Fixed Point Theorems for semi λ-subadmissible Contractions in b-Metric spaces

R.J. Shahkoohi ${ }^{\text {a }}$, A. Razani ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Received 11 December 2014; Revised 15 March 2015; Accepted 9 April 2015.

Abstract

Here, a new certain class of contractive mappings in the b-metric spaces is introduced. Some fixed point theorems are proved which generalize and modify the recent results in the literature. As an application, some results in the b-metric spaces endowed with a partial ordered are proved.

(c) 2015 IAUCTB. All rights reserved.

Keywords: Fixed point, b-metric.
2010 AMS Subject Classification: 46N40, 47H10, 54H25, 46T99.

1. Introduction

The existence of a fixed point is studied by many authors. The notion of b-metric space was first explained by Bakhtin in [2] and then widely utilized by Czerwik in [6] (this space is a metric type spaces defined by Khamsi and Hussain [18]). Since then, many researches deal with fixed point theory for single-valued and multi-valued mappings in b-metric spaces (see, $[3,6,7]$ and references therein). Meanwhile, Samet et al. [30] presented the notions of $\alpha-\psi$-contractive and α-admissible mappings and founded several fixed point theorems for such mappings outline under the complete metric spaces. Subsequently, Salimi et al. [28] and Hussain et al. [13] improved the concepts of $\alpha-\psi$-contractive and α admissible mappings and studied some fixed point theorems. In this paper, a new classes of contractive mappings is introduced in order to study some fixed point theorems in the $b-$ metric spaces.

[^0]Definition 1.1 [6] Let X be a nonempty set and $s \geqslant 1$. A function $d: X \times X \rightarrow \mathbb{R}^{+}$is a b-metric if and only if for all $x, y, z \in X$, the following conditions hold:
$\left(\mathrm{b}_{1}\right) d(x, y)=0$ iff $x=y$,
$\left(\mathrm{b}_{2}\right) d(x, y)=d(y, x)$,
$\left(\mathrm{b}_{3}\right) d(x, z) \leqslant s[d(x, y)+d(y, z)]$.
Then the tripled (X, d, s) is called a b-metric space.
Definition 1.2 [5] Let (X, d) be a b-metric space. A sequence $\left\{x_{n}\right\}$ in X is called:
(a) b-convergent if and only if there exists $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$, as $n \rightarrow+\infty$.

In this case, we write $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) b-Cauchy if and only if $d\left(x_{n}, x_{m}\right) \rightarrow 0$, as $n, m \rightarrow+\infty$.

Proposition 1.3 [5, Remark 2.1] In a b-metric space (X, d) the following assertions hold:
p_{1}. A b-convergent sequence has a unique limit.
p_{2}. Each b-convergent sequence is b-Cauchy.
p_{3}. In general a b-metric is not continuous.
Lemma 1.4 [1] Let (X, d) be a b-metric space with $s \geqslant 1$. Suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are b-convergent to x, y, respectively. Then

$$
\frac{1}{s^{2}} d(x, y) \leqslant \liminf _{n \longrightarrow \infty} d\left(x_{n}, y_{n}\right) \leqslant \limsup _{n \longrightarrow \infty} d\left(x_{n}, y_{n}\right) \leqslant s^{2} d(x, y)
$$

In particular, if $x=y$ then $\lim _{n \longrightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. Moreover, for each $z \in X$

$$
\frac{1}{s} d(x, z) \leqslant \liminf _{n \longrightarrow \infty} d\left(x_{n}, z\right) \leqslant \limsup _{n \longrightarrow \infty} d\left(x_{n}, z\right) \leqslant s d(x, z) .
$$

For more details on b-metric spaces the reader can refer to [7]-[11].
Definition 1.5 [30] Let T be a self-mapping on X and $\alpha: X \times X \rightarrow[0,+\infty)$ be a function. T is an α-admissible mapping if

$$
x, y \in X, \quad \alpha(x, y) \geqslant 1 \quad \Longrightarrow \quad \alpha(T x, T y) \geqslant 1 .
$$

Definition 1.6 [16] Let T be an α-admissible mapping. We say that T is a triangular α-admissible mapping if $\alpha(x, y) \geqslant 1$ and $\alpha(y, z) \geqslant 1$ implies that $\alpha(x, z) \geqslant 1$.
Lemma 1.7 [16] Let T be a triangular α-admissible mapping. Assume that there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geqslant 1$. Define sequence $\left\{x_{n}\right\}$ by $x_{n}=T^{n} x_{0}$. Then

$$
\alpha\left(x_{m}, x_{n}\right) \geqslant 1 \text { for all } m, n \in \mathbb{N} \text { with } m<n .
$$

Definition 1.8 [12] Let $\alpha: X \times X \rightarrow[0, \infty)$ and $T: X \rightarrow X$. We say that T is an α-continuous mapping if for given $x \in X$ and sequence $\left\{x_{n}\right\}$ with $x_{n} \rightarrow x$ and $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ for all $n \in \mathbb{N}$ one has $T x_{n} \rightarrow T x$.
Definition 1.9 Let T be a self-mapping on X and let $\lambda: X \rightarrow[0,+\infty)$ be a function. We say that T is a semi λ-subadmissible mapping if

$$
x \in X, \quad \lambda(x) \leqslant 1 \quad \Longrightarrow \quad \lambda(T x) \leqslant 1
$$

Example 1.10 Let $T: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $T x=x^{3}$. Suppose that $\lambda: \mathbb{R} \rightarrow \mathbb{R}^{+}$is given by $\lambda(x)=e^{x}$ for all $x \in \mathbb{R}$. Then T is a semi λ-subadmissible mapping. Indeed, if $\lambda(x)=e^{x} \leqslant 1$ then $x \leqslant 0$ which implies that $T x \leqslant 0$. Therefore $\lambda(T x)=e^{T x} \leqslant 1$.

Consistent with Khan et al. [17] we denote by Ψ the set of all function $\varphi:[0,+\infty) \rightarrow$ $[0,+\infty)$ (which is called an altering distance function) if the following conditions hold:

- φ is continuous and non-decreasing.
- $\varphi(t)=0$ if and only if $t=0$.

Motivated by Kumam and Roldán [20] we introduce the following class of mappings which is suitable for our results.

Let Θ denote the set of all functions $\theta: R^{+^{4}} \rightarrow R^{+}$satisfying:
$\left(\Theta_{1}\right) \theta$ is continuous and increasing in all its variables;
$\left(\Theta_{2}\right) \theta\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=0$ iff either $t_{1}=0$ or $t_{4}=0$.

2. Main Theorems

In this section we stat the Main results. The first theorem is based on [7, Theorem 4] and [27, Theorem 3].

Theorem 2.1 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and $\alpha: X \times X \rightarrow[0, \infty)$ and $\lambda: X \rightarrow[0,+\infty)$ be two functions. Suppose that the following assertions hold.
(i) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geqslant 1$ and $\lambda\left(x_{0}\right) \leqslant 1$.
(ii) T is α-continuous, triangular α-admissible and semi λ-subadmissible mapping.
(iii) For all $x, y \in X$ with $\alpha(x, y) \geqslant 1$

$$
\begin{equation*}
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x)) \tag{1}
\end{equation*}
$$

where $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

Then T has a fixed point.
Proof. Let $x_{0} \in X$ be such that $\alpha\left(x_{0}, T x_{0}\right) \geqslant 1$ and $\lambda\left(x_{0}\right) \leqslant 1$. We define a sequence $\left\{x_{n}\right\}$ as follows

$$
x_{n}=T^{n} x_{0}=T x_{n-1}
$$

for all $n \in \mathbb{N}$. If $x_{n}=x_{n+1}$ for some $n \in \mathbb{N}$ then $x_{n}=T x_{n}$ and so x_{n} is a fixed point of f. Hence we assume that $x_{n} \neq x_{n+1}$, for all $n \in \mathbb{N}$. Since T is a triangular α-admissible mapping then by Lemma 1.7

$$
\alpha\left(x_{m}, x_{n}\right) \geqslant 1 \text { for all } m, n \in \mathbb{N} \text { with } m<n .
$$

