Journal of Linear and Topological Algebra Vol. 04, No. 01, 2015, 65-85

Fixed Point Theorems for semi λ -subadmissible Contractions in *b*-Metric spaces

R.J. Shahkoohi^a, A. Razani^{a*}

^aDepartment of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Received 11 December 2014; Revised 15 March 2015; Accepted 9 April 2015.

Abstract. Here, a new certain class of contractive mappings in the b-metric spaces is introduced. Some fixed point theorems are proved which generalize and modify the recent results in the literature. As an application, some results in the b-metric spaces endowed with a partial ordered are proved.

 \bigodot 2015 IAUCTB. All rights reserved.

Keywords: Fixed point, b-metric.

2010 AMS Subject Classification: 46N40, 47H10, 54H25, 46T99.

1. Introduction

The existence of a fixed point is studied by many authors. The notion of *b*-metric space was first explained by Bakhtin in [2] and then widely utilized by Czerwik in [6] (this space is a metric type spaces defined by Khamsi and Hussain [18]). Since then, many researches deal with fixed point theory for single-valued and multi-valued mappings in *b*-metric spaces (see, [3, 6, 7] and references therein). Meanwhile, Samet *et al.* [30] presented the notions of α - ψ -contractive and α -admissible mappings and founded several fixed point theorems for such mappings outline under the complete metric spaces. Subsequently, Salimi *et al.* [28] and Hussain *et al.* [13] improved the concepts of α - ψ -contractive and α admissible mappings and studied some fixed point theorems. In this paper, a new classes of contractive mappings is introduced in order to study some fixed point theorems in the *b*-metric spaces.

© 2015 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

^{*}Corresponding author. E-mail address: razani@ipm.ir (A. Razani).

Definition 1.1 [6] Let X be a nonempty set and $s \ge 1$. A function $d: X \times X \to \mathbb{R}^+$ is a *b*-metric if and only if for all $x, y, z \in X$, the following conditions hold:

- (b₁) d(x, y) = 0 iff x = y,
- $(\mathbf{b}_2) \ d(x,y) = d(y,x),$
- (b₃) $d(x,z) \leq s[d(x,y) + d(y,z)].$

Then the tripled (X, d, s) is called a *b*-metric space.

Definition 1.2 [5] Let (X, d) be a *b*-metric space. A sequence $\{x_n\}$ in X is called:

(a) b-convergent if and only if there exists $x \in X$ such that $d(x_n, x) \to 0$, as $n \to +\infty$. In this case, we write $\lim_{n \to \infty} x_n = x$.

(b) b-Cauchy if and only if $d(x_n, x_m) \to 0$, as $n, m \to +\infty$.

Proposition 1.3 [5, Remark 2.1] In a b-metric space (X, d) the following assertions hold:

- p_1 . A *b*-convergent sequence has a unique limit.
- p_2 . Each *b*-convergent sequence is *b*-Cauchy.
- p_3 . In general a *b*-metric is not continuous.

Lemma 1.4 [1] Let (X, d) be a *b*-metric space with $s \ge 1$. Suppose that $\{x_n\}$ and $\{y_n\}$ are *b*-convergent to x, y, respectively. Then

$$\frac{1}{s^2}d(x,y) \leqslant \liminf_{n \longrightarrow \infty} d(x_n,y_n) \leqslant \limsup_{n \longrightarrow \infty} d(x_n,y_n) \leqslant s^2 d(x,y).$$

In particular, if x = y then $\lim_{n \to \infty} d(x_n, y_n) = 0$. Moreover, for each $z \in X$

$$\frac{1}{s}d(x,z) \leqslant \liminf_{n \to \infty} d(x_n,z) \leqslant \limsup_{n \to \infty} d(x_n,z) \leqslant sd(x,z).$$

For more details on *b*-metric spaces the reader can refer to [7]-[11].

Definition 1.5 [30] Let T be a self-mapping on X and $\alpha : X \times X \to [0, +\infty)$ be a function. T is an α -admissible mapping if

$$x, y \in X, \quad \alpha(x, y) \ge 1 \implies \alpha(Tx, Ty) \ge 1.$$

Definition 1.6 [16] Let T be an α -admissible mapping. We say that T is a triangular α -admissible mapping if $\alpha(x, y) \ge 1$ and $\alpha(y, z) \ge 1$ implies that $\alpha(x, z) \ge 1$.

Lemma 1.7 [16] Let T be a triangular α -admissible mapping. Assume that there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$. Define sequence $\{x_n\}$ by $x_n = T^n x_0$. Then

 $\alpha(x_m, x_n) \ge 1$ for all $m, n \in \mathbb{N}$ with m < n.

Definition 1.8 [12] Let $\alpha : X \times X \to [0, \infty)$ and $T : X \to X$. We say that T is an α -continuous mapping if for given $x \in X$ and sequence $\{x_n\}$ with $x_n \to x$ and $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$ one has $Tx_n \to Tx$.

Definition 1.9 Let T be a self-mapping on X and let $\lambda : X \to [0, +\infty)$ be a function. We say that T is a semi λ -subadmissible mapping if

$$x \in X, \quad \lambda(x) \leq 1 \implies \lambda(Tx) \leq 1.$$

Example 1.10 Let $T : \mathbb{R} \to \mathbb{R}$ be defined by $Tx = x^3$. Suppose that $\lambda : \mathbb{R} \to \mathbb{R}^+$ is given by $\lambda(x) = e^x$ for all $x \in \mathbb{R}$. Then T is a semi λ -subadmissible mapping. Indeed, if $\lambda(x) = e^x \leq 1$ then $x \leq 0$ which implies that $Tx \leq 0$. Therefore $\lambda(Tx) = e^{Tx} \leq 1$.

Consistent with Khan *et al.* [17] we denote by Ψ the set of all function $\varphi : [0, +\infty) \to [0, +\infty)$ (which is called an altering distance function) if the following conditions hold:

- φ is continuous and non-decreasing.
- $\varphi(t) = 0$ if and only if t = 0.

Motivated by Kumam and Roldán [20] we introduce the following class of mappings which is suitable for our results.

Let Θ denote the set of all functions $\theta: \mathbb{R}^{+^4} \to \mathbb{R}^+$ satisfying:

 $(\Theta_1) \ \theta$ is continuous and increasing in all its variables;

 $(\Theta_2) \ \theta(t_1, t_2, t_3, t_4) = 0$ iff either $t_1 = 0$ or $t_4 = 0$.

2. Main Theorems

In this section we stat the Main results. The first theorem is based on [7, Theorem 4] and [27, Theorem 3].

Theorem 2.1 Let (X, d, s) be a complete *b*-metric space, *T* be a self-mapping on *X* and $\alpha : X \times X \to [0, \infty)$ and $\lambda : X \to [0, +\infty)$ be two functions. Suppose that the following assertions hold.

- (i) There exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$ and $\lambda(x_0) \le 1$.
- (ii) T is α -continuous, triangular α -admissible and semi λ -subadmissible mapping.

(iii) For all $x, y \in X$ with $\alpha(x, y) \ge 1$

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big) \Big)$$
(1)

where $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

Then T has a fixed point.

Proof. Let $x_0 \in X$ be such that $\alpha(x_0, Tx_0) \ge 1$ and $\lambda(x_0) \le 1$. We define a sequence $\{x_n\}$ as follows

$$x_n = T^n x_0 = T x_{n-1}$$

for all $n \in \mathbb{N}$. If $x_n = x_{n+1}$ for some $n \in \mathbb{N}$ then $x_n = Tx_n$ and so x_n is a fixed point of f. Hence we assume that $x_n \neq x_{n+1}$, for all $n \in \mathbb{N}$. Since T is a triangular α -admissible mapping then by Lemma 1.7

$$\alpha(x_m, x_n) \ge 1$$
 for all $m, n \in \mathbb{N}$ with $m < n$.

