq = gb = b and r = gr = gc = c. Hence, the tripled
common fixed point is unique. ■

Recently, many papers are devoted to present different results to ensure the existence
and uniqueness of coupled, tripled, quadrupled and multidimensional fixed points in
various spaces. But, some other authors are proving that these results can be reduced
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to their corresponding unidimensional versions (for instance, see( [30], [26], [16], [2], [27],
[28]). Also, very recently, some relations between n-tuple fixed point theorems and fixed
point results in various spaces are proved ([32]).

3. Examples

The following example support our results.

Example 3.1 Let X = (−∞,∞) be endowed with the usual ordering and the complete
Gb-metric

G(x, y, z) = (|x− y|+ |y − z|+ |z − x|)2,

where, s = 2.
Define F : X3 → X as

F (x, y, z) =
x− 2y + 4z

48
,

for all x, y, z ∈ X and g : X → X with g(x) = x for all x ∈ X.
Let ϕ : [0,∞) → [0,∞) be defined by ϕ(t) = t

2 .
Now, we have,

s(G(F (x, y, z), F (u, v, w), F (r, s, t)))

= 2(
1

48
[|(x− 2y + 4z)− (u− 2v + 4w)|] + 1

48
[|(u− 2v + 4w)− (r − 2s+ 4t)|]

+
1

48
[|(r − 2s+ 4t)− (x− 2y + 4z)|])2

⩽ 2(
1

24
|x
2
− u

2
|+ 1

12
|y
2
− v

2
|+ 1

6
|z
2
− w

2
|+ 1

24
|u
2
− r

2
|+ 1

12
|v
2
− s

2
|+ 1

6
|w
2
− t

2
|

+
1

24
|r
2
− x

2
|+ 1

12
|s
2
− y

2
|+ 1

6
| t
2
− z

2
|)2

= 2(
1

24
[|x
2
− u

2
|+ |u

2
− r

2
|+ |r

2
− x

2
|] + 1

12
[|y
2
− v

2
|+ |v

2
− s

2
|+ |s

2
− y

2
|]

+
1

6
[|z
2
− w

2
|+ |w

2
− t

2
|+ | t

2
− z

2
|])2

⩽ 2(
1

3
([|x

2
− u

2
|+ |u

2
− r

2
|+ |r

2
− x

2
|]2 + [|y

2
− v

2
|+ |v

2
− s

2
|+ |s

2
− y

2
|]2

+ [|z
2
− w

2
|+ |w

2
− t

2
|+ | t

2
− z

2
|]2))

⩽ 1

2
max{[|x− u|+ |u− r|+ |r − x|]2, [|y − v|+ |v − s|+ |s− y|]2,

[|z − w|+ |w − t|+ |t− z|]2}

= ϕ(max{G(gx, gu, gr), G(gy, gv, gs), G(gz, gw, gt)}).

Hence, all of the conditions of Theorem 2.3 are satisfied. Moreover, (0, 0, 0) is the unique
common tripled fixed point of F and g.
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The following example has been constructed according to example 2.12 of [1].

Example 3.2 Let X = {(x, 0, x)} ∪ {(0, x, 0)} ⊂ R3, where x ∈ [0,∞] with the order ⪯
defined as:

(x1, y1, z1) ⪯ (x2, y2, z2) ⇐⇒ x1 ⩽ x2, y1 ⩽ y2 and z1 ⩽ z2.

Let b-metric d be given as

d(x, y) = max{|x1 − x2|2, |y1 − y2|2, |z1 − z2|2}

and

G(x, y, z) = max{d(x, y), d(y, z), d(z, x)}.

(X,G) is, clearly, a Gb-complete Gb-metric space.
Let g : X → X and F : X3 → X be defined as follows:

F (x, y, z) = x

and

g((x, 0, x)) = (0, x, 0) and g((0, x, 0)) = (x, 0, x).

Let ϕ : [0,∞) → [0,∞) be as in the above example.
According to the order of X and the definition of g we see that for any element x ∈ X,

g(x) is comparable only with itself.
By a careful computation it is easy to see that all of the conditions of Theorem 2.3

are satisfied. Finally, Theorem 2.3 guarantees the existence of a unique common tripled
fixed point for F and g, i.e., the point ((0, 0, 0), (0, 0, 0), (0, 0, 0)).

Example 3.3 Let X = {0, 1, 2, 3} be endowed with the usual order. Let

A = {(2, 0, 0), (0, 2, 0), (0, 0, 2)}

and

B = {(2, 2, 0), (2, 0, 2), (0, 2, 2)}.