Also, since T is a semi λ-subadmissible mapping and $\lambda\left(x_{0}\right) \leqslant 1$ then $\lambda\left(x_{1}\right)=\lambda\left(T x_{0}\right) \leqslant 1$. Again, since T is semi λ-subadmissible, then $\lambda\left(x_{2}\right)=\lambda\left(T x_{1}\right) \leqslant 1$. Continuing this process
$\lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$. Then by (iii),

$$
\begin{align*}
\psi\left(d\left(x_{n}, x_{n+1}\right)\right) & \leqslant \psi\left(s d\left(x_{n}, x_{n+1}\right)\right) \\
& =\psi\left(s d\left(T x_{n-1}, T x_{n}\right)\right) \\
& \leqslant \lambda\left(x_{n-1}\right) \lambda\left(x_{n}\right)\left[\psi\left(M\left(x_{n-1}, x_{n}\right)\right)-\varphi\left(M\left(x_{n-1}, x_{n}\right)\right)\right] \tag{2}\\
& +\theta\left(d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n}, T x_{n}\right), d\left(x_{n-1}, T x_{n}\right), d\left(x_{n}, T x_{n-1}\right)\right) \\
& \leqslant \psi\left(M\left(x_{n-1}, x_{n}\right)\right)-\varphi\left(M\left(x_{n-1}, x_{n}\right)\right) \\
& +\theta\left(d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n}, T x_{n}\right), d\left(x_{n-1}, T x_{n}\right), d\left(x_{n}, T x_{n-1}\right)\right)
\end{align*}
$$

where

$$
\begin{align*}
M\left(x_{n-1}, x_{n}\right) & =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n}, T x_{n}\right), \frac{d\left(x_{n-1}, T x_{n}\right)+d\left(x_{n}, T x_{n-1}\right)}{2 s}\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), \frac{d\left(x_{n-1}, x_{n+1}\right)}{2 s}\right\} \\
& \leqslant \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), \frac{s d\left(x_{n-1}, x_{n}\right)+s d\left(x_{n}, x_{n+1}\right)}{2 s}\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), \frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)}{2}\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
& \theta\left(d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n}, T x_{n}\right), d\left(x_{n-1}, T x_{n}\right), d\left(x_{n}, T x_{n-1}\right)\right) \\
& =\theta\left(d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n+1}\right), d\left(x_{n}, x_{n}\right)\right) \tag{4}\\
& =\theta\left(d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n+1}\right), 0\right)=0
\end{align*}
$$

By (2)-(4) and the properties of ψ and φ we obtain

$$
\begin{align*}
\psi\left(d\left(x_{n}, x_{n+1}\right)\right) & \leqslant \psi\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}\right)-\varphi\left(M\left(x_{n-1}, x_{n}\right)\right) \tag{5}\\
& <\psi\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}\right)
\end{align*}
$$

Now if

$$
\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}=d\left(x_{n}, x_{n+1}\right)
$$

then by (5)

$$
\begin{aligned}
\psi\left(d\left(x_{n}, x_{n+1}\right)\right) & \leqslant \psi\left(d\left(x_{n}, x_{n+1}\right)\right)-\varphi\left(M\left(x_{n-1}, x_{n}\right)\right) \\
& <\psi\left(d\left(x_{n}, x_{n+1}\right)\right)
\end{aligned}
$$

which is a contradiction. Hence

$$
\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}=d\left(x_{n-1}, x_{n}\right)
$$

Therefore

$$
\begin{equation*}
\psi\left(d\left(x_{n}, x_{n+1}\right)\right) \leqslant \psi\left(d\left(x_{n}, x_{n-1}\right)\right)-\varphi\left(M\left(x_{n-1}, x_{n}\right)\right)<\psi\left(d\left(x_{n}, x_{n-1}\right)\right) \tag{6}
\end{equation*}
$$

Since ψ is a non-decreasing mapping, then $\left\{d\left(x_{n}, x_{n+1}\right): n \in \mathbb{N} \cup\{0\}\right\}$ is a non-increasing sequence of positive numbers. Then there exists $r \geqslant 0$ such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r
$$

Letting $n \rightarrow \infty$ in (6), we have

$$
\psi(r) \leqslant \psi(r)-\varphi\left(\lim _{n \rightarrow \infty} M\left(x_{n-1}, x_{n}\right)\right) \leqslant \psi(r)
$$

Therefore $\varphi\left(\lim _{n \rightarrow \infty} M\left(x_{n-1}, x_{n}\right)\right)=0$ and hence $r=0$, i.e.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 \tag{7}
\end{equation*}
$$

Now, we show that $\left\{x_{n}\right\}$ is a b-Cauchy sequence in X. Assume the contrary, that $\left\{x_{n}\right\}$ is not a b-Cauchy sequence. Then there exists $\varepsilon>0$ and two subsequences $\left\{x_{m_{i}}\right\}$ and $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that n_{i} is the smallest index for which

$$
\begin{equation*}
n_{i}>m_{i}>i \text { dna } d\left(x_{m_{i}}, x_{n_{i}}\right) \geqslant \varepsilon \tag{8}
\end{equation*}
$$

That is

$$
\begin{equation*}
d\left(x_{m_{i}}, x_{n_{i}-1}\right)<\varepsilon \tag{9}
\end{equation*}
$$

By using (8), (9) and the triangular inequality

$$
\begin{aligned}
\varepsilon & \leqslant d\left(x_{m_{i}}, x_{n_{i}}\right) \\
& \leqslant s d\left(x_{m_{i}}, x_{m_{i}-1}\right)+s d\left(x_{m_{i}-1}, x_{n_{i}}\right) \\
& \leqslant s d\left(x_{m_{i}}, x_{m_{i}-1}\right)+s^{2} d\left(x_{m_{i}-1}, x_{n_{i}-1}\right)+s^{2} d\left(x_{n_{i}-1}, x_{n_{i}}\right)
\end{aligned}
$$

Now, using (7) and taking the upper limit as $i \rightarrow \infty$

$$
\frac{\varepsilon}{s^{2}} \leqslant \limsup _{i \longrightarrow \infty} d\left(x_{m_{i}-1}, x_{n_{i}-1}\right)
$$

On the other hand

$$
d\left(x_{m_{i}-1}, x_{n_{i}-1}\right) \leqslant s d\left(x_{m_{i}-1}, x_{m_{i}}\right)+s d\left(x_{m_{i}}, x_{n_{i}-1}\right)
$$

Using (7), (9) and taking the upper limit as $i \rightarrow \infty$

$$
\limsup _{i \longrightarrow \infty} d\left(x_{m_{i}-1}, x_{n_{i}-1}\right) \leqslant \varepsilon s .
$$

Hence

$$
\begin{equation*}
\frac{\varepsilon}{s^{2}} \leqslant \limsup _{i \longrightarrow \infty} d\left(x_{m_{i}-1}, x_{n_{i}-1}\right) \leqslant \varepsilon s . \tag{10}
\end{equation*}
$$

Again using the triangular inequality

$$
\begin{align*}
& d\left(x_{m_{i}-1}, x_{n_{i}}\right) \leqslant s d\left(x_{m_{i}-1}, x_{n_{i}-1}\right)+s d\left(x_{n_{i}-1}, x_{n_{i}}\right), \tag{11}\\
& \varepsilon \leqslant d\left(x_{m_{i}}, x_{n_{i}}\right) \leqslant s d\left(x_{m_{i}}, x_{m_{i}-1}\right)+\operatorname{sd}\left(x_{m_{i}-1}, x_{n_{i}}\right) \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
\varepsilon \leqslant d\left(x_{m_{i}}, x_{n_{i}}\right) \leqslant s d\left(x_{m_{i}}, x_{n_{i}-1}\right)+\operatorname{sd}\left(x_{n_{i}-1}, x_{n_{i}}\right) . \tag{13}
\end{equation*}
$$