Also, since T is a semi λ -subadmissible mapping and $\lambda(x_0) \leq 1$ then $\lambda(x_1) = \lambda(Tx_0) \leq 1$. Again, since T is semi λ -subadmissible, then $\lambda(x_2) = \lambda(Tx_1) \leq 1$. Continuing this process $\lambda(x_n) \leq 1$ for all $n \in \mathbb{N} \cup \{0\}$. Then by (iii),

$$\psi(d(x_n, x_{n+1})) \leq \psi(sd(x_n, x_{n+1})) \\
= \psi(sd(Tx_{n-1}, Tx_n)) \\
\leq \lambda(x_{n-1})\lambda(x_n) \Big[\psi(M(x_{n-1}, x_n)) - \varphi(M(x_{n-1}, x_n)) \Big] \\
+ \theta \big(d(x_{n-1}, Tx_{n-1}), d(x_n, Tx_n), d(x_{n-1}, Tx_n), d(x_n, Tx_{n-1}) \big) \\
\leq \psi(M(x_{n-1}, x_n)) - \varphi(M(x_{n-1}, x_n)) \\
+ \theta \big(d(x_{n-1}, Tx_{n-1}), d(x_n, Tx_n), d(x_{n-1}, Tx_n), d(x_n, Tx_{n-1}) \big)$$
(2)

where

$$M(x_{n-1}, x_n) = \max \left\{ d(x_{n-1}, x_n), d(x_{n-1}, Tx_{n-1}), d(x_n, Tx_n), \frac{d(x_{n-1}, Tx_n) + d(x_n, Tx_{n-1})}{2s} \right\}$$

$$= \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}), \frac{d(x_{n-1}, x_{n+1})}{2s} \right\}$$

$$\leq \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}), \frac{sd(x_{n-1}, x_n) + sd(x_n, x_{n+1})}{2s} \right\}$$

$$= \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}), \frac{d(x_{n-1}, x_n) + d(x_n, x_{n+1})}{2} \right\}$$

$$= \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\}$$

(3)

and

$$\theta (d(x_{n-1}, Tx_{n-1}), d(x_n, Tx_n), d(x_{n-1}, Tx_n), d(x_n, Tx_{n-1})) = \theta (d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_{n+1}), d(x_n, x_n)) = \theta (d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_{n+1}), 0) = 0.$$

$$(4)$$

By (2)-(4) and the properties of ψ and φ we obtain

$$\psi(d(x_n, x_{n+1})) \leqslant \psi \bigg(\max \bigg\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \bigg\} \bigg) - \varphi \bigg(M(x_{n-1}, x_n) \bigg)$$

$$< \psi \bigg(\max \bigg\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \bigg\} \bigg).$$
(5)

Now if

$$\max\left\{d(x_{n-1}, x_n), d(x_n, x_{n+1})\right\} = d(x_n, x_{n+1}),$$

then by (5)

$$\psi(d(x_n, x_{n+1})) \leq \psi(d(x_n, x_{n+1})) - \varphi(M(x_{n-1}, x_n)) < \psi(d(x_n, x_{n+1})),$$

which is a contradiction. Hence

$$\max\left\{d(x_{n-1}, x_n), d(x_n, x_{n+1})\right\} = d(x_{n-1}, x_n).$$

Therefore

$$\psi(d(x_n, x_{n+1})) \leqslant \psi(d(x_n, x_{n-1})) - \varphi(M(x_{n-1}, x_n)) < \psi(d(x_n, x_{n-1})).$$
(6)

Since ψ is a non-decreasing mapping, then $\{d(x_n, x_{n+1}) : n \in \mathbb{N} \cup \{0\}\}$ is a non-increasing sequence of positive numbers. Then there exists $r \ge 0$ such that

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = r$$

Letting $n \to \infty$ in (6), we have

$$\psi(r) \leq \psi(r) - \varphi(\lim_{n \to \infty} M(x_{n-1}, x_n)) \leq \psi(r).$$

Therefore $\varphi(\lim_{n\to\infty} M(x_{n-1}, x_n)) = 0$ and hence r = 0, i.e.,

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
(7)

Now, we show that $\{x_n\}$ is a *b*-Cauchy sequence in *X*. Assume the contrary, that $\{x_n\}$ is not a *b*-Cauchy sequence. Then there exists $\varepsilon > 0$ and two subsequences $\{x_{m_i}\}$ and $\{x_{n_i}\}$ of $\{x_n\}$ such that n_i is the smallest index for which

$$n_i > m_i > i \, \mathrm{dna} \, d(x_{m_i}, x_{n_i}) \geqslant \varepsilon. \tag{8}$$

That is

$$d(x_{m_i}, x_{n_i-1}) < \varepsilon. \tag{9}$$

By using (8), (9) and the triangular inequality

$$\varepsilon \leq d(x_{m_i}, x_{n_i})$$

$$\leq sd(x_{m_i}, x_{m_i-1}) + sd(x_{m_i-1}, x_{n_i})$$

$$\leq sd(x_{m_i}, x_{m_i-1}) + s^2 d(x_{m_i-1}, x_{n_i-1}) + s^2 d(x_{n_i-1}, x_{n_i})$$

Now, using (7) and taking the upper limit as $i \to \infty$

$$\frac{\varepsilon}{s^2} \leqslant \limsup_{i \longrightarrow \infty} d(x_{m_i-1}, x_{n_i-1}).$$

On the other hand

$$d(x_{m_i-1}, x_{n_i-1}) \leq sd(x_{m_i-1}, x_{m_i}) + sd(x_{m_i}, x_{n_i-1}).$$

Using (7), (9) and taking the upper limit as $i \to \infty$

$$\limsup_{i \to \infty} d(x_{m_i-1}, x_{n_i-1}) \leqslant \varepsilon s.$$

Hence

$$\frac{\varepsilon}{s^2} \leqslant \limsup_{i \to \infty} d(x_{m_i-1}, x_{n_i-1}) \leqslant \varepsilon s.$$
(10)

Again using the triangular inequality

$$d(x_{m_i-1}, x_{n_i}) \leq sd(x_{m_i-1}, x_{n_i-1}) + sd(x_{n_i-1}, x_{n_i}), \tag{11}$$

$$\varepsilon \leq d(x_{m_i}, x_{n_i}) \leq sd(x_{m_i}, x_{m_i-1}) + sd(x_{m_i-1}, x_{n_i})$$

$$(12)$$

and

$$\varepsilon \leqslant d(x_{m_i}, x_{n_i}) \leqslant sd(x_{m_i}, x_{n_i-1}) + sd(x_{n_i-1}, x_{n_i}).$$

$$(13)$$

Using (7) and (10) and taking the upper limit as $i \to \infty$ in (11) and (12) we get

$$\frac{\varepsilon}{s} \leqslant \limsup_{i \to \infty} d(x_{m_i - 1}, x_{n_i}) \leqslant \varepsilon s^2.$$
(14)

Again using (7) and (9) and taking the upper limit as $i \to \infty$ in (13)

$$\frac{\varepsilon}{s} \leq \limsup_{i \to \infty} d(x_{m_i}, x_{n_i-1}) \leq \varepsilon.$$
(15)