Define G : X3 → R+ by

G(x, y, z) =


1, if(x, y, z) ∈ A

3, if(x, y, z) ∈ B

4, if(x, y, z) ∈ X3 −A ∪B
0, if x = y = z

It is easy to see that (X,G) is a nonsymmetric Gb-metric space.
Also, (X,G) is regular. Indeed, for each {xn} in X such that G(xn, x, x) → 0 for an

x ∈ X, then there is a k ∈ N such that for each n ⩾ k, xn = x.
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Define the mappings F and g by

F =


(0, 0, 0) (0, 0, 1) (0, 0, 2) (1, 0, 0) (1, 0, 1) (1, 0, 2) (2, 0, 0) (2, 0, 1) (2, 0, 2)

0 2 2 0 2 2 0 2 2
(0, 1, 0) (0, 1, 1) (0, 1, 2) (1, 1, 0) (1, 1, 1) (1, 1, 2) (2, 1, 0) (2, 1, 1) (2, 1, 2)

0 2 2 0 2 2 0 2 2
(0, 2, 0) (0, 2, 1) (0, 2, 2) (1, 2, 0) (1, 2, 1) (1, 2, 2) (2, 2, 0) (2, 2, 1) (2, 2, 2)

0 2 2 0 2 2 0 2 2


and

g =

(
0 1 2
0 2 2

)
.

We see that, F (X3) ⊆ gX.
Define ϕ : [0,∞) → [0,∞) by ϕ(t) = t

2 .
Introduce an order ⪯ on Y = {0, 1, 2} by

⪯=: {(0, 0), (1, 1), (2, 2)}.

It remains to check the condition for for every x, y, z, u, v, w, r, s, t ∈ X with gx ⪯ gu ⪯
gr, gy ⪰ gv ⪰ gs and gz ⪯ gw ⪯ gt, or, gr ⪯ gu ⪯ gx, gs ⪰ gv ⪰ gy and gt ⪯ gw ⪯ gz

If x = y = u = v = w = r = s = t = 0, then G(gx, gu, gr) = G(gy, gv, gs) =
G(gz, gw, gt) = 0 and G(F (x, y, z), F (u, v, w), F (r, s, t)) = 0. Hence, 2.3 reduces to 0 ⩽ 0
and holds true. In all other possible cases

((x, y, z), (u, v, w), (r, s, t) ∈ {(0, 0, 0)(1, 1, 1), (2, 2, 2)}), one can see that 2.3 holds triv-
ially.

Thus, all the conditions of Theorem 2.3 are fulfilled and F and g have a coincidence
point (0 = F (0, 0, 0) = g0). This is also their common coupled fixed point.

References

[1] M. Abbas, M. Ali Khan and S. Radenović, Common coupled fixed point theorems in cone metric spaces for
w-compatible mappings, Applied Math. Comput., 217, (2010), 195–202.

[2] R.P. Agarwal, E. Karapinar, Remarks on some coupled fixed point theorems in G-metric spaces. Fixed Point
Theory Appl, 2013, 2013:2.

[3] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in
partially ordered Gb-metric spaces, Accepted in Filomat, 2013.

[4] H. Aydi, E. Karapınar and W. Shatanawi, Tripled coincidence point results for generalized contractions in
ordered generalized metric spaces, Fixed Point Theory Appl., 2012, 2012:101.

[5] H. Aydi, E. Karapınar and W. Shatanawi, Tripled fixed point results in generalized metric space, J. Applied
Math., Volume 2012, Article ID 314279, 10 pages, doi:10.1155/2012/314279.

[6] V. Berinde, Coupled fixed point theorems for contractive mixed monotone mappings in partially ordered
metric spaces, Nonlinear Anal., 75, (2012), 3218–3228.

[7] V. Berinde and M. Borcut. Tripled fixed point theorems for contractive type mappings in partially ordered
metric spaces. Nonlinear Anal. 74 (2011), 4889–4897.

[8] M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces.
Appl. Math. Comput. 218 (2012), 7339–7346.

[9] M. Borcut and V. Berinde. Tripled coincidence theorems for contractive type mappings in partially ordered
metric spaces. Appl. Math. Comput. 218 (2012), 5929–5936.

[10] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J Modern Math.
4 (2) (2009), 285–301.

[11] Y.J. Cho, B.E. Rhoades, R. Saadati, B. Samet and W. Shatanawi, Nonlinear coupled fixed point theorems in
ordered generalized metric spaces with integral type, Fixed Point Theory Appl., 2012, 2012:8.

[12] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46
(1998) 263-276.



R. Jalal Shahkoohi et al. / J. Linear. Topological. Algebra. 03(03) (2014) 131-147. 147

[13] H. Huang, S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications,
Fixed Point Theory Appl, 2013:112.

[14] L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, Journal
of Mathematical Analysis and Applications, vol. 332, no. 2, pp. 1468-1476, 2007.
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