Using (7) and (10) and taking the upper limit as $i \rightarrow \infty$ in (11) and (12) we get

$$
\begin{equation*}
\frac{\varepsilon}{s} \leqslant \limsup _{i \rightarrow \infty} d\left(x_{m_{i}-1}, x_{n_{i}}\right) \leqslant \varepsilon s^{2} . \tag{14}
\end{equation*}
$$

Again using (7) and (9) and taking the upper limit as $i \rightarrow \infty$ in (13)

$$
\begin{equation*}
\frac{\varepsilon}{s} \leqslant \limsup _{i \rightarrow \infty} d\left(x_{m_{i}}, x_{n_{i}-1}\right) \leqslant \varepsilon . \tag{15}
\end{equation*}
$$

Since $\alpha\left(x_{m_{i}-1}, x_{n_{i}-1}\right) \geqslant 1, \lambda\left(x_{m_{i}-1}\right) \leqslant 1$ and $\lambda\left(x_{n_{i}-1}\right) \leqslant 1$ then from (iii) we have

$$
\begin{align*}
& \psi\left(s d\left(x_{m_{i}}, x_{n_{i}}\right)\right)=\psi\left(s d\left(T x_{m_{i}-1}, T x_{n_{i}-1}\right)\right) \\
& \leqslant \lambda\left(x_{m_{i}-1}\right) \lambda\left(x_{n_{i}-1}\right)\left[\psi\left(M\left(x_{m_{i}-1}, x_{n_{i}-1}\right)\right)-\varphi\left(M\left(x_{m_{i}-1}, x_{n_{i}-1}\right)\right)\right] \\
& +\theta\left(d\left(x_{m_{i}-1}, T x_{m_{i}-1}\right), d\left(x_{n_{i}-1}, T x_{n_{i}-1}\right), d\left(x_{m_{i}-1}, T x_{n_{i}-1}\right), d\left(x_{n_{i}-1}, T x_{m_{i}-1}\right)\right)(1 \\
& \leqslant \psi\left(M\left(x_{m_{i}-1}, x_{n_{i}-1}\right)\right)-\varphi\left(M\left(x_{m_{i}-1}, x_{n_{i}-1}\right)\right) \\
& +\theta\left(d\left(x_{m_{i}-1}, T x_{m_{i}-1}\right), d\left(x_{n_{i}-1}, T x_{n_{i}-1}\right), d\left(x_{m_{i}-1}, T x_{n_{i}-1}\right), d\left(x_{n_{i}-1}, T x_{m_{i}-1}\right)\right),
\end{align*}
$$

where

$$
\begin{aligned}
& M\left(x_{m_{i}-1}, x_{n_{i}-1}\right)= \max \left\{d\left(x_{m_{i}-1}, x_{n_{i}-1}\right), d\left(x_{m_{i}-1}, T x_{m_{i}-1}\right), d\left(x_{n_{i}-1}, T x_{n_{i}-1}\right),\right. \\
&\left.\frac{d\left(x_{m_{i}-1}, T x_{n_{i}-1}\right)+d\left(T x_{m_{i}-1}, x_{n_{i}-1}\right)}{2 s}\right\} \\
&=\max \left\{d\left(x_{m_{i}-1}, x_{n_{i}-1}\right), d\left(x_{m_{i}-1}, x_{m_{i}}\right), d\left(x_{n_{i}-1}, x_{n_{i}}\right),\right. \\
&\left.\frac{d\left(x_{m_{i}-1}, x_{n_{i}}\right)+d\left(x_{m_{i}}, x_{n_{i}-1}\right)}{2 s}\right\},
\end{aligned}
$$

and

$$
\begin{align*}
& \theta\left(d\left(x_{m_{i}-1}, T x_{m_{i}-1}\right), d\left(x_{n_{i}-1}, T x_{n_{i}-1}\right), d\left(x_{m_{i}-1}, T x_{n_{i}-1}\right), d\left(x_{n_{i}-1}, T x_{m_{i}-1}\right)\right) \\
& =\theta\left(d\left(x_{m_{i}-1}, x_{m_{i}}\right), d\left(x_{n_{i}-1}, x_{n_{i}}\right), d\left(x_{m_{i}-1}, x_{n_{i}}\right), d\left(x_{n_{i}-1}, x_{m_{i}}\right)\right) . \tag{18}
\end{align*}
$$

Taking the upper limit as $i \rightarrow \infty$ in (17) and (18) and using (7), (10), (14) and (15) we get

$$
\begin{aligned}
\frac{\varepsilon}{s^{2}} & =\min \left\{\frac{\varepsilon}{s^{2}}, \frac{\frac{\varepsilon}{s}+\frac{\varepsilon}{s}}{2 s}\right\} \leqslant \limsup _{i \longrightarrow \infty} M\left(x_{m_{i}-1}, x_{n_{i}-1}\right) \\
& =\max \left\{\limsup _{i \longrightarrow \infty} d\left(x_{m_{i}-1}, x_{n_{i}-1}\right), 0,0\right. \\
& \left.\frac{\limsup _{i \longrightarrow \infty} d\left(x_{m_{i}-1}, x_{n_{i}}\right)+\limsup _{i \longrightarrow \infty} d\left(x_{m_{i}}, x_{n_{i}-1}\right)}{2 s}\right\} \\
& \leqslant \max \left\{\varepsilon s, \frac{\varepsilon s^{2}+\varepsilon}{2 s}\right\}=\varepsilon s
\end{aligned}
$$

So

$$
\begin{equation*}
\frac{\varepsilon}{s^{2}} \leqslant \limsup _{i \longrightarrow \infty} M\left(x_{m_{i}-1}, x_{n_{i}-1}\right) \leqslant \varepsilon s \tag{19}
\end{equation*}
$$

and

$$
\begin{align*}
& \limsup _{i \rightarrow \infty} \theta\left(d\left(x_{m_{i}-1}, T x_{m_{i}-1}\right), d\left(x_{n_{i}-1}, T x_{n_{i}-1}\right), d\left(x_{m_{i}-1}, T x_{n_{i}-1}\right), d\left(x_{n_{i}-1}, T x_{m_{i}-1}\right)\right) \\
& =\limsup _{i \rightarrow \infty} \theta\left(d\left(x_{m_{i}-1}, x_{m_{i}}\right), d\left(x_{n_{i}-1}, x_{n_{i}}\right), d\left(x_{m_{i}-1}, x_{n_{i}}\right), d\left(x_{n_{i}-1}, x_{m_{i}}\right)\right)=0 \tag{20}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\frac{\varepsilon}{s^{2}} \leqslant \liminf _{i \longrightarrow \infty} M\left(x_{m_{i}-1}, x_{n_{i}-1}\right) \leqslant \varepsilon s . \tag{21}
\end{equation*}
$$

Now, taking the upper limit as $i \rightarrow \infty$ in (16) and using (8), (19) and (20) we have

$$
\begin{aligned}
\psi(\varepsilon s) & \leqslant \psi\left(\limsup _{i \longrightarrow \infty} d\left(x_{m_{i}}, x_{n_{i}}\right)\right) \\
& \leqslant \psi\left(\limsup _{i \longrightarrow \infty} M\left(x_{m_{i}-1}, x_{n_{i}-1}\right)\right)-\liminf _{n \longrightarrow \infty} \varphi\left(M\left(x_{m_{i}-1}, x_{n_{i}-1}\right)\right) \\
& \leqslant \psi(\varepsilon s)-\varphi\left(\liminf _{i \longrightarrow \infty} M\left(x_{m_{i}-1}, x_{n_{i}-1}\right)\right)
\end{aligned}
$$

which implies

$$
\varphi\left(\liminf _{i \longrightarrow \infty} M\left(x_{m_{i}-1}, x_{n_{i}-1}\right)\right)=0
$$

so $\liminf _{i \longrightarrow \infty} M\left(x_{m_{i}-1}, x_{n_{i}-1}\right)=0$, which is a contradiction with (21). So $\left\{x_{n+1}\right\}$ is a b-Cauchy sequence in X. Since X is a complete b-metric space, there exists $x^{*} \in X$ such that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. Also, from (ii) we know T is an α-continuous mapping. Hence $T x_{n} \rightarrow T x^{*}$ as $n \rightarrow \infty$. Then

$$
d\left(x^{*}, T x^{*}\right) \leqslant s d\left(x^{*}, T x_{n}\right)+s d\left(T x_{n}, T x^{*}\right)
$$

Letting $n \rightarrow \infty$ in the above inequality

$$
d\left(x^{*}, T x^{*}\right) \leqslant s \lim _{n \rightarrow \infty} d\left(x^{*}, T x_{n}\right)+s \lim _{n \rightarrow \infty} d\left(T x_{n}, T x^{*}\right)=0 .
$$

So $T x^{*}=x^{*}$.
For self-mappings that are not continuous or α-continuous we have the following result.