Since $\alpha(x_{m_i-1}, x_{n_i-1}) \ge 1$, $\lambda(x_{m_i-1}) \le 1$ and $\lambda(x_{n_i-1}) \le 1$ then from (iii) we have

$$\begin{split} \psi(sd(x_{m_{i}}, x_{n_{i}})) &= \psi(sd(Tx_{m_{i}-1}, Tx_{n_{i}-1})) \\ &\leq \lambda(x_{m_{i}-1})\lambda(x_{n_{i}-1}) \left[\psi(M(x_{m_{i}-1}, x_{n_{i}-1})) - \varphi(M(x_{m_{i}-1}, x_{n_{i}-1})) \right] \\ &+ \theta \Big(d(x_{m_{i}-1}, Tx_{m_{i}-1}), d(x_{n_{i}-1}, Tx_{n_{i}-1}), d(x_{m_{i}-1}, Tx_{n_{i}-1}), d(x_{n_{i}-1}, Tx_{m_{i}-1}) \Big) \Big) \\ &\leq \psi(M(x_{m_{i}-1}, x_{n_{i}-1})) - \varphi(M(x_{m_{i}-1}, x_{n_{i}-1})) \\ &+ \theta \Big(d(x_{m_{i}-1}, Tx_{m_{i}-1}), d(x_{n_{i}-1}, Tx_{n_{i}-1}), d(x_{m_{i}-1}, Tx_{n_{i}-1}), d(x_{m_{i}-1}, Tx_{m_{i}-1}) \Big) \Big) \end{split}$$

where

$$M(x_{m_{i}-1}, x_{n_{i}-1}) = \max\left\{ d(x_{m_{i}-1}, x_{n_{i}-1}), d(x_{m_{i}-1}, Tx_{m_{i}-1}), d(x_{n_{i}-1}, Tx_{n_{i}-1}), \frac{d(x_{m_{i}-1}, Tx_{n_{i}-1}) + d(Tx_{m_{i}-1}, x_{n_{i}-1})}{2s} \right\}$$

$$= \max\left\{ d(x_{m_{i}-1}, x_{n_{i}-1}), d(x_{m_{i}-1}, x_{m_{i}}), d(x_{n_{i}-1}, x_{n_{i}}), \frac{d(x_{m_{i}-1}, x_{n_{i}}) + d(x_{m_{i}}, x_{n_{i}-1})}{2s} \right\},$$
(17)

and

$$\theta\Big(d(x_{m_i-1}, Tx_{m_i-1}), d(x_{n_i-1}, Tx_{n_i-1}), d(x_{m_i-1}, Tx_{n_i-1}), d(x_{n_i-1}, Tx_{m_i-1})\Big) = \theta\Big(d(x_{m_i-1}, x_{m_i}), d(x_{n_i-1}, x_{n_i}), d(x_{m_i-1}, x_{m_i}), d(x_{n_i-1}, x_{m_i})\Big).$$

$$(18)$$

70

Taking the upper limit as $i \to \infty$ in (17) and (18) and using (7), (10), (14) and (15) we get

$$\frac{\varepsilon}{s^2} = \min\left\{\frac{\varepsilon}{s^2}, \frac{\frac{\varepsilon}{s} + \frac{\varepsilon}{s}}{2s}\right\} \leq \limsup_{i \to \infty} M(x_{m_i-1}, x_{n_i-1})$$
$$= \max\left\{\limsup_{i \to \infty} d(x_{m_i-1}, x_{n_i}), 0, 0, \right.$$
$$\frac{\limsup_{i \to \infty} d(x_{m_i-1}, x_{n_i}) + \limsup_{i \to \infty} d(x_{m_i}, x_{n_i-1})}{2s}\right\}$$
$$\leq \max\left\{\varepsilon s, \frac{\varepsilon s^2 + \varepsilon}{2s}\right\} = \varepsilon s.$$

 So

$$\frac{\varepsilon}{s^2} \leqslant \limsup_{i \to \infty} M(x_{m_i-1}, x_{n_i-1}) \leqslant \varepsilon s, \tag{19}$$

and

$$\lim_{i \to \infty} \sup_{i \to \infty} \theta \Big(d(x_{m_i-1}, Tx_{m_i-1}), d(x_{n_i-1}, Tx_{n_i-1}), d(x_{m_i-1}, Tx_{n_i-1}), d(x_{n_i-1}, Tx_{m_i-1}) \Big) \\= \limsup_{i \to \infty} \theta \Big(d(x_{m_i-1}, x_{m_i}), d(x_{n_i-1}, x_{n_i}), d(x_{m_i-1}, x_{n_i}), d(x_{n_i-1}, x_{m_i}) \Big) = 0.$$
(20)

Similarly

$$\frac{\varepsilon}{s^2} \leqslant \liminf_{i \to \infty} M(x_{m_i-1}, x_{n_i-1}) \leqslant \varepsilon s.$$
(21)

Now, taking the upper limit as $i \to \infty$ in (16) and using (8), (19) and (20) we have

$$\psi(\varepsilon s) \leqslant \psi(\underset{i \to \infty}{\operatorname{slim}} \sup_{i \to \infty} d(x_{m_i}, x_{n_i}))$$

$$\leqslant \psi(\underset{i \to \infty}{\operatorname{lim}} \sup_{i \to \infty} M(x_{m_i-1}, x_{n_i-1})) - \underset{n \to \infty}{\operatorname{lim}} \inf_{n \to \infty} \varphi(M(x_{m_i-1}, x_{n_i-1}))$$

$$\leqslant \psi(\varepsilon s) - \varphi(\underset{i \to \infty}{\operatorname{lim}} M(x_{m_i-1}, x_{n_i-1})),$$

which implies

$$\varphi(\liminf_{i \to \infty} M(x_{m_i-1}, x_{n_i-1})) = 0,$$

so $\liminf_{i\to\infty} M(x_{m_i-1}, x_{n_i-1}) = 0$, which is a contradiction with (21). So $\{x_{n+1}\}$ is a b-Cauchy sequence in X. Since X is a complete b-metric space, there exists $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$. Also, from (ii) we know T is an α -continuous mapping. Hence $Tx_n \to Tx^*$ as $n \to \infty$. Then

$$d(x^*, Tx^*) \leqslant sd(x^*, Tx_n) + sd(Tx_n, Tx^*).$$

Letting $n \to \infty$ in the above inequality

$$d(x^*, Tx^*) \leqslant s \lim_{n \to \infty} d(x^*, Tx_n) + s \lim_{n \to \infty} d(Tx_n, Tx^*) = 0.$$

So $Tx^* = x^*$.

For self-mappings that are not continuous or α -continuous we have the following result.

Theorem 2.2 Let (X, d, s) be a complete *b*-metric space, *T* be a self-mapping on *X* and $\alpha : X \times X \to [0, \infty)$ and $\lambda : X \to [0, +\infty)$ be two functions. Suppose that the following assertions hold.

- (i) There exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$ and $\lambda(x_0) \le 1$.
- (ii) T is a triangular α -admissible and semi λ -subadmissible mapping.

(iii) For all $x, y \in X$ with $\alpha(x, y) \ge 1$

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big)$$

where $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

(v) If $\{x_n\}$ be a sequence such that $\alpha(x_n, x_{n+1}) \ge 1$, $\lambda(x_n) \le 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$ as $n \to \infty$, then $\alpha(x_n, x) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x) \le 1$.

Then T has a fixed point.

