Journal of Linear and Topological Algebra Vol. 02*, No.* 02*,* 2013*,* 67*-* 70

Commuting Π**-regular rings**

Sh. Sahebi^{a,}^{*} and M. Azadi^a

^a*Department of Mathematics, Faculty of Science, Islamic Azad University, Central Tehran Branch, PO. Code 14168-94351, Tehran, Iran*

Abstract. *R* is called commuting regular ring (resp. semigroup) if for each $x, y \in R$ there exists $a \in R$ such that $xy = yxayx$. In this paper, we introduce the concept of commuting *π*-regular rings (resp. semigroups) and study various properties of them.

*⃝*c 2013 IAUCTB. All rights reserved.

Keywords: Regular, Commuting *π*-regular.

2010 AMS Subject Classification: 16E50, 16D70, 16U99.

1. Introduction

Let *R* be a ring (resp. semigroup). *R* is called Von Neumann regular ring (resp. semigroup) if for each $x \in R$ there exists $a \in R$ such that $xax = x$. Following [2], R is called π -regular ring if for any $x \in R$ there exist a positive integer *n* and $a \in R$ such that $x^n a x^n = x^n$. Following [6,1], *R* is called a commuting regular ring (resp. semigroup) if for each $x, y \in R$ there exists $a \in R$ such that $xy = yxayx$.

In recent years some authors have studied the commuting regular rings(resp. semigroups) $[1, 3, 5]$. We extend commuting regular rings (resp. semigroups) and introduce the concept of commuting π -regular rings (resp. semigroups) as following:

Definition 1.1 *R* is called a commuting π -regular ring (resp. semigroup) if for each $x, y \in R$ there exist a positive integer *n* and $a \in R$ such that $(xy)^n = (yx)^n a(yx)^n$.

Print ISSN: 2252-0201 ^{**O**} 2013 IAUCTB. All rights reserved.

Online ISSN: 2345-5934 *Colline ISSN: 2345-5934* http://jlta.iauctb.ac.ir

*[∗]*Corresponding author.

E-mail addresses: sahebi@iauctb.ac.ir (Sh. Sahebi), meh.azadi@iauctb.ac.ir (M. Azadi).

This paper is supported by Islamic Azad University Central Tehran Branch (IAUCTB). Authors want to thank authority of IAUCTB for their support to complete this research.

Since for each $x, y \in R$ we have $(xy)^n = (yx)^n((yx)^{-n}(xy)^n(yx)^{-n})(yx)^n$, then division rings (resp. groups) are commuting *π*-regular. Moreover, nil rings (resp. nil semigroups) are commuting π -regular. Because, for each $x, y \in R$ there exist positive integers n_1 and n_2 such that $(xy)^{n_1} = 0 = (yx)^{n_2}$ and so, $(xy)^{n_1} = (yx)^{n_1}(yx)^{n_2}(yx)^{n_1}$. In this paper we investigate verious properties of commuting *π*-regular rings (resp. semigroups). For a ring *R*, we use the notation $C(R)$ for the center of *R*.

2. Basic properties of commuting *π***-regular rings**

In this section, we get some basic properties of commuting π -regular rings. Clearly, a commuting π - regular ring is π -regular (put $x = y$), but the converse is not true. As the following Remark, $M_2(\mathbb{Z}_2)$ is not commuting π -regular however it is π -regular.

Remark 1 The ring of n×n matrices over a commuting π-regular ring is not necessarily commuting π -regular. For example \mathbb{Z}_2 is commuting π -regular ring but $M_2(\mathbb{Z}_2)$ is not.

Indeed, let $x =$ $\left(\begin{matrix}1 & 1\\ 0 & 0\end{matrix}\right)$, $y =$ $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \in M_2(\mathbb{Z}_2)$ then $xy = (xy)^n = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ and $yx =$ $(yx)^n = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ for each $n \in \mathbb{N}$. If there exists $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}_2)$ such that $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} =$ $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ then 1 = 0 which is a contradiction.

Remark 2 The concepts of π- regular and commuting π- regular rings are the same in commutative case.