Theorem 2.2 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and $\alpha: X \times X \rightarrow[0, \infty)$ and $\lambda: X \rightarrow[0,+\infty)$ be two functions. Suppose that the following assertions hold.
(i) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geqslant 1$ and $\lambda\left(x_{0}\right) \leqslant 1$.
(ii) T is a triangular α-admissible and semi λ-subadmissible mapping.
(iii) For all $x, y \in X$ with $\alpha(x, y) \geqslant 1$

$$
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))
$$

where $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

(v) If $\left\{x_{n}\right\}$ be a sequence such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1, \lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then $\alpha\left(x_{n}, x\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda(x) \leqslant 1$.
Then T has a fixed point.
Proof. Let $x_{0} \in X$ be such that $\alpha\left(x_{0}, T x_{0}\right) \geqslant 1$ and $\lambda\left(x_{0}\right) \leqslant 1$. Define a sequence $\left\{x_{n}\right\}$ in X by $x_{n}=T^{n} x_{0}=T x_{n-1}$ for all $n \in \mathbb{N}$. Following the proof of the Theorem 2.1, we obtain that $\left\{x_{n}\right\}$ is a b-Cauchy sequence such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ and $\lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$. Since X is complete, there exists $x^{*} \in X$ such that the sequence $\left\{x_{n}\right\}$ b-converges to x^{*}. Using the assumption (v), we have $\alpha\left(x_{n}, x^{*}\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda\left(x^{*}\right) \leqslant 1$. By (iii)

$$
\begin{align*}
\psi\left(s d\left(x_{n+1}, T x^{*}\right)\right) & =\psi\left(s d\left(T x_{n}, T x^{*}\right)\right) \\
& \leqslant \lambda\left(x_{n}\right) \lambda\left(x^{*}\right)\left[\psi\left(M\left(x_{n}, x^{*}\right)\right)-\varphi\left(M\left(x_{n}, x^{*}\right)\right)\right] \\
& +\theta\left(d\left(x_{n}, T x_{n}\right), d\left(x^{*}, T x^{*}\right), d\left(x_{n}, T x^{*}\right), d\left(x^{*}, T x_{n}\right)\right) \tag{22}\\
& \leqslant \psi\left(M\left(x_{n}, x^{*}\right)\right)-\varphi\left(M\left(x_{n}, x^{*}\right)\right) \\
& +\theta\left(d\left(x_{n}, T x_{n}\right), d\left(x^{*}, T x^{*}\right), d\left(x_{n}, T x^{*}\right), d\left(x^{*}, T x_{n}\right)\right),
\end{align*}
$$

where

$$
\begin{align*}
M\left(x_{n}, x^{*}\right) & =\max \left\{d\left(x_{n}, x^{*}\right), d\left(x_{n}, T x_{n}\right), d\left(x^{*}, T x^{*}\right), \frac{d\left(x_{n}, T x^{*}\right)+d\left(T x_{n}, x^{*}\right)}{d\left(x^{2},\right.}\right\} \tag{23}\\
& =\max \left\{d\left(x_{n}, x^{*}\right), d\left(x_{n}, x_{n+1}\right), d\left(x^{*}, T x^{*}\right), \frac{d\left(x_{n}, T x^{*}\right)^{2}+d\left(x_{n+1}, x^{*}\right)}{2 s}\right\}
\end{align*}
$$

and

$$
\begin{align*}
& \theta\left(d\left(x_{n}, T x_{n}\right), d\left(x^{*}, T x^{*}\right), d\left(x_{n}, T x^{*}\right), d\left(x^{*}, T x_{n}\right)\right) \\
& =\theta\left(d\left(x_{n}, x_{n+1}\right), d\left(x^{*}, T x^{*}\right), d\left(x_{n}, T x^{*}\right), d\left(x^{*}, x_{n+1}\right)\right) . \tag{24}
\end{align*}
$$

Letting $n \rightarrow \infty$ in (23) and (24) and using lemma 1.4, we get

$$
\begin{align*}
\frac{d\left(x^{*}, T x^{*}\right)}{2 s^{2}} & =\min \left\{d\left(x^{*}, T x^{*}\right), \frac{d\left(x^{*}, T x^{*}\right)}{2 s^{2}}\right\} \leqslant \limsup _{n \rightarrow \infty} M\left(x_{n}, x^{*}\right) \\
& \leqslant \max \left\{d\left(x^{*}, T x^{*}\right), \frac{s d\left(x^{*}, T x^{*}\right)}{2 s}\right\}=d\left(x^{*}, T x^{*}\right), \tag{25}
\end{align*}
$$

and

$$
\theta\left(d\left(x_{n}, T x_{n}\right), d\left(x^{*}, T x^{*}\right), d\left(x_{n}, T x^{*}\right), d\left(x^{*}, T x_{n}\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Similarly

$$
\begin{equation*}
\frac{d\left(x^{*}, T x^{*}\right)}{2 s^{2}} \leqslant \liminf _{n \longrightarrow \infty} M\left(x_{n}, x^{*}\right) \leqslant d\left(x^{*}, T x^{*}\right) \tag{26}
\end{equation*}
$$

Again, taking the upper limit as $i \rightarrow \infty$ in (22) and using lemma 1.4 and (25) we get

$$
\begin{aligned}
\psi\left(d\left(x^{*}, T x^{*}\right)\right. & =\psi\left(s \frac{1}{s} d\left(x^{*}, T x^{*}\right)\right) \leqslant \psi\left(\operatorname{simsup}_{n \longrightarrow \infty} d\left(x_{n+1}, T x^{*}\right)\right) \\
& \leqslant \psi\left(\limsup _{n \longrightarrow \infty}^{\operatorname{lom}} M\left(x_{n}, x^{*}\right)\right)-\liminf _{n \longrightarrow} \varphi\left(M\left(x_{n}, x^{*}\right)\right) \\
& \leqslant \psi\left(d\left(x^{*}, T x^{*}\right)\right)-\varphi\left(\liminf _{n \longrightarrow \infty} M\left(x_{n}, x^{*}\right)\right) .
\end{aligned}
$$

Hence, $\varphi\left(\liminf _{n} M\left(x_{n}, x^{*}\right)\right)=0$. Then, $\liminf _{n \longrightarrow \infty} M\left(x_{n}, x^{*}\right)=0$ which is a contradiction. So, $x^{*}=T x^{*}$.