Proof. Let $x_0 \in X$ be such that $\alpha(x_0, Tx_0) \ge 1$ and $\lambda(x_0) \le 1$. Define a sequence $\{x_n\}$ in X by $x_n = T^n x_0 = Tx_{n-1}$ for all $n \in \mathbb{N}$. Following the proof of the Theorem 2.1, we obtain that $\{x_n\}$ is a *b*-Cauchy sequence such that $\alpha(x_n, x_{n+1}) \ge 1$ and $\lambda(x_n) \le 1$ for all $n \in \mathbb{N} \cup \{0\}$. Since X is complete, there exists $x^* \in X$ such that the sequence $\{x_n\}$ *b*-converges to x^* . Using the assumption (v), we have $\alpha(x_n, x^*) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x^*) \le 1$. By (iii)

$$\psi(sd(x_{n+1}, Tx^*)) = \psi(sd(Tx_n, Tx^*))
\leq \lambda(x_n)\lambda(x^*) \Big[\psi(M(x_n, x^*)) - \varphi(M(x_n, x^*)) \Big]
+ \theta \Big(d(x_n, Tx_n), d(x^*, Tx^*), d(x_n, Tx^*), d(x^*, Tx_n) \Big)
\leq \psi(M(x_n, x^*)) - \varphi(M(x_n, x^*))
+ \theta \Big(d(x_n, Tx_n), d(x^*, Tx^*), d(x_n, Tx^*), d(x^*, Tx_n) \Big),$$
(22)

where

$$M(x_n, x^*) = \max\left\{ d(x_n, x^*), d(x_n, Tx_n), d(x^*, Tx^*), \frac{d(x_n, Tx^*) + d(Tx_n, x^*)}{2s} \right\}$$

= max \{ d(x_n, x^*), d(x_n, x_{n+1}), d(x^*, Tx^*), \frac{d(x_n, Tx^*) + d(x_{n+1}, x^*)}{2s} \} (23)

and

$$\theta\Big(d(x_n, Tx_n), d(x^*, Tx^*), d(x_n, Tx^*), d(x^*, Tx_n)\Big) \\= \theta\Big(d(x_n, x_{n+1}), d(x^*, Tx^*), d(x_n, Tx^*), d(x^*, x_{n+1})\Big).$$
(24)

Letting $n \to \infty$ in (23) and (24) and using lemma 1.4, we get

$$\frac{d(x^*, Tx^*)}{2s^2} = \min\left\{ d(x^*, Tx^*), \frac{d(x^*, Tx^*)}{2s^2} \right\} \leqslant \limsup_{n \to \infty} M(x_n, x^*) \\ \leqslant \max\left\{ d(x^*, Tx^*), \frac{sd(x^*, Tx^*)}{2s} \right\} = d(x^*, Tx^*),$$
(25)

and

$$\theta\Big(d(x_n, Tx_n), d(x^*, Tx^*), d(x_n, Tx^*), d(x^*, Tx_n)\Big) \to 0 \text{ as } n \to \infty.$$

Similarly

$$\frac{d(x^*, Tx^*)}{2s^2} \leqslant \liminf_{n \to \infty} M(x_n, x^*) \leqslant d(x^*, Tx^*).$$
(26)

Again, taking the upper limit as $i \to \infty$ in (22) and using lemma 1.4 and (25) we get

$$\psi(d(x^*, Tx^*)) = \psi(s\frac{1}{s}d(x^*, Tx^*)) \leqslant \psi(s\underset{n \to \infty}{\operatorname{sup}}d(x_{n+1}, Tx^*))$$
$$\leqslant \psi(\limsup_{n \to \infty}M(x_n, x^*)) - \liminf_{n \to \infty}\varphi(M(x_n, x^*))$$
$$\leqslant \psi(d(x^*, Tx^*)) - \varphi(\liminf_{n \to \infty}M(x_n, x^*)).$$

Hence, $\varphi(\liminf_{n \to \infty} M(x_n, x^*)) = 0$. Then, $\liminf_{n \to \infty} M(x_n, x^*) = 0$ which is a contradiction. So, $x^* = Tx^*$.

Example 2.3 Let $X = \mathbb{R}$ be endowed with the *b*-metric

$$d(x,y) = \begin{cases} (|x| + |y|)^2, \text{ if } x \neq y \\ 0 & \text{ if } x = y \end{cases}$$

for all $x, y \in X$. Define $T: X \to X$, $\alpha: X \times X \to [0, \infty)$ and $\lambda: X \to [0, \infty)$ by

$$Tx = \begin{cases} 2x^3 + \sin x, \text{ if } x \in (-\infty, 0) \\ \frac{1}{8}x^2, & \text{ if } x \in [0, 1) \\ \frac{1}{8}x, & \text{ if } x \in [1, 2) \\ \frac{1}{4}, & \text{ if } x \in [2, +\infty) \end{cases} \quad \alpha(x, y) = \begin{cases} 2, \text{ if } x, y \in [0, +\infty) \\ 0, \text{ otherwise} \end{cases}$$

and $\lambda(x) = \begin{cases} 1, & \text{if } x \in [0, +\infty) \\ \\ 2x^2 + 3, \text{ otherwise.} \end{cases}$

Also, define $\psi, \varphi : [0, \infty) \to [0, +\infty)$ and $\theta : [0, +\infty)^4 \to [0, +\infty)$ by $\psi(t) = t, \varphi(t) = \frac{3}{4}t$ and $\theta(t_1, t_2, t_3, t_4) = \min\{t_1, t_2, t_3, t_4\}$. Clearly (X, d, s) with s = 2 is a complete b-metric space, $\psi, \varphi \in \Psi$ and $\theta \in \Theta$. Let $\alpha(x, y) \ge 1$, then $x, y \in [0, +\infty)$. On the other hand, $Tw \in [0, +\infty)$ for all $w \in [0, +\infty)$. Then $\alpha(Tx, Ty) \ge 1$. That is, T is an α -admissible mapping. Let $\alpha(x, y) \ge 1$ and $\alpha(y, z) \ge 1$. So $x, y, z \in [0, +\infty)$ *i.e.*, $\alpha(x, z) \ge 1$. Hence T is a triangular α -admissible mapping. Also, let $\lambda(x) \le 1$. Thus $x \in [0, +\infty)$. That is, $\lambda(Tx) \le 1$. Thus T is a semi λ -subadmissible mapping. Let $\{x_n\}$ be a sequence in Xsuch that $\alpha(x_n, x_{n+1}) \ge 1$ and $\lambda(x_n) \le 1$ with $x_n \to x$ as $n \to \infty$. Then, $x_n \in [0, +\infty)$ for all $n \in \mathbb{N}$. Also $[0, +\infty)$ is a closed set. Then $x \in [0, +\infty)$. That is $\alpha(x_n, x) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x) \le 1$. Clearly $\alpha(0, T0) \ge 1$ and $\lambda(0) \le 1$.

Let $\alpha(x, y) \ge 1$. So $x, y \in [0, +\infty)$.

