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Abstract.In this paper, a fundamentally new method, based on the definition, is introduced
for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues
of matrices. Some examples are provided to show the accuracy and reliability of the proposed
method. It is shown that the proposed method gives other sequences than that of existing
methods but they still are convergent to the desired eigenvalues, generalized eigenvalues and
quadratic eigenvalues of matrices. These examples show an interesting phenomenon in the
procedure: The diagonal matrix that converges to eigenvalues gives them in decreasing order
in the sense of absolute value. Appendices A to C provide Matlab codes that implement the
proposed algorithms. They show that the proposed algorithms are very easy to program.
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1. Introduction

The eigenvalue problem for square matrices A, that is the determination of λ’s for
which there are nontrivial solutions for Ax = λx, is a central topic in numerical
linear algebra. This problem is inherently nonlinear and this leads to many compu-
tational problems. Computation of the eigenvalues λ via the explicit construction
of the characteristic equation

det(A− λI) = 0 (1)

is, except for very special cases, not an option since the coefficients of the character-
istic equation cannot be computed from determinant evaluations in a numerically
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stable way [1] , and even if the characteristic equation could be determined accu-
rately, then the computation of its roots, in finite precision, may be highly unstable
since small perturbations in the coefficients may lead to large perturbations of the
roots [2]. The numerical computation of the associated eigenvectors and general-
ized eigenvectors is even more delicate, in particular when eigenvectors of A make
small angles with each other. In the limiting case, when the matrix is defective, A
can be reduced to the Jordan canonical form, but arbitrary small perturbations in
A may yield a nondefective matrix [1]. This leads to many challenging numerical
questions, which give rise to the central problem: how can we compute eigenvalues
and eigenvectors in an efficient manner and how accurate are they? In fact, this was
already recognized by Jacobi, who, in 1846, computed the eigenvalues of symmetric
matrices by rotating the matrix to a strongly diagonally dominant one. Jacobi’s
techniques are still relevant and have led to popular and powerful algorithms [1].
Another longstanding method that is of great significance and serves as the basis
for many algorithms is the Power iteration. The method is based on the idea that
if a given matrix is repeatedly applied to a vector, and is properly normalized,
then ultimately, it will lie in the direction of the eigenvector associated with the
eigenvalues which are largest in absolute value [3]. The rate of convergence for the
Power iteration depends on the ratio of the second largest eigenvalue (in absolute
value) to the largest eigenvalue (in absolute value) and for many applications this
leads to unacceptably slow convergence. The method can be problematic if one
wants to compute a number of extremal eigenvalues. The Power iteration is still in
use, but most frequently as (implicit) part of more efficient techniques, e.g., Krylov
methods, inverse iteration, QR-method. We refer the reader to [1] for an excellent
and complete overview on the research on computational aspects of the eigenvalue
problem.
The topic of inclusion regions of matrix eigenvalues is worthy investigating in

practice as well as in theory. For instance, in [7] and [8] chapters on this topic are
particularly designed.
Let A = (aij) ∈ Cn×n and ri = Σj ̸=i | aij | (i = 1, 2, ..., n). Brauer’s theorem
provides eigenvalue inclusion region composed of so-called Cassini’s ovals in the
complex plane

Dij = {z ∈ C :| z − aii || z − ajj |⩽ rirj}, 1 ⩽ i ̸= j ⩽ n. (2)

Theorem 1. ([7], p. 380) All eigenvalues of A are contained in

Ω =
∪
i̸=j

Dij . (3)

It can be verified that Ω in (3) is contained in the union of the famous Gerschgorin’s
disks. As mentioned in literature (for example [9], p. 235), it is not substantially
difficult to determine whether a point in complex plane locates in an oval or not.
In [10] eigenvalues that locate on the boundary of Ω are discussed under the as-
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sumption that A is irreducible. It pointed out an error in an often quoted assertion
of Brauer [11] and presented a simplified Brauer’s theorem in terms of directed
graph. Their results were clarified by Tam, Yang and Zhang in [12].
Numerous papers are devoted to the study of asymptotics of the distribution of

eigenvalues and norms of random matrices. We shall mention papers [13] to [16]
in which it was proved, apparently for the first time, that the spectral norm of
a matrix with independent, identically distributed bounded random entries with
zero mathematical expectations is equivalent in the probability sense to the square
root of the order of the matrix as this order increases to infinity. In these papers
probability inequalities for the norms of random matrices were obtained but the
exact bounds were not proved. Along with these investigations, limit theorems
for eigenvalues (in particular norms) of random matrices were proved. Although
this is rather a new field of investigation, quite a few results have already been
accumulated in papers [2] to [? ].
After reading [4], where the idea behind the QR method and its relations to

the power-family methods have been described elegantly, we were led to find the
present method. First we thought it was somehow equivalent to the QR algorithm
but later, when we tested it independently on some problems, we found out that
it gives a different sequence of numbers and, in general, it still gives all of the
eigenvalues as the limit of the sequences