Example 2.3 Let $X=\mathbb{R}$ be endowed with the b-metric

$$
d(x, y)= \begin{cases}(|x|+|y|)^{2}, & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

for all $x, y \in X$. Define $T: X \rightarrow X, \alpha: X \times X \rightarrow[0, \infty)$ and $\lambda: X \rightarrow[0, \infty)$ by

$$
T x=\left\{\begin{array}{ll}
2 x^{3}+\sin x, & \text { if } x \in(-\infty, 0) \\
\frac{1}{8} x^{2}, & \text { if } x \in[0,1) \\
\frac{1}{8} x, & \text { if } x \in[1,2) \\
\frac{1}{4} & \text { if } x \in[2,+\infty)
\end{array} \quad \alpha(x, y)=\left\{\begin{array}{l}
2, \text { if } x, y \in[0,+\infty) \\
0, \text { otherwise }
\end{array}\right.\right.
$$

and $\lambda(x)= \begin{cases}1, & \text { if } x \in[0,+\infty) \\ 2 x^{2}+3, & \text { otherwise } .\end{cases}$
Also, define $\psi, \varphi:[0, \infty) \rightarrow[0,+\infty)$ and $\theta:[0,+\infty)^{4} \rightarrow[0,+\infty)$ by $\psi(t)=t, \varphi(t)=\frac{3}{4} t$ and $\theta\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\min \left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. Clearly (X, d, s) with $s=2$ is a complete $b-$ metric space, $\psi, \varphi \in \Psi$ and $\theta \in \Theta$. Let $\alpha(x, y) \geqslant 1$, then $x, y \in[0,+\infty)$. On the other hand, $T w \in[0,+\infty)$ for all $w \in[0,+\infty)$. Then $\alpha(T x, T y) \geqslant 1$. That is, T is an α-admissible mapping. Let $\alpha(x, y) \geqslant 1$ and $\alpha(y, z) \geqslant 1$. So $x, y, z \in[0,+\infty)$ i.e., $\alpha(x, z) \geqslant 1$. Hence T is a triangular α-admissible mapping. Also, let $\lambda(x) \leqslant 1$. Thus $x \in[0,+\infty)$. That is, $\lambda(T x) \leqslant 1$. Thus T is a semi λ-subadmissible mapping. Let $\left\{x_{n}\right\}$ be a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ and $\lambda\left(x_{n}\right) \leqslant 1$ with $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Then, $x_{n} \in[0,+\infty)$ for all $n \in \mathbb{N}$. Also $[0,+\infty)$ is a closed set. Then $x \in[0,+\infty)$. That is $\alpha\left(x_{n}, x\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda(x) \leqslant 1$. Clearly $\alpha(0, T 0) \geqslant 1$ and $\lambda(0) \leqslant 1$.

Let $\alpha(x, y) \geqslant 1$. So $x, y \in[0,+\infty)$.
Now we consider the following cases:

- Let $x, y \in[0,1)$ then

$$
\begin{aligned}
\psi(2 d(T x, T y)) & =2 d(T x, T y)=2\left(\frac{1}{8} x^{2}+\frac{1}{8} y^{2}\right)^{2} \\
& =\frac{1}{3}\left(x^{2}+y^{2}\right)^{2} \\
& \leqslant \frac{1}{4}(x+y)^{2} \\
& =\frac{1}{4} d(x, y) \\
& \leqslant \frac{1}{4} M(x, y) \\
& =\psi(M(x, y))-\varphi(M(x, y)) \\
& =\lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x)) .
\end{aligned}
$$

- Let $x, y \in[1,2)$ then

$$
\begin{aligned}
\psi(2 d(T x, T y))=2 d(T x, T y) & =2\left(\frac{1}{8} x+\frac{1}{8} y\right)^{2} \\
& =\frac{1}{32}(x+y)^{2} \\
& \leqslant \frac{1}{4}(x+y)^{2} \\
& =\frac{1}{4} d(x, y) \\
& \leqslant \frac{1}{4} M(x, y) \\
& =\psi(M(x, y))-\varphi(M(x, y)) \\
& \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))] \\
& +\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x)) .
\end{aligned}
$$

- Let $x, y \in[2, \infty)$ then

$$
\begin{aligned}
\psi(2 d(T x, T y)) & =2 d(T x, T y)=2\left(\frac{1}{4}+\frac{1}{4}\right)^{2} \\
& =\frac{1}{2} \leqslant 1 \\
& =\frac{1}{4}(1+1)^{2} \\
& \leqslant \frac{1}{4}(x+y)^{2} \\
& =\frac{1}{4} d(x, y) \\
& \leqslant \frac{1}{4} M(x, y) \\
& =\psi(M(x, y))-\varphi(M(x, y)) \\
& \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))] \\
& +\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x)) .
\end{aligned}
$$

- Let $x \in[0,1)$ and $y \in[1,2)$ then

$$
\begin{aligned}
\psi(2 d(T x, T y)) & =2 d(T x, T y)=2\left(\frac{1}{8} x^{2}+\frac{1}{8} y\right)^{2} \\
& \leqslant 2\left(\frac{1}{8} x+\frac{1}{8} y\right)^{2} \\
& =\frac{1}{32}\left(x^{2}+y^{2}\right)^{2} \\
& \leqslant \frac{1}{4}(x+y)^{2} \\
& =\frac{1}{4} d(x, y) \leqslant \frac{1}{4} M(x, y) \\
& =\psi(M(x, y))-\varphi(M(x, y)) \\
& =\lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))] \\
& +\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x)) .
\end{aligned}
$$

- Let $x \in[0,1)$ and $y \in[2, \infty)$ then

$$
\begin{aligned}
\psi(2 d(T x, T y)) & =2 d(T x, T y)=2 t\left(\frac{1}{8} x^{2}+\frac{1}{4}\right)^{2} \\
& \leqslant 2\left(\frac{1}{8} x+\frac{1}{8} y\right)^{2} \\
& =\frac{1}{32}(x+y)^{2} \\
& \leqslant \frac{1}{4}(x+y)^{2} \\
& =\frac{1}{4} d(x, y) \\
& \leqslant \frac{1}{4} M(x, y) \\
& =\psi(M(x, y))-\varphi(M(x, y)) \\
& =\lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))] \\
& +\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x)) .
\end{aligned}
$$

- Let $x \in[1,2)$ and $y \in[2, \infty)$ then

$$
\begin{aligned}
\psi(2 d(T x, T y)) & =2 d(T x, T y)=2\left(\frac{1}{8} x+\frac{1}{4}\right)^{2} \\
& \leqslant 2\left(\frac{1}{8} x+\frac{1}{8} y\right)^{2} \\
& =\frac{1}{32}(x+y)^{2} \\
& \leqslant \frac{1}{4}(x+y)^{2} \\
& =\frac{1}{4} d(x, y) \\
& \leqslant \frac{1}{4} M(x, y) \\
& =\psi(M(x, y))-\varphi(M(x, y)) \\
& \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))] \\
& +\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x)) .
\end{aligned}
$$

Therefore $\alpha(x, y) \geqslant 1$ implies
$\psi(2 d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))$
Hence, all conditions of Theorem 2.2 holds and T has a fixed point. Here, $x=0$ is a fixed point of T.

Corollary 2.4 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and $\alpha: X \times X \rightarrow[0, \infty)$ and $\lambda: X \rightarrow[0,+\infty)$ be two functions. Suppose that the following assertions hold.
(i) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geqslant 1$ and $\lambda\left(x_{0}\right) \leqslant 1$.
(ii) T is a triangular α-admissible and semi λ-subadmissible mapping.
(iii) For all $x, y \in X$

$$
\begin{equation*}
\psi(s \alpha(x, y) d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x)) \tag{27}
\end{equation*}
$$

where $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}
$$

(v) If $\left\{x_{n}\right\}$ is a sequence such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1, \lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$ then $\alpha\left(x_{n}, x\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda(x) \leqslant 1$.

Then T has a fixed point.
Proof. Let $\alpha(x, y) \geqslant 1$. Since ψ is increasing then from (iii)

$$
\begin{aligned}
\psi(s d(T x, T y)) & \leqslant \psi(s \alpha(x, y) d(T x, T y)) \\
& \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))] \\
& +\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))
\end{aligned}
$$

Therefore all conditions of Theorem 2.2 holds and T has a fixed point.
If in Corollary 2.4 we take $\alpha(x, y)=1$ for all $x, y \in X$, then we have the following corollary.

Corollary 2.5 Let (X, d, s) be a complete b-metric space and T be a self-mapping on X and $\lambda: X \rightarrow[0,+\infty)$ be a function. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is a semi λ-subadmissible mapping,
(iii) for all $x, y \in X$ we have

$$
\begin{equation*}
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x)) \tag{28}
\end{equation*}
$$

where, $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}
$$

(v) if $\left\{x_{n}\right\}$ be a sequence such that $\lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$ then $\lambda(x) \leqslant 1$.
Then T has a fixed point.