Now we consider the following cases:

• Let $x, y \in [0, 1)$ then

$$\begin{split} \psi(2d(Tx,Ty)) &= 2d(Tx,Ty) = 2(\frac{1}{8}x^2 + \frac{1}{8}y^2)^2 \\ &= \frac{1}{32}(x^2 + y^2)^2 \\ &\leq \frac{1}{4}(x+y)^2 \\ &= \frac{1}{4}d(x,y) \\ &\leq \frac{1}{4}M(x,y) \\ &= \psi(M(x,y)) - \varphi(M(x,y)) \\ &= \lambda(x)\lambda(y) \left[\psi(M(x,y)) - \varphi(M(x,y))\right] + \theta(d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)). \end{split}$$

• Let $x, y \in [1, 2)$ then

$$\psi(2d(Tx,Ty)) = 2d(Tx,Ty) = 2(\frac{1}{8}x + \frac{1}{8}y)^{2}$$

$$= \frac{1}{32}(x+y)^{2}$$

$$\leqslant \frac{1}{4}(x+y)^{2}$$

$$= \frac{1}{4}d(x,y)$$

$$\leqslant \frac{1}{4}M(x,y)$$

$$= \psi(M(x,y)) - \varphi(M(x,y))$$

$$\leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y))\Big]$$

$$+\theta(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)).$$

• Let $x, y \in [2, \infty)$ then

$$\begin{split} \psi(2d(Tx,Ty)) &= 2d(Tx,Ty) = 2(\frac{1}{4} + \frac{1}{4})^2 \\ &= \frac{1}{2} \leqslant 1 \\ &= \frac{1}{4}(1+1)^2 \\ &\leqslant \frac{1}{4}(x+y)^2 \\ &= \frac{1}{4}d(x,y) \\ &\leqslant \frac{1}{4}M(x,y) \\ &= \psi(M(x,y)) - \varphi(M(x,y)) \\ &\leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] \\ &+ \theta(d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)) \Big] \end{split}$$

• Let $x \in [0,1)$ and $y \in [1,2)$ then

$$\begin{split} \psi(2d(Tx,Ty)) &= 2d(Tx,Ty) = 2(\frac{1}{8}x^2 + \frac{1}{8}y)^2 \\ &\leqslant 2(\frac{1}{8}x + \frac{1}{8}y)^2 \\ &= \frac{1}{32}(x^2 + y^2)^2 \\ &\leqslant \frac{1}{4}(x+y)^2 \\ &= \frac{1}{4}d(x,y) \leqslant \frac{1}{4}M(x,y) \\ &= \psi(M(x,y)) - \varphi(M(x,y)) \\ &= \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y))\Big] \\ &+ \theta(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)). \end{split}$$

• Let $x \in [0,1)$ and $y \in [2,\infty)$ then

$$\begin{split} \psi(2d(Tx,Ty)) &= 2d(Tx,Ty) = 2t(\frac{1}{8}x^2 + \frac{1}{4})^2 \\ &\leq 2(\frac{1}{8}x + \frac{1}{8}y)^2 \\ &= \frac{1}{32}(x+y)^2 \\ &\leq \frac{1}{4}(x+y)^2 \\ &= \frac{1}{4}d(x,y) \\ &\leq \frac{1}{4}M(x,y) \\ &= \psi(M(x,y)) - \varphi(M(x,y)) \\ &= \psi(M(x,y)) - \varphi(M(x,y)) \\ &= \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] \\ &+ \theta(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)) \end{split}$$

• Let $x \in [1,2)$ and $y \in [2,\infty)$ then

$$\begin{split} \psi(2d(Tx,Ty)) &= 2d(Tx,Ty) = 2(\frac{1}{8}x + \frac{1}{4})^2 \\ &\leq 2(\frac{1}{8}x + \frac{1}{8}y)^2 \\ &= \frac{1}{32}(x+y)^2 \\ &\leq \frac{1}{4}(x+y)^2 \\ &= \frac{1}{4}d(x,y) \\ &\leq \frac{1}{4}M(x,y) \\ &= \psi(M(x,y)) - \varphi(M(x,y)) \\ &\leq \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] \\ &+ \theta(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)). \end{split}$$

Therefore $\alpha(x, y) \ge 1$ implies

$$\psi(2d(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + \theta(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)) \Big]$$

Hence, all conditions of Theorem 2.2 holds and T has a fixed point. Here, x = 0 is a fixed point of T.

Corollary 2.4 Let (X, d, s) be a complete *b*-metric space, *T* be a self-mapping on *X* and $\alpha : X \times X \to [0, \infty)$ and $\lambda : X \to [0, +\infty)$ be two functions. Suppose that the following assertions hold.

- (i) There exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$ and $\lambda(x_0) \le 1$.
- (ii) T is a triangular α -admissible and semi λ -subadmissible mapping.

(iii) For all $x, y \in X$

$$\psi(s\alpha(x,y)d(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y))\Big] + \theta\Big(d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\Big),$$
(27)

where $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

(v) If $\{x_n\}$ is a sequence such that $\alpha(x_n, x_{n+1}) \ge 1$, $\lambda(x_n) \le 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$ as $n \to \infty$ then $\alpha(x_n, x) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x) \le 1$.

Then T has a fixed point.

Proof. Let $\alpha(x, y) \ge 1$. Since ψ is increasing then from (iii)

$$\begin{split} \psi(sd(Tx,Ty)) &\leqslant \psi(s\alpha(x,y)d(Tx,Ty)) \\ &\leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] \\ &\quad + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big). \end{split}$$

Therefore all conditions of Theorem 2.2 holds and T has a fixed point.

If in Corollary 2.4 we take $\alpha(x, y) = 1$ for all $x, y \in X$, then we have the following corollary.

Corollary 2.5 Let (X, d, s) be a complete *b*-metric space and *T* be a self-mapping on X and $\lambda: X \to [0, +\infty)$ be a function. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that $\lambda(x_0) \leq 1$,
- (ii) T is a semi λ -subadmissible mapping,
- (iii) for all $x, y \in X$ we have

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big)$$
(28)

where, $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\},\$$

(v) if $\{x_n\}$ be a sequence such that $\lambda(x_n) \leq 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$ as $n \to \infty$ then $\lambda(x) \leq 1$.

Then T has a fixed point.

3. Some results in b-metric spaces endowed with a graph

In this section, we show that many fixed point results in b-metric spaces endowed with a graph G (see [4]) can be deduced easily from our presented theorems.

As in [14], let (E, d, s) be a *b*-metric space and Δ denotes the diagonal of the Cartesian product of $X \times X$. Consider a directed graph G such that the set V(G) of its vertices coincides with X and the set E(G) of its edges contains all loops, that is $E(G) \supseteq \Delta$. We assume that G has no parallel edges, so we can identify G with the pair (V(G), E(G)). Moreover, we may treat G as a weighted graph, see [15, P.309], by assigning to each edge the distance between its vertices. If x and y are vertices in a graph G then a path in G from x to y of length N ($N \in \mathbb{N}$) is a sequence $\{x_i\}_{i=0}^N$ of N + 1 vertices such that $x_0 = x, \ x_N = y$ and $(x_{i-1}, x_i) \in E(G)$ for $i = 1, \ldots, N$.

Definition 3.1 [14] Let (X, d) be a metric space endowed with a graph G. We say that a self-mapping $T : X \to X$ is a Banach G-contraction or simply a G-contraction if T preserves the edges of G that is,

for all
$$x, y \in X$$
, $(x, y) \in E(G) \Longrightarrow (Tx, Ty) \in E(G)$

and T decreases the weights of the edges of G in the following way:

 $\exists \alpha \in (0,1) \text{ such that for all } x, y \in X, \quad (x,y) \in E(G) \Longrightarrow d(Tx,Ty) \leq \alpha d(x,y).$

Definition 3.2 [14] A mapping $T : X \to X$ is called *G*-continuous if given $x \in X$ and sequence $\{x_n\}$

 $x_n \to x \text{ as } n \to \infty \text{ and } (x_n, x_{n+1}) \in E(G) \text{ for all } n \in \mathbb{N} \text{ imply } Tx_n \to Tx.$

Theorem 3.3 Let (X, d, s) be a complete *b*-metric space endowed with a graph G and T be a self-mapping on X. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that $(x_0, Tx_0) \in E(G)$ and $\lambda(x_0) \leq 1$,
- (ii) T is G-continuous and semi λ -subadmissible mapping,
- (iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow (T(x), T(y)) \in E(G)]$

(iv) $\forall x, y, z \in X[(x, y) \in E(G) \text{ and } (y, z) \in E(G) \Rightarrow (x, z) \in E(G)]$

(v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big) \Big\}$$

where, $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

Then T has a fixed point.