2. Basic Concept

This paper will be concerned with high-order collocation methods for the Fredholm-
Volterra integral equations (FVIEs)

y(t) = g(t) +

∫ b

a
p(t, s)k(t, s, y(s))ds+

∫ t

0
p′(t, s)k′(t, s, y(s))ds, t ∈ [0, T ] (4)

where y(t) is the unknow function whose value is to be determined in the interval
0 ⩽ t ⩽ T < ∞, the kernels k(t, s, y(s)) and k′(t, s, y(s)) are lipschits continuous
in their variable and p(t, s) and p′(t, s) are unbounded in the region of integration
but integrable over [0, T ].
The following notation and methods were introduced in [4, 5] and will be used

throughout this paper. The collocation methods generate , as approximation to the
solution of (1) elements of the polynomial spline space

S
(d)
m−1(ZN , T ) := {u ∈ C(d)(I(T )) : u |σn

:= un ∈ πm−1, 0 ⩽ n ⩽ N − 1}, (5)

associated with a given partition
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ΠN : 0 = t0 < t1 < · · · < tN = T, N ⩾ 1 (6)

of the interval [0, T ]. Here, πm−1 is the set of real polynomials of degree not
exceeding m−1 and we have set σ0 := [t0, t1] and σn := (tn, tn+1], n = 1, . . . , N−1,
ZN := {tn : 1 ⩽ n ⩽ N − 1} (the set of interior grid points). The quantity h,
h := max{hn := tn+1 − tn : 0 ⩽ n ⩽ N − 1}, is often called the diameter of the
grid

∏
N . If hn ≡ h all 0 ⩽ n ⩽ N − 1, then the grid

∏
N is called a uniform mesh.

The desired approximation to y is the element u ∈ S
(d)
m−1(ZN , T ) satisfying

u(t) = g(t) +

∫ b

a
p(t, s)k(t, s, u(s))ds+

∫ t

0
p′(t, s)k′(t, s, u(s))ds, t ∈ X(N) (7)

where X(N) :=
N−1∪
n=0

Xn with

XN := {tnj := tn + cjhn : 0 ⩽ c1 < · · · < cm ⩽ 1},

where {cj}mj=1 are collocation parameters.

3. A generalized Grownwall-Type inequality

Throughout this paper, ci where i is an integer, will denoted constants which are
independent of h .
Definition 3.1. Let p1(t, s) := p(t, s), p′1(t, s) := p′(t, s) and set

pn(t, s) :=
∫ b
a p1(t, ξ)pn−1(ξ, s)dξ

p′n(t, s) :=
∫ t
0 p

′
1(t, ξ)p

′
n−1(ξ, s)dξ (t, s) ∈ S, n ⩾ 2

(8)

where S := {(t, s), 0 ⩽ s < t ⩽ T}. The functions {pn, p′n, n = 1, 2, . . . } are called
the iterated kernels associated with the given kernels p and p′.
Definition 3.2. If the functions p and p′ satisfies

(i)p(t, s) ⩾ 0, p′(t, s) ⩾ 0,(t, s) ∈ S (9)

(ii)

b∫
a

p(t, s)dt ⩽ c1,

t∫
0

p′(t, s)dt ⩽ c′1 (10)

(iii)pv(t, s) ⩽ c2, p′v(t, s) ⩽ c′2,(t, s) ∈ S (11)
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where v is a certain integer, then p and p′ are said to satisfy conditions C.
Theorem 3.1. Let A ⩾ 0 be a constant, and Let the function x satisfy to

condition C. The function x(t) is defined as

x(t) = κn, t ∈ [tn, tn+1], 0 ⩽ n ⩽ N − 1 (12)

where the tn is given by (3) and κn ⩾ 0, if the function x satisfies the integral
inequality

x(t) ⩽
∫ b

a
p(t, s)x(s)ds+

∫ t

0
p′(t, s)x(s)ds+A t ∈ [0, T ) (13)

then it can be bounded by

x(t) ⩽ c2

∫ b

a
x(s)ds+ c′2

∫ t

0
x(s)ds+ c3A t ∈ [0, T ) (14)

furthermore, if h := max{hn := tn+1 − tn, 0 ⩽ n ⩽ N − 1} ⩽ c4/N, then

κ := max{κn, 0 ⩽ n ⩽ N − 1} ⩽ c5A (15)

Proof. Consider

x(s) ⩽
b∫

a

p(s, λ)x(λ)dλ+A1 (16)

x′(s) ⩽
∫ b

a
p′(s, λ)x(λ)dλ+A2 (17)

Where A1, A2 ⩾ 0 and A1 +A2 = A.
Multiplying (13) by p(t, s) and integrate from a to b and multiplying (14) by

p′(t, s) and integrate from 0 to t, so we have

b∫
a

p(t, s)x(s)ds ⩽
b∫

a

b∫
a

p(t, s)p(s, λ)x(λ)dλds+ c1A1

t∫
0

p′(t, s)x(s)ds ⩽
t∫

0

s∫
0

p′(t, s)p′(s, λ)x(λ)dλds+ c′1A2
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or

∫ b

a
p(t, s)x(s)ds ⩽

∫ b

a
p2(t, s)x(s)ds+ c1A1 (18)∫ t

0
p′(t, s)x(s)ds ⩽

∫ t

0
p′2(t, s)x(s)ds+ c′1A2 (19)