3. Some results in b-metric spaces endowed with a graph

In this section, we show that many fixed point results in b-metric spaces endowed with a graph G (see [4]) can be deduced easily from our presented theorems.
As in [14], let (E, d, s) be a b-metric space and Δ denotes the diagonal of the Cartesian product of $X \times X$. Consider a directed graph G such that the set $V(G)$ of its vertices coincides with X and the set $E(G)$ of its edges contains all loops, that is $E(G) \supseteq \Delta$. We assume that G has no parallel edges, so we can identify G with the pair $(V(G), E(G))$. Moreover, we may treat G as a weighted graph, see [15, P.309], by assigning to each edge the distance between its vertices. If x and y are vertices in a graph G then a path in G from x to y of length $N(N \in \mathbb{N})$ is a sequence $\left\{x_{i}\right\}_{i=0}^{N}$ of $N+1$ vertices such that $x_{0}=x, x_{N}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(G)$ for $i=1, \ldots, N$.
Definition $3.1[14]$ Let (X, d) be a metric space endowed with a graph G. We say that a self-mapping $T: X \rightarrow X$ is a Banach G-contraction or simply a G-contraction if T preserves the edges of G that is,

$$
\text { for all } x, y \in X, \quad(x, y) \in E(G) \Longrightarrow(T x, T y) \in E(G)
$$

and T decreases the weights of the edges of G in the following way:

$$
\exists \alpha \in(0,1) \text { such that for all } x, y \in X, \quad(x, y) \in E(G) \Longrightarrow d(T x, T y) \leq \alpha d(x, y)
$$

Definition 3.2 [14] A mapping $T: X \rightarrow X$ is called G-continuous if given $x \in X$ and sequence $\left\{x_{n}\right\}$

$$
x_{n} \rightarrow x \text { as } n \rightarrow \infty \text { and }\left(x_{n}, x_{n+1}\right) \in E(G) \text { for all } n \in \mathbb{N} \text { imply } T x_{n} \rightarrow T x .
$$

Theorem 3.3 Let (X, d, s) be a complete b-metric space endowed with a graph G and T be a self-mapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $\left(x_{0}, T x_{0}\right) \in E(G)$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is G-continuous and semi λ-subadmissible mapping,
(iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow(T(x), T(y)) \in E(G)]$
(iv) $\forall x, y, z \in X[(x, y) \in E(G)$ and $(y, z) \in E(G) \Rightarrow(x, z) \in E(G)]$
(v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))
$$

where, $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

Then T has a fixed point.
Proof. Define $\alpha: X^{2} \rightarrow[0,+\infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{l}
2, \text { if }(x, y) \in E(G) \\
\frac{1}{2}, \text { otherwise } .
\end{array}\right.
$$

First we show that T is a triangular α-admissible mapping. Let $\alpha(x, y) \geqslant 1$ then $(x, y) \in$ $E(G)$. From (iii) $(T x, T y) \in E(G)$. That is $\alpha(T x, T y) \geqslant 1$. Also let $\alpha(x, y) \geqslant 1$ and $\alpha(y, z) \geqslant 1$. So $(x, y) \in E(G)$ and $(y, z) \in E(G)$. From (iv) we get $(x, z) \in E(G)$, i.e. $\alpha(x, z) \geqslant 1$. Thus T is a triangular α-admissible mapping. Let T be G-continuous. So

$$
x_{n} \rightarrow x \text { as } n \rightarrow \infty \text { and }\left(x_{n}, x_{n+1}\right) \in E(G) \text { for all } n \in \mathbb{N} \text { imply } T x_{n} \rightarrow T x .
$$

That is,

$$
x_{n} \rightarrow x \text { as } n \rightarrow \infty \text { and } \alpha\left(x_{n}, x_{n+1}\right) \geqslant 1 \text { for all } n \in \mathbb{N} \text { imply } T x_{n} \rightarrow T x
$$

which implies that T is α-continuous. From (i) there exists $x_{0} \in X$ such that $\left(x_{0}, T x_{0}\right) \in$ $E(G)$. That is $\alpha\left(x_{0}, T x_{0}\right) \geqslant 1$. Let $\alpha(x, y) \geqslant 1$ then $(x, y) \in E(G)$. Now from (v) we have

$$
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))
$$

Hence all conditions of Theorem 2.1 are satisfied and T has a fixed point.
In Theorem 3.3 we take $\theta\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\min \left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$.
Corollary 3.4 Let (X, d, s) be a complete b-metric space endowed with a graph G and T be a self-mapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $\left(x_{0}, T x_{0}\right) \in E(G)$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is G-continuous and semi λ-subadmissible mapping,
(iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow(T(x), T(y)) \in E(G)]$
(iv) $\forall x, y, z \in X[(x, y) \in E(G)$ and $(y, z) \in E(G) \Rightarrow(x, z) \in E(G)]$
(v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+L \min \{d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

where, $\psi, \varphi \in \Psi, L \geqslant 0$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

Then T has a fixed point.
Theorem 3.5 Let (X, d, s) be a complete b-metric space endowed with a graph G and T be a self-mapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $\left(x_{0}, T x_{0}\right) \in E(G)$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is semi λ-subadmissible mapping,
(iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow(T(x), T(y)) \in E(G)]$
(iv) $\forall x, y, z \in X[(x, y) \in E(G)$ and $(y, z) \in E(G) \Rightarrow(x, z) \in E(G)]$
(v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$
\begin{equation*}
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x)) \tag{29}
\end{equation*}
$$

where, $(\psi, \varphi \in \Psi), \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}
$$

(vi) if $\left\{x_{n}\right\}$ be a sequence in X such that $\left(x_{n}, x_{n+1}\right) \in E(G), \lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$ then $\left(x_{n}, x\right) \in E(G)$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda(x) \leqslant 1$.

Then T has a fixed point.
Proof. Define the mapping $\alpha: X^{2} \rightarrow[0,+\infty)$ as in the proof of Theorem 3.3. Similar to the proof of Theorem 3.3 we can prove that the conditions (i)-(iii) of Theorem 2.2 are satisfied. Let $\left\{x_{n}\right\}$ be a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ and $\lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Then $\left(x_{n}, x_{n+1}\right) \in E(G)$ and $\lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$. From (vi) we get $\left(x_{n}, x\right) \in E(G)$ and $\lambda(x) \leqslant 1$. That is $\alpha\left(x_{n}, x\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda(x) \leqslant 1$. Therefore all conditions of Theorem 2.2 holds and T has a fixed point.
Corollary 3.6 Let (X, d, s) be a complete b-metric space endowed with a graph G and T be a self-mapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $\left(x_{0}, T x_{0}\right) \in E(G)$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is semi λ-subadmissible mapping,
(iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow(T(x), T(y)) \in E(G)]$
(iv) $\forall x, y, z \in X[(x, y) \in E(G)$ and $(y, z) \in E(G) \Rightarrow(x, z \in E(G)]$
(v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+L \min \{d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

where, $(\psi, \varphi \in \Psi), L \geqslant 0$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}
$$

(vi) if $\left\{x_{n}\right\}$ be a sequence in X such that $\left(x_{n}, x_{n+1}\right) \in E(G), \lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then $\left(x_{n}, x\right) \in E(G)$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda(x) \leqslant 1$.
Then T has a fixed point.

4. Some results in b-metric spaces endowed with a partial ordered

The existence of fixed points in partially ordered sets has been considered by many authors (such as [19], [21-26] and [29] etc.). Later on, some generalizations of [26] are given in [27]. Several applications of these results to matrix equations are presented in [26].

Let X be a nonempty set. If (X, d, s) is a b-metric space and (X, \preceq) be a partially ordered set, then (X, d, s, \preceq) is called an ordered b-metric space. Two elements $x, y \in X$ are called comparable if $x \preceq y$ or $y \preceq x$ hold. A mapping $T: X \rightarrow X$ is said to be non-decreasing if $x \preceq y$ implies $T x \preceq T y$ for all $x, y \in X$.