Proof. Define $\alpha: X^2 \to [0, +\infty)$ by

$$\alpha(x,y) = \begin{cases} 2, \text{ if } (x,y) \in E(G) \\ \frac{1}{2}, \text{ otherwise.} \end{cases}$$

First we show that T is a triangular α -admissible mapping. Let $\alpha(x, y) \ge 1$ then $(x, y) \in E(G)$. From (iii) $(Tx, Ty) \in E(G)$. That is $\alpha(Tx, Ty) \ge 1$. Also let $\alpha(x, y) \ge 1$ and $\alpha(y, z) \ge 1$. So $(x, y) \in E(G)$ and $(y, z) \in E(G)$. From (iv) we get $(x, z) \in E(G)$, i.e. $\alpha(x, z) \ge 1$. Thus T is a triangular α -admissible mapping. Let T be G-continuous. So

$$x_n \to x \text{ as } n \to \infty \text{ and } (x_n, x_{n+1}) \in E(G) \text{ for all } n \in \mathbb{N} \text{ imply } Tx_n \to Tx_n$$

That is,

$$x_n \to x \operatorname{as} n \to \infty$$
 and $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$ imply $Tx_n \to Tx_n$

which implies that T is α -continuous. From (i) there exists $x_0 \in X$ such that $(x_0, Tx_0) \in E(G)$. That is $\alpha(x_0, Tx_0) \ge 1$. Let $\alpha(x, y) \ge 1$ then $(x, y) \in E(G)$. Now from (v) we have

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big)$$

Hence all conditions of Theorem 2.1 are satisfied and T has a fixed point.

In Theorem 3.3 we take $\theta(t_1, t_2, t_3, t_4) = \min\{t_1, t_2, t_3, t_4\}.$

Corollary 3.4 Let (X, d, s) be a complete *b*-metric space endowed with a graph *G* and *T* be a self-mapping on *X*. Suppose that the following assertions hold.

(i) there exists $x_0 \in X$ such that $(x_0, Tx_0) \in E(G)$ and $\lambda(x_0) \leq 1$,

(ii) T is G-continuous and semi $\lambda\text{-subadmissible mapping},$

(iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow (T(x), T(y)) \in E(G)]$

(iv) $\forall x, y, z \in X[(x, y) \in E(G) \text{ and } (y, z) \in E(G) \Rightarrow (x, z) \in E(G)]$

(v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + L\min\{d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\} \Big\}$$

where, $\psi, \varphi \in \Psi, L \ge 0$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

Then T has a fixed point.

Theorem 3.5 Let (X, d, s) be a complete *b*-metric space endowed with a graph *G* and *T* be a self-mapping on *X*. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that $(x_0, Tx_0) \in E(G)$ and $\lambda(x_0) \leq 1$,
- (ii) T is semi λ -subadmissible mapping,
- (iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow (T(x), T(y)) \in E(G)]$

(iv) $\forall x, y, z \in X[(x, y) \in E(G) \text{ and } (y, z) \in E(G) \Rightarrow (x, z) \in E(G)]$

(v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big)$$
(29)

where, $(\psi, \varphi \in \Psi), \theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

(vi) if $\{x_n\}$ be a sequence in X such that $(x_n, x_{n+1}) \in E(G)$, $\lambda(x_n) \leq 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$ as $n \to \infty$ then $(x_n, x) \in E(G)$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x) \leq 1$.

Then T has a fixed point.

Proof. Define the mapping $\alpha : X^2 \to [0, +\infty)$ as in the proof of Theorem 3.3. Similar to the proof of Theorem 3.3 we can prove that the conditions (i)-(iii) of Theorem 2.2 are satisfied. Let $\{x_n\}$ be a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ and $\lambda(x_n) \le 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$ as $n \to \infty$. Then $(x_n, x_{n+1}) \in E(G)$ and $\lambda(x_n) \le 1$ for all $n \in \mathbb{N} \cup \{0\}$. From (vi) we get $(x_n, x) \in E(G)$ and $\lambda(x) \le 1$. That is $\alpha(x_n, x) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x) \le 1$. Therefore all conditions of Theorem 2.2 holds and T has a fixed point.

Corollary 3.6 Let (X, d, s) be a complete *b*-metric space endowed with a graph *G* and *T* be a self-mapping on *X*. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that $(x_0, Tx_0) \in E(G)$ and $\lambda(x_0) \leq 1$,
- (ii) T is semi λ -subadmissible mapping,
- (iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow (T(x), T(y)) \in E(G)]$
- (iv) $\forall x, y, z \in X[(x, y) \in E(G) \text{ and } (y, z) \in E(G) \Rightarrow (x, z \in E(G)]$
- (v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \left\lfloor \psi(M(x,y)) - \varphi(M(x,y)) \right\rfloor + L\min\{d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\}$$

where, $(\psi, \varphi \in \Psi), L \ge 0$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

(vi) if $\{x_n\}$ be a sequence in X such that $(x_n, x_{n+1}) \in E(G)$, $\lambda(x_n) \leq 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$ as $n \to \infty$, then $(x_n, x) \in E(G)$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x) \leq 1$.

Then T has a fixed point.

4. Some results in b-metric spaces endowed with a partial ordered

The existence of fixed points in partially ordered sets has been considered by many authors (such as [19], [21–26] and [29] etc.). Later on, some generalizations of [26] are given in [27]. Several applications of these results to matrix equations are presented in [26].

Let X be a nonempty set. If (X, d, s) is a b-metric space and (X, \preceq) be a partially ordered set, then (X, d, s, \preceq) is called an ordered b-metric space. Two elements $x, y \in X$ are called comparable if $x \preceq y$ or $y \preceq x$ hold. A mapping $T : X \to X$ is said to be non-decreasing if $x \preceq y$ implies $Tx \preceq Ty$ for all $x, y \in X$.

In this section, we will show that many fixed point results in partially ordered b-metric spaces can be deduced easily from our obtained results.

Theorem 4.1 Let (X, d, s, \preceq) be a complete ordered *b*-metric space and *T* be a selfmapping on *X*. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that $x_0 \preceq Tx_0$ and $\lambda(x_0) \leqslant 1$,
- (ii) T is continuous and semi λ -subadmissible mapping,
- (iii) T is an increasing mapping,
- (v) for all $x, y \in X$ with $x \leq y$ we have,

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big) + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big) \Big\} + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big) \Big\}$$

where, $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

Then T has a fixed point.

Proof. Define $\alpha: X^2 \to [0, +\infty)$ by

$$\alpha(x,y) = \begin{cases} 2, \text{ if } x \leq y\\ \frac{1}{2}, \text{ otherwise} \end{cases}$$

First, we prove that T is a triangular α -admissible mapping. Let $\alpha(x, y) \ge 1$, then $x \le y$. Since T is increasing, then we have $Tx \le Ty$. That is, $\alpha(Tx, Ty) \ge 1$. Suppose that $\alpha(x, y) \ge 1$ and $\alpha(y, z) \ge 1$. Then $x \le y$ and $y \le z$. Hence $x \le z$ i.e., $\alpha(x, z) \ge 1$. Therefore, T is a triangular α -admissible mapping. Since T is continuous then it is α -continuous too. From (i) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$. That is, $\alpha(x_0, Tx_0) \ge 1$. Let $\alpha(x, y) \ge 1$, then $x \le y$. Now, from (v) we have

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big).$$

Hence, all conditions of Theorem 2.1 are satisfied and T has a fixed point.