Proposition 2.1 Every homomorphic image of a commuting *π*-regular ring is commuting *π*-regular.

Proof. Let *R, S* be rings and $f: R \to S$ be a ring epimorphism. Suppose that *R* is commuting π -regular and let $v, w \in S$. Since f is an epimorphism, there exist $x, y \in R$ such that $f(x) = v, f(y) = w$. Then since *R* is commuting π -regular, there exist $a \in R$ and a positive integer *n* such that $(xy)^n = (yx)^n a(yx)^n$. It follows that

$$
(vw)^n = (f(xy)^n) = f((yx)^n a(yx)^n) = (wv)^n f(a)(wv)^n,
$$

this completes the proof.

Corollary 2.2 Let *R* be a commuting *π*-regular ring. If *I* is an ideal of *R*, then *R/I* is commuting *π*-regular.

Proposition 2.3 Let *R* be a commutative ring with identity. If *R* is a commuting π regular ring, then every prime ideal of *R* is maximal.

Proof. Let *P* be a prime ideal of *R*, then R/P is commuting π -regular by corollary 2.2. If $P \neq a + P = \overline{a} \in R/P$ then there exist a positive integer *n* and $\overline{b} \in R/P$ such that $\overline{a}^{2n} = \overline{a}^{2n} \overline{b} \overline{a}^{2n}$ and so $\overline{a}^{2n} (\overline{1} - \overline{b} \overline{a}^{2n}) = 0$. Therefore $\overline{b} \overline{a}^{2n} = \overline{1}$ and the proof is complete.

Although, the subring of a commuting π -regular ring is not necessarily commuting *π*-regular (for example, Z as a subring of Q is not commuting *π*-regular). But we have the following:

Proposition 2.4 The center $C(R)$ of every commuting π -regular ring R is again commuting *π*-regular.

Proof. Let $x, y \in C(R)$. Then there exist $a \in R$ and a positive integer *n* such that

$$
(xy)^n = (yx)^n a(yx)^n = (yx)^{2n} a = a(yx)^{2n}
$$

and so

$$
(xy)^n a = (yx)^{2n} a^2 = a^2 (yx)^{2n}.
$$

Let $z = (yx)^n a^2$ then

$$
(yx)^{n}z(yx)^{n} = (yx)^{2n}a^{2}(yx)^{n} = (yx)^{n}a(yx)^{n} = (xy)^{n}.
$$

Now it is enough to show that $z \in C(R)$. First note that $(yx)^n a \in C(R)$, because for any $r \in R$ we have

$$
(yx)^n ar = ar(yx)^n = ar(yx)^n a(yx)^n = a(yx)^{2n}ra = (yx)^n ra = r(yx)^n a
$$

and so

$$
zr = ((yx)^{n}a)ar = ar(yx)^{n}a = (yx)^{n}ara = r(yx)^{n}a^{2} = rz
$$

and the proof is complete.

The following shows that the corner of a commuting *π*-regular ring *R* (i.e. *eRe* for some idempotent e of R) is also commuting π -regular.

Proposition 2.5 Let *R* be a commuting *π*-regular ring. Then for any $e^2 = e$, *eRe* is commuting *π*-regular.

Proof. Let $x, y \in eRe$. Since *R* is commuting *π*-regular we have $(xy)^n = (yx)^n a(yx)^n$ for some $a \in R$ and a positive integer *n*. Note that $(yx)^n = (yx)^n e = e(yx)^n$. Thus $(yx)^n = (yx)^n eae(yx)^n$ and it follows that *eRe* is commuting *π*-regula.

3. Commuting *π***-regular semigroups**

Recall the following definition from [4]:

Definition 3.1 Let *S* be a semigroup. A relation *E* on the set *S* is called compatible if:

$$
(\forall s, t, a \in S)[(s, t) \in E, (s', t') \in E] \Rightarrow (ss', tt') \in E.
$$

A compatible equivalence relation is called congruence.