In this section, we will show that many fixed point results in partially ordered b-metric spaces can be deduced easily from our obtained results.

Theorem 4.1 Let (X, d, s, \preceq) be a complete ordered b-metric space and T be a selfmapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $x_{0} \preceq T x_{0}$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is continuous and semi λ-subadmissible mapping,
(iii) T is an increasing mapping,
(v) for all $x, y \in X$ with $x \preceq y$ we have,

$$
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))
$$

where, $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

Then T has a fixed point.
Proof. Define $\alpha: X^{2} \rightarrow[0,+\infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{l}
2, \text { if } x \preceq y \\
\frac{1}{2}, \text { otherwise }
\end{array}\right.
$$

First, we prove that T is a triangular α-admissible mapping. Let $\alpha(x, y) \geqslant 1$, then $x \preceq y$. Since T is increasing, then we have $T x \preceq T y$. That is, $\alpha(T x, T y) \geqslant 1$. Suppose that $\alpha(x, y) \geqslant 1$ and $\alpha(y, z) \geqslant 1$. Then $x \preceq y$ and $y \preceq z$. Hence $x \preceq z$ i.e., $\alpha(x, z) \geqslant 1$. Therefore, T is a triangular α-admissible mapping. Since T is continuous then it is α-continuous too. From (i) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geqslant 1$. That is, $\alpha\left(x_{0}, T x_{0}\right) \geqslant 1$. Let $\alpha(x, y) \geqslant 1$, then $x \preceq y$. Now, from (v) we have
$\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))$.
Hence, all conditions of Theorem 2.1 are satisfied and T has a fixed point.
If in Theorem 3.3 we take $\theta\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=L \psi\left(\min \left\{t_{1}, t_{4}\right\}\right)$ where $L \geqslant 0$, then we have the following Corollary.

Corollary 4.2 Let (X, d, s, \preceq) be a complete ordered b-metric space and T be a selfmapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $x_{0} \preceq T x_{0}$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is continuous and semi λ-subadmissible mapping,
(iii) T is an increasing mapping,
(v) for all $x, y \in X$ with $x \preceq y$ we have,

$$
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+L \psi(\min \{d(x, T x), d(y, T x)\})
$$

where, $\psi, \varphi \in \Psi, L \geqslant 0$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

Then T has a fixed point.
If in Corollary 3.3 we take $\lambda(x)=1$ for all $x \in X$, then we have the following Corollary.
Corollary 4.3 [27, Theorem 3] Let (X, d, s, \preceq) be a complete ordered b-metric space and T be a self-mapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $x_{0} \preceq T x_{0}$,
(ii) T is continuous,
(iii) T is an increasing mapping,
(v) for all $x, y \in X$ with $x \preceq y$ we have,

$$
\psi(s d(T x, T y)) \leqslant \psi(M(x, y))-\varphi(M(x, y))++L \psi(\min \{d(x, T x), d(y, T x)\})
$$

where, $\psi, \varphi \in \Psi, L \geqslant 0$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

Then T has a fixed point.
Theorem 4.4 Let (X, d, s, \preceq) be a complete partially ordered b-metric space and let T be a self-mapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $x_{0} \preceq T x_{0}$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is a semi λ-subadmissible mapping,
(iii) T is an increasing mapping,
(iv) for all $x, y \in X$ with $x \preceq y$ we have,

$$
\begin{equation*}
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x)) \tag{30}
\end{equation*}
$$

where, $(\psi, \varphi \in \Psi), \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

(v) if $\left\{x_{n}\right\}$ be an increasing sequence in X such that $\lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$ then $x_{n} \preceq x$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda(x) \leqslant 1$.
Then T has a fixed point.
Proof. Define the mapping $\alpha: X^{2} \rightarrow[0,+\infty)$ as in the proof of Theorem 3.3. Analogous to the proof of Theorem 3.3 we can prove all the conditions (i)-(iii) of Theorem 2.2 are satisfied. Let $\left\{x_{n}\right\}$ be a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ and $\lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Then $x_{n} \preceq x_{n+1}$ and $\lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$. From (v) we get, $x_{n} \preceq x$ and $\lambda(x) \leqslant 1$. That is, $\alpha\left(x_{n}, x\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda(x) \leqslant 1$. Therefore all conditions of Theorem 2.2 holds and T has a fixed point.

Corollary 4.5 Let (X, d, s, \preceq) be a complete partially ordered b-metric space and T be a self-mapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that, $x_{0} \preceq T x_{0}$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is a semi λ-subadmissible mapping,
(iii) T is an increasing mapping,
(iv) for all $x, y \in X$ with $x \preceq y$ we have,

$$
\begin{equation*}
\psi(s d(T x, T y)) \leqslant \lambda(x) \lambda(y)[\psi(M(x, y))-\varphi(M(x, y))]+L \psi(\min \{d(x, T x), d(y, T x)\}) \tag{31}
\end{equation*}
$$

where, $\psi, \varphi \in \Psi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

(v) if $\left\{x_{n}\right\}$ be an increasing sequence in X such that $\lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then $x_{n} \preceq x$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda(x) \leqslant 1$.
Then T has a fixed point.
Corollary 4.6 [27, Theorem 4] Let (X, d, s, \preceq) be a complete partially ordered b-metric space and T be a self-mapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $x_{0} \preceq T x_{0}$,
(iii) T is an increasing mapping,
(iv) for all $x, y \in X$ with $x \preceq y$ we have,

$$
\begin{equation*}
\psi(s d(T x, T y)) \leqslant \psi(M(x, y))-\varphi(M(x, y))+L \psi(\min \{d(x, T x), d(y, T x)\}) \tag{32}
\end{equation*}
$$

where, $(\psi, \varphi \in \Psi), L \geqslant 0$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

(v) if $\left\{x_{n}\right\}$ be an increasing sequence in X such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$ then $x_{n} \preceq x$ for all $n \in \mathbb{N} \cup\{0\}$.

Then T has a fixed point.

5. Some integral type contractions

Let Φ denotes the set of all functions $\phi:[0,+\infty) \rightarrow[0,+\infty)$ satisfying the following properties:

- every $\phi \in \Phi$ is a Lebesgue integrable function on each compact subset of $[0,+\infty)$,
- for any $\phi \in \Phi$ and any $\epsilon>0, \int_{0}^{\epsilon} \phi(\tau) d \tau>0$.

Note that if we take $\psi(t)=\int_{0}^{t} \phi(\tau) d \tau$ where $\phi \in \Phi$ then $\psi \in \Psi$.
Also note that if $\psi \in \Psi$ and $\theta \in \Theta$ then $\psi \theta \in \Theta$.
If in Theorem 2.1 we take $\psi(t)=\int_{0}^{t} \phi(\tau) d \tau, \varphi(t)=(1-r) \int_{0}^{t} \phi(\tau) d \tau$ for all $t \in[0, \infty)$ where $0 \leqslant r<1$ and replace θ by $\psi \theta$ then we have the following theorem.