If in Theorem 3.3 we take $\theta(t_1, t_2, t_3, t_4) = L\psi(\min\{t_1, t_4\})$ where $L \ge 0$, then we have the following Corollary.

Corollary 4.2 Let (X, d, s, \preceq) be a complete ordered *b*-metric space and *T* be a selfmapping on *X*. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that $x_0 \preceq Tx_0$ and $\lambda(x_0) \leqslant 1$,
- (ii) T is continuous and semi λ -subadmissible mapping,
- (iii) T is an increasing mapping,

(v) for all $x, y \in X$ with $x \leq y$ we have,

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + L\psi(\min\{d(x,Tx),d(y,Tx)\}) \Big]$$

where, $\psi, \varphi \in \Psi, L \ge 0$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

Then T has a fixed point.

If in Corollary 3.3 we take $\lambda(x) = 1$ for all $x \in X$, then we have the following Corollary.

Corollary 4.3 [27, Theorem 3] Let (X, d, s, \preceq) be a complete ordered *b*-metric space and *T* be a self-mapping on *X*. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that $x_0 \preceq Tx_0$,
- (ii) T is continuous,
- (iii) T is an increasing mapping,
- (v) for all $x, y \in X$ with $x \leq y$ we have,

$$\psi(sd(Tx,Ty)) \leqslant \psi(M(x,y)) - \varphi(M(x,y)) + L\psi(\min\{d(x,Tx),d(y,Tx)\})$$

where, $\psi, \varphi \in \Psi, L \ge 0$ and

$$M(x,y) = \max\left\{d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s}\right\}$$

Then T has a fixed point.

Theorem 4.4 Let (X, d, s, \preceq) be a complete partially ordered *b*-metric space and let *T* be a self-mapping on *X*. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that $x_0 \preceq T x_0$ and $\lambda(x_0) \leqslant 1$,
- (ii) T is a semi λ -subadmissible mapping,
- (iii) T is an increasing mapping,
- (iv) for all $x, y \in X$ with $x \preceq y$ we have,

$$\psi(sd(Tx,Ty)) \leqslant \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + \theta \Big(d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \Big)$$

$$(30)$$

where, $(\psi, \varphi \in \Psi), \theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

(v) if $\{x_n\}$ be an increasing sequence in X such that $\lambda(x_n) \leq 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$ as $n \to \infty$ then $x_n \preceq x$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x) \leq 1$.

Then T has a fixed point.

Proof. Define the mapping $\alpha : X^2 \to [0, +\infty)$ as in the proof of Theorem 3.3. Analogous to the proof of Theorem 3.3 we can prove all the conditions (i)-(iii) of Theorem 2.2 are satisfied. Let $\{x_n\}$ be a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ and $\lambda(x_n) \le 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$ as $n \to \infty$. Then $x_n \preceq x_{n+1}$ and $\lambda(x_n) \le 1$ for all $n \in \mathbb{N} \cup \{0\}$. From (v) we get, $x_n \preceq x$ and $\lambda(x) \le 1$. That is, $\alpha(x_n, x) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x) \le 1$. Therefore all conditions of Theorem 2.2 holds and T has a fixed point.

Corollary 4.5 Let (X, d, s, \preceq) be a complete partially ordered *b*-metric space and *T* be a self-mapping on *X*. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that, $x_0 \preceq Tx_0$ and $\lambda(x_0) \leq 1$,
- (ii) T is a semi λ -subadmissible mapping,
- (iii) T is an increasing mapping,

(iv) for all $x, y \in X$ with $x \leq y$ we have,

$$\psi(sd(Tx,Ty)) \leq \lambda(x)\lambda(y) \Big[\psi(M(x,y)) - \varphi(M(x,y)) \Big] + L\psi(\min\{d(x,Tx),d(y,Tx)\})$$
(31)

where, $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

(v) if $\{x_n\}$ be an increasing sequence in X such that $\lambda(x_n) \leq 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$ as $n \to \infty$, then $x_n \preceq x$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x) \leq 1$.

Then T has a fixed point.

Corollary 4.6 [27, Theorem 4] Let (X, d, s, \preceq) be a complete partially ordered *b*-metric space and T be a self-mapping on X. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that $x_0 \preceq Tx_0$,
- (iii) T is an increasing mapping,
- (iv) for all $x, y \in X$ with $x \leq y$ we have,

$$\psi(sd(Tx,Ty)) \leqslant \psi(M(x,y)) - \varphi(M(x,y)) + L\psi(\min\{d(x,Tx),d(y,Tx)\})$$
(32)

where, $(\psi, \varphi \in \Psi), L \ge 0$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

(v) if $\{x_n\}$ be an increasing sequence in X such that $x_n \to x$ as $n \to \infty$ then $x_n \preceq x$ for all $n \in \mathbb{N} \cup \{0\}$.

Then T has a fixed point.

5. Some integral type contractions

Let Φ denotes the set of all functions $\phi: [0, +\infty) \to [0, +\infty)$ satisfying the following properties:

- every $\phi \in \Phi$ is a Lebesgue integrable function on each compact subset of $[0, +\infty)$,
- for any $\phi \in \Phi$ and any $\epsilon > 0$, $\int_0^{\epsilon} \phi(\tau) d\tau > 0$.

Note that if we take $\psi(t) = \int_0^t \phi(\tau) d\tau$ where $\phi \in \Phi$ then $\psi \in \Psi$.

Also note that if $\psi \in \Psi$ and $\theta \in \Theta$ then $\psi \theta \in \Theta$. If in Theorem 2.1 we take $\psi(t) = \int_0^t \phi(\tau) d\tau$, $\varphi(t) = (1-r) \int_0^t \phi(\tau) d\tau$ for all $t \in [0, \infty)$ where $0 \leq r < 1$ and replace θ by $\psi \theta$ then we have the following theorem.

Theorem 5.1 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and $\alpha: X \times X \to [0,\infty)$ and $\lambda: X \to [0,+\infty)$ be two functions. Suppose that the following assertions hold.

(i) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$ and $\lambda(x_0) \le 1$,

(ii) T is α -continuous, triangular α -admissible and semi λ -subadmissible mapping,

(iii) for all $x, y \in X$ with $\alpha(x, y) \ge 1$ we have

$$\int_{0}^{d(Tx,Ty)} \phi(\tau) d\tau \leqslant \frac{r\lambda(x)\lambda(y)}{s} \int_{0}^{M(x,y)} \phi(\tau) d\tau + \int_{0}^{\theta\left(d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\right)} \phi(\tau) d\tau$$
(33)

where, $0 \leqslant r < 1, \phi \in \Phi, \theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

Then T has a fixed point.

Theorem 5.2 Let (X, d, s) be a complete *b*-metric space, *T* be a self-mapping on *X* and $\alpha : X \times X \to [0, \infty)$ and $\lambda : X \to [0, +\infty)$ be two functions. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that, $\alpha(x_0, Tx_0) \ge 1$ and $\lambda(x_0) \le 1$,
- (ii) T is a triangular α -admissible and semi λ -subadmissible mapping,
- (iii) for all $x, y \in X$ with $\alpha(x, y) \ge 1$ we have

$$\int_{0}^{d(Tx,Ty)} \phi(\tau) d\tau \leqslant \frac{r\lambda(x)\lambda(y)}{s} \int_{0}^{M(x,y)} \phi(\tau) d\tau + \int_{0}^{\theta\left(d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\right)} \phi(\tau) d\tau$$
(34)

where, $0 \leq r < 1$, $\phi \in \Phi$, $\theta \in \Theta$ and

$$M(x,y) = \max\bigg\{d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s}\bigg\},\$$

(v) if $\{x_n\}$ be a sequence such that $\alpha(x_n, x_{n+1}) \ge 1$, $\lambda(x_n) \le 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$ as $n \to \infty$, then $\alpha(x_n, x) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x) \le 1$.