By adding (15) and (16) we obtain

∫ b

a
p(t, s)x(s)ds+

∫ t

0
p′(t, s)x(s)ds ⩽

∫ b

a
p2(t, s)x(s)ds+

∫ t

0
p′2(t, s)x(s)ds+c1A1+c′1A2

From (10) we have

x(t) ⩽
∫ b

a
p2(t, s)x(s)ds+

∫ t

0
p′2(t, s)x(s)ds+ [(1 + c1)A1 + (1 + c′1)A2]

Repeating the above procedure, we have

x(t) ⩽
∫ b

a
pν(t, s)x(s)ds+

∫ t

0
p′ν(t, s)x(s)ds+

ν−1∑
j=0

[(1 + c1)A1 + (1 + c′1)A2]
j

From (8)we have

x(t) ⩽ c2

∫ b

a
x(s)ds+ c′2

∫ t

0
x(s)ds+ c3 (20)

where c3 =
ν−1∑
j=0

[(1 + c1)A1 + (1 + c′1)A2]
j , nothing that h ⩽ c4

N from (9) and (17)

we obtain

κn ⩽ c′2c4

n−1∑
i=0

κ′i
1

N
+D

where D = c2c4
∑b

i=a κi
1
N +c3,0 ⩽ n ⩽ N−1. The above inequality is the standard

discrete Gronwall inequality which yields (12).
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4. Convergence of collection methods

The quadratic eigenproblem

λ2Mx+ λCx+Kx = 0 (21)

is equivalent to the generalized eigenprobem [5, 6]:

Az = λBz, (22)

with

A =

(
0 I

−K −C

)
, B =

(
I 0
0 M

)
, z =

(
x
λx

)
, (23)

which can be solved by the method described in previous section. Appendix C
presents the Matlab program which carries out this task.
Example. 4.1. In this example, we take

M =

(
3.3685 5.5651
10.3814 −2.1611

)

C =

(
14.7529 3.4679
−6.3062 11.1767

)
and

K =

(
−15.5876 −7.7931
1.0561 −1.8346

)
Performing 6 iterations of (??), with A and B given by (23), we obtain

D6 =


−2.4754 0 0 0

0 1.4514 0 0
0 0 0.8622 0
0 0 0 0.1828


The exact quadratic eigenvalues computed by Matlab are

Quad(M,C,K) =


−2.4412
1.4706
0.8625
0.1828


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Example. 4.2. In this example, we take

M =

 1.6310 3.8064 4.8423
−8.4379 −3.4994 −5.8690
4.7768 3.8880 6.3983



C =

−8.8674 −5.4116 4.1484
−4.0984 5.1078 −0.3077
0.6829 −2.5514 1.2613


and

K =

 1.0896 2.3755 0.7897
2.4963 −1.4248 3.5624
−5.5997 −3.3813 −2.9438


Performing 7 iterations of (??), with A and B given by (23), we obtain

D7 =


7.3333 0 0 0 0 0

0 −1.9818 0 0 0 0
0 0 1.6554 0 0 0
0 0 0 −0.7193 0 0
0 0 0 0 0.4601 0
0 0 0 0 0 −0.1467


The exact quadratic eigenvalues computed by Matlab are

Quad(M,C,K) =


7.3302
1.6866
−1.8004
−0.7291
−0.1468
0.4904



Appendix A. Matlab program for computing eigenvalues

A = input(′A =′);
it = input(′number of iterations =′);
[n,m] = size(A);
Q = eye(n); R = eye(n);
for i = 1 : it
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[Q,Rp] = qr(A ∗Q ∗R);
D = diag(diag(Rp));
for j = 1 : n

R(:, j) = Rp(:, j)/D(j, j);
end

end
D

Appendix B. Matlab program for computing generalized eigenvalues

A = input(′A =′);
B = input(′B =′);
it = input(′number of iterations =′);
[n,m] = size(A);
Q = eye(n); R = eye(n);
for i = 1 : it

V = inv(B) ∗Q ∗R;
[Q,Rp] = qr(A ∗ V );
D = diag(diag(Rp));
for j = 1 : n

R(:, j) = Rp(:, j)/D(j, j);
end

end
D

Appendix C. Matlab program for computing quadratic eigenvalues

M = input(′M =′);
C = input(′C =′);
K = input(′K =′);
[n,m] = size(M);
Temp1 = horzcat(zeros(n), eye(n));
Temp2 = horzcat(−K,−C);
A = vertcat(Temp1, T emp2);
Temp1 = horzcat(eye(n), zeros(n));
Temp2 = horzcat(zeros(n),M);
B = vertcat(Temp1, T emp2);
it = input(′number of iterations =′);
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[n,m] = size(A);
Q = eye(n); R = eye(n);
for i = 1 : it

V = inv(B) ∗Q ∗R;
[Q,Rp] = qr(A ∗ V );
D = diag(diag(Rp));
for j = 1 : n

R(:, j) = Rp(:, j)/D(j, j);
end

end
D
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