Theorem 5.1 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and $\alpha: X \times X \rightarrow[0, \infty)$ and $\lambda: X \rightarrow[0,+\infty)$ be two functions. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geqslant 1$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is α-continuous, triangular α-admissible and semi λ-subadmissible mapping,
(iii) for all $x, y \in X$ with $\alpha(x, y) \geqslant 1$ we have

$$
\begin{equation*}
\int_{0}^{d(T x, T y)} \phi(\tau) d \tau \leqslant \frac{r \lambda(x) \lambda(y)}{s} \int_{0}^{M(x, y)} \phi(\tau) d \tau+\int_{0}^{\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))} \phi(\tau) d \tau \tag{33}
\end{equation*}
$$

where, $0 \leqslant r<1, \phi \in \Phi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

Then T has a fixed point.
Theorem 5.2 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and $\alpha: X \times X \rightarrow[0, \infty)$ and $\lambda: X \rightarrow[0,+\infty)$ be two functions. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that, $\alpha\left(x_{0}, T x_{0}\right) \geqslant 1$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is a triangular α-admissible and semi λ-subadmissible mapping,
(iii) for all $x, y \in X$ with $\alpha(x, y) \geqslant 1$ we have

$$
\begin{equation*}
\int_{0}^{d(T x, T y)} \phi(\tau) d \tau \leqslant \frac{r \lambda(x) \lambda(y)}{s} \int_{0}^{M(x, y)} \phi(\tau) d \tau+\int_{0}^{\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))} \phi(\tau) d \tau \tag{34}
\end{equation*}
$$

where, $0 \leqslant r<1, \phi \in \Phi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\},
$$

(v) if $\left\{x_{n}\right\}$ be a sequence such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1, \lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then $\alpha\left(x_{n}, x\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda(x) \leqslant 1$.
Then T has a fixed point.
Theorem 5.3 Let (X, d, s) be a complete b-metric space endowed with a graph G and T be a self-mapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that, $\left(x_{0}, T x_{0}\right) \in E(G)$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is G-continuous and semi λ-subadmissible mapping,
(iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow(T(x), T(y)) \in E(G)]$
(iv) $\forall x, y, z \in X[(x, y) \in E(G)$ and $(y, z) \in E(G) \Rightarrow(x, z) \in E(G)]$
(v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$
\begin{equation*}
\int_{0}^{d(T x, T y)} \phi(\tau) d \tau \leqslant \frac{r \lambda(x) \lambda(y)}{s} \int_{0}^{M(x, y)} \phi(\tau) d \tau+\int_{0}^{\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))} \phi(\tau) d \tau \tag{35}
\end{equation*}
$$

where, $0 \leqslant r<1, \phi \in \Phi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} .
$$

Then T has a fixed point.

Theorem 5.4 Let (X, d, s) be a complete b-metric space endowed with a graph G and T be a self-mapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $\left(x_{0}, T x_{0}\right) \in E(G)$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is semi λ-subadmissible mapping,
(iii) $\forall x, y \in X[(x, y) \in E(G) \Rightarrow(T(x), T(y)) \in E(G)]$
(iv) $\forall x, y, z \in X[(x, y) \in E(G)$ and $(y, z) \in E(G) \Rightarrow(x, z) \in E(G)]$
(v) for all $x, y \in X$ with $(x, y) \in E(G)$ we have,

$$
\begin{equation*}
\int_{0}^{d(T x, T y)} \phi(\tau) d \tau \leqslant \frac{r \lambda(x) \lambda(y)}{s} \int_{0}^{M(x, y)} \phi(\tau) d \tau+\int_{0}^{\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))} \phi(\tau) d \tau \tag{36}
\end{equation*}
$$

where, $0 \leqslant r<1, \phi \in \Phi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}
$$

(vi) if $\left\{x_{n}\right\}$ be a sequence in X such that $\left(x_{n}, x_{n+1}\right) \in E(G), \lambda\left(x_{n}\right) \leqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$ then $\left(x_{n}, x\right) \in E(G)$ for all $n \in \mathbb{N} \cup\{0\}$ and $\lambda(x) \leqslant 1$.
Then T has a fixed point.
Theorem 5.5 Let (X, d, s, \preceq) be a complete ordered b-metric space and T be a selfmapping on X. Suppose that the following assertions hold.
(i) there exists $x_{0} \in X$ such that $x_{0} \preceq T x_{0}$ and $\lambda\left(x_{0}\right) \leqslant 1$,
(ii) T is continuous and semi λ-subadmissible mapping,
(iii) T is an increasing mapping,
(v) for all $x, y \in X$ with $x \preceq y$ we have

$$
\begin{equation*}
\int_{0}^{d(T x, T y)} \phi(\tau) d \tau \leqslant \frac{r \lambda(x) \lambda(y)}{s} \int_{0}^{M(x, y)} \phi(\tau) d \tau+\int_{0}^{\theta(d(x, T x), d(y, T y), d(x, T y), d(y, T x))} \phi(\tau) d \tau \tag{37}
\end{equation*}
$$

where, $0 \leqslant r<1, \phi \in \Phi, \theta \in \Theta$ and

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}
$$

Then T has a fixed point.

References

[1] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 4 (2014), 941-960.
[2] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, (Russian), Func. An., Gos. Ped. Inst. Unianowsk 30 (1989), 26-37.
[3] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint no. 3 (1993), 3-9.
[4] F. Bojor, Fixed point theorems for Reich type contraction on metric spaces with a graph, Nonlinear Anal. 75 (2012), 3895-3901.
[5] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Modern Math., 4(3) (2009), 285-301.
[6] S. Czerwick, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5-11.
[7] N. Hussain, V. Parvaneh, J.R. Roshan and Z Kadelburg, Fixed points of cyclic weakly (ψ, φ, L, A, B) contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl. 256 (2013).
[8] J.R. Roshan, V. Parvaneh and I. Altun, Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations, Applied Mathematics and Computation 226 (2014), 725-737.
[9] Z. Mustafa, J.R. Roshan, V. Parvaneh and Z. Kadelburg, Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces, Journal of Inequalities and Applications 46 (2014).
10] N. Hussain, J.R. Roshan, V. Parvaneh and M. Abbas, Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications, Journal of Inequalities and Applications 486 (2013).
[11] Z. Mustafa, J.R. Roshan, V. Parvaneh and Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, Journal of Inequalities and Applications 562 (2013).
[12] N. Hussain, M. A. Kutbi and P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstract and Applied Analysis 280817 (2014), 11 pages.
[13] N. Hussain, P. Salimi and A. Latif, Fixed point results for single and set-valued $\alpha-\eta-\psi$-contractive mappings, Fixed Point Theory and Appl. 212 (2013).
[14] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373.
[15] R. Johnsonbaugh, Discrete Mathematics, Prentice-Hall, Inc., New Jersey, 1997.
[16] E. Karapınar, P. Kumam and P. Salimi, On $\alpha-\psi$-Meir-Keeler contractive mappings, Fixed Point Theory and Appl. 94 (2013).
[17] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distancces between the points, Bull. Aust. Math. Soc. 30 (1984), 1-9.
[18] M.A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010), 3123-3129.
[19] P. Kumam, H. Rahimi and G. Soleimani Rad, The existence of fixed and periodic point theorems in cone metric type spaces, J. Nonlinear Sci. Appl. 7 (4) (2014), 255-263.
[20] P. Kumam and A. Roldán, On existence and uniqueness of g-best proximity points under $(\varphi, \theta, \alpha, g)$ contractivity conditions and consequences, Abstract and Applied Analysis, Article ID 234027 (2014), 14 pages.
[21] J.J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239.
[22] J.J. Nieto and R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin., (English Ser.), 23 (2007) 2205-2212.
[23] H. Rahimi and G. Soleimani Rad, Fixed point theory in various spaces, Lambert Academic Publishing, Germany, 2013.
[24] H. Rahimi and G. Soleimani Rad, Some fixed point results in metric type space, J. Basic. Appl. Sci. Res. 2 (9) (2012), 9301-9308.
[25] H. Rahimi, P. Vetro, G. Soleimani Rad, Some common fixed point results for weakly compatible mappings in cone metric type space, Miskolc Math. Notes. 14 (1) (2013), 233-243.
[26] A.C.M. Ran and M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.
[27] J.R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common Fixed Points of Almost Generalized $(\psi, \varphi)_{s}-$ Contractive Mappings in Ordered b-Metric Spaces, Fixed Point Theory and Appl. 159 (2013).
[28] P. Salimi, A. Latif and N. Hussain, Modified $\alpha-\psi$-contractive mappings with applications, Fixed Point Theory and Appl. 151 (2013).
[29] P. Salimi and P. Vetro, A result of Suzuki type in partial G-metric spaces, Acta Mathematica Scientia 34B(2) (2014), 1-11.
[30] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165.

[^0]: *Corresponding author.
 E-mail address: razani@ipm.ir (A. Razani).