Let ρ be a congruence on a semigroup *S* and S/ρ be the set of ρ -classes, whose elements are the subsets $x\rho$, then we can define a binary operation on the quotient set S/ρ , in a natural way as follows:

$$
(a\rho)(b\rho) = (ab)\rho
$$

It is easy to check that S/ρ with the above operation is a semigroup.

Proposition 3.2 Let *ρ* be a congruence on a commuting *π*-regular semigroup *S*. Then *S/ρ* is commuting $π$ -regular.

Proof. Let $x, y \in S$, so there exist $c \in S$ and a positive integer *n* such that $(xy)^n =$ $(yx)^n c(yx)^n$ and therefore

$$
((x\rho)(y\rho))^n = (xy)^n \rho = ((yx)^n c(yx)^n) \rho = ((y\rho)(x\rho))^n c\rho ((y\rho)(x\rho))^n
$$

Thus *S* is commuting π -regular semigroup.

Definition 3.3 Let *S* be a semigroup. The left map $\lambda : S \to S$ is called a left translation of *S* if $s(\lambda t) = (\lambda s)t$, for all $s, t \in S$. The right map $\rho : S \to S$ is called a right translation of *S* if $(st)\rho = s(t\rho)$, for all $s, t \in S$. A left translation λ and a right traslation ρ are said to be linked if $s(\lambda t) = (s\rho)t$ for all $s, t \in S$.

The set of all linked pairs (λ, ρ) of left and right translation is called the translation hull of *S* and will be denoted by $\Omega(S)$. $\Omega(S)$ is a semigroup under the obvoius multiplication $(\lambda, \rho)(\lambda', \rho') = (\lambda \lambda', \rho \rho')$ where $\lambda \lambda'$ denote the composition of the left maps λ and λ' , while $\rho \rho'$ denotes the composition of the right maps ρ and ρ' .

Proposition 3.4 Let *S* be a commuting π -regular semigroup. For every $a \in S$ define $\lambda_a s = as$ and $s\rho_a = sa$. Then (λ_a, ρ_a) is a linked pair in $\Omega(S)$ and the set of every (λ_a, ρ_a) , where $a \in S$, with multiplication of link tranlations is a commuting *π*-regular semigroup.

Proof. It is easy to verify that, for all $a, b \in S$, $(\lambda_a, \rho_a)(\lambda_b, \rho_b) = (\lambda_{ab}, \rho_{ab})$. Therefore the set of (λ_a, ρ_a) 's, is a semigroup. on the other hand for $a, b \in S$ there exist $t \in S$ and a positive integer *n* such that $(ab)^n = (ba)^n t(ba)^n$ and so

$$
((\lambda_a, \rho_a)(\lambda_b, \rho_b))^n = ((\lambda_{(ab)^n}, \rho_{ab)^n}))^n = (\lambda_{(ba)^n t(ba)^n}, \rho_{(ba)^n t(ba)^n})
$$

$$
= ((\lambda_b, \rho_b)(\lambda_a, \rho_a))^n (\lambda_t, \rho_t)((\lambda_b, \rho_b)(\lambda_a, \rho_a))^n.
$$

■

- [1] M. Azadi, H. Doostie, L. Pourfaraj, *Certain rings and semigroups examining the regularity property,* Journal of mathematics, statistics and allied fields., 29(2008), 1:1-6.
- [2] J. W. Fisher, R. L. Snider, *On the Von Neumann regularity of rings with regular prime factor rings*, Pacific J. Math., 54(1974),1: 135-144.
- [3] H. Doostie, L. Pourfaraj, *On the minimal of commuting regular rings and semigroups*, Intarnal, J. Appl. Math. 19(2006), 2: 201-216.
- [4] J. M. Howie, *Fundamentals of semigroup Theory*, Clarendon Press. Oxford, New York (1995).
- [5] Sh. A. Safari Sabet, *Commutativity conditions for rings with unity,* Internal. J. Appl. Math. 15(2004), 1: 9-15.
- [6] A. H. Yamini, Sh. A. Safari Sabet, *Commuting regular rings*, Internal. J. Appl. Math. 14(2003) 4: 357-364.