Then T has a fixed point.

Theorem 5.3 Let (X, d, s) be a complete *b*-metric space endowed with a graph *G* and *T* be a self-mapping on *X*. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that, $(x_0, Tx_0) \in E(G)$ and $\lambda(x_0) \leq 1$,
- (ii) T is G-continuous and semi λ -subadmissible mapping,
- (iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow (T(x), T(y)) \in E(G)]$
- (iv) $\forall x, y, z \in X[(x, y) \in E(G) \text{ and } (y, z) \in E(G) \Rightarrow (x, z) \in E(G)]$
- (v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$\int_{0}^{d(Tx,Ty)} \phi(\tau)d\tau \leqslant \frac{r\lambda(x)\lambda(y)}{s} \int_{0}^{M(x,y)} \phi(\tau)d\tau + \int_{0}^{\theta\left(d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\right)} \phi(\tau)d\tau$$
(35)

where, $0 \leq r < 1$, $\phi \in \Phi$, $\theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

Then T has a fixed point.

Theorem 5.4 Let (X, d, s) be a complete *b*-metric space endowed with a graph G and T be a self-mapping on X. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that $(x_0, Tx_0) \in E(G)$ and $\lambda(x_0) \leq 1$,
- (ii) T is semi λ -subadmissible mapping,
- (iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow (T(x), T(y)) \in E(G)]$
- (iv) $\forall x, y, z \in X[(x, y) \in E(G) \text{ and } (y, z) \in E(G) \Rightarrow (x, z) \in E(G)]$
- (v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$\int_{0}^{d(Tx,Ty)} \phi(\tau)d\tau \leqslant \frac{r\lambda(x)\lambda(y)}{s} \int_{0}^{M(x,y)} \phi(\tau)d\tau + \int_{0}^{\theta\left(d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\right)} \phi(\tau)d\tau$$
(36)

where, $0 \leq r < 1$, $\phi \in \Phi$, $\theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

(vi) if $\{x_n\}$ be a sequence in X such that $(x_n, x_{n+1}) \in E(G)$, $\lambda(x_n) \leq 1$ for all $n \in \mathbb{N} \cup \{0\}$ and $x_n \to x$ as $n \to \infty$ then $(x_n, x) \in E(G)$ for all $n \in \mathbb{N} \cup \{0\}$ and $\lambda(x) \leq 1$.

Then T has a fixed point.

Theorem 5.5 Let (X, d, s, \preceq) be a complete ordered *b*-metric space and *T* be a self-mapping on *X*. Suppose that the following assertions hold.

- (i) there exists $x_0 \in X$ such that $x_0 \preceq Tx_0$ and $\lambda(x_0) \leqslant 1$,
- (ii) T is continuous and semi λ -subadmissible mapping,
- (iii) T is an increasing mapping,
- (v) for all $x, y \in X$ with $x \leq y$ we have

$$\int_{0}^{d(Tx,Ty)} \phi(\tau) d\tau \leqslant \frac{r\lambda(x)\lambda(y)}{s} \int_{0}^{M(x,y)} \phi(\tau) d\tau + \int_{0}^{\theta \left(d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\right)} \phi(\tau) d\tau$$
(37)

where, $0 \leq r < 1$, $\phi \in \Phi$, $\theta \in \Theta$ and

$$M(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2s} \right\}.$$

Then T has a fixed point.

References

- [1] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 4 (2014), 941-960.
- [2] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, (Russian), Func. An., Gos. Ped. Inst. Unianowsk 30 (1989), 26-37.
- [3] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint no. 3 (1993), 3-9.
- [4] F. Bojor, Fixed point theorems for Reich type contraction on metric spaces with a graph, Nonlinear Anal. 75 (2012), 3895-3901.
- [5] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Modern Math., 4(3) (2009), 285-301.
- S. Czerwick, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5-11.

- [7] N. Hussain, V. Parvaneh, J.R. Roshan and Z Kadelburg, Fixed points of cyclic weakly (ψ, φ, L, A, B) contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl. **256** (2013).
- [8] J.R. Roshan, V. Parvaneh and I. Altun, Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations, Applied Mathematics and Computation 226 (2014), 725-737.
- [9] Z. Mustafa, J.R. Roshan, V. Parvaneh and Z. Kadelburg, Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces, Journal of Inequalities and Applications 46 (2014).
 [10] N. Hussain, J.R. Roshan, V. Parvaneh and M. Abbas, Common fixed point results for weak contractive
- [10] N. Hussain, J.R. Rosnan, V. Parvanen and M. Abbas, Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications, Journal of Inequalities and Applications 486 (2013).
- [11] Z. Mustafa, J.R. Roshan, V. Parvaneh and Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, Journal of Inequalities and Applications 562 (2013).
- [12] N. Hussain, M. A. Kutbi and P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstract and Applied Analysis 280817 (2014), 11 pages.
- [13] N. Hussain, P. Salimi and A. Latif, Fixed point results for single and set-valued α - η - ψ -contractive mappings, Fixed Point Theory and Appl. **212** (2013).
- [14] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359–1373.
- [15] R. Johnsonbaugh, Discrete Mathematics, Prentice-Hall, Inc., New Jersey, 1997.
- [16] E. Karapınar, P. Kumam and P. Salimi, On α - ψ -Meir-Keeler contractive mappings, Fixed Point Theory and Appl. 94 (2013).
- [17] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), 1-9.
- [18] M.A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010), 3123-3129.
- [19] P. Kumam, H. Rahimi and G. Soleimani Rad, The existence of fixed and periodic point theorems in cone metric type spaces, J. Nonlinear Sci. Appl. 7 (4) (2014), 255-263.
- [20] P. Kumam and A. Roldán, On existence and uniqueness of g-best proximity points under $(\varphi, \theta, \alpha, g)$ contractivity conditions and consequences, Abstract and Applied Analysis, Article ID 234027 (2014), 14
 pages.
- [21] J.J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239.
- [22] J.J. Nieto and R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin., (English Ser.), 23 (2007) 2205-2212.
- [23] H. Rahimi and G. Soleimani Rad, Fixed point theory in various spaces, Lambert Academic Publishing, Germany, 2013.
- [24] H. Rahimi and G. Soleimani Rad, Some fixed point results in metric type space, J. Basic. Appl. Sci. Res. 2 (9) (2012), 9301-9308.
- [25] H. Rahimi, P. Vetro, G. Soleimani Rad, Some common fixed point results for weakly compatible mappings in cone metric type space, Miskolc Math. Notes. 14 (1) (2013), 233-243.
- [26] A.C.M. Ran and M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.
- [27] J.R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common Fixed Points of Almost Generalized (ψ, φ)_s-Contractive Mappings in Ordered b-Metric Spaces, Fixed Point Theory and Appl. 159 (2013).
- [28] P. Salimi, A. Latif and N. Hussain, Modified α - ψ -contractive mappings with applications, Fixed Point Theory and Appl. 151 (2013).
- [29] P. Salimi and P. Vetro, A result of Suzuki type in partial G-metric spaces, Acta Mathematica Scientia 34B(2) (2014), 1-11.
- [30] